考研数学:常考十大高频题型总结
“波波妞妞”通过精心收集,向本站投稿了16篇考研数学:常考十大高频题型总结,以下是小编收集整理后的考研数学:常考十大高频题型总结,仅供参考,欢迎大家阅读。
篇1:考研数学:常考十大高频题型总结
考研数学:常考十大高频题型总结
考研的各门科目中,考研数学考试综合性强、知识覆盖面广、难度大,应及早复习为佳。与考研英语相比,考研数学只要方法得当,提高分数相对要快一些。高等数学是考研数学内容最多的一部分,所以高等数学的分量也就显得尤为重要。
考研教育网编辑团队在此总结考研高等数学常考的高频十大题型,望大家总结每种题型要用到的知识点、技巧和解题思路,考试中这种题型形成定势思维。
1.求幂指函数的三种未定式“”,运用抬头法转为基本未定式,然后再利用罗必达法则和等价无穷小量求极限。
2.求最值、极值或证明不等式,运用函数的导数,借助单调性研究问题。
3.微积分中值定理的运用,运用找原函数法(积分法)、公式法或者经验法等构造辅助函数证明。
4.二重积分的计算,运用“-型(先Y后X),-型(先X后Y),-型(先后)”。
5.常微分方程问题。可分离变量方程、齐次方程、一阶线性微分方程等的通解、特解及线性方程解的性质和结构、常系数线性方程求解问题。
6.求抽象函数的二阶混合偏导数,运用复合函数的`链式法则和隐函数求导法则。
7.多元函数的极值,运用拉格朗日函数乘数法。
8.判断常数项级数的敛散性及求和。
9.求幂级数的收敛半径和收敛域、和函数及函数的幂级数展开、傅里叶级数。
10.曲线积分和曲面积分的计算。
篇2:考研数学辅导 一元函数常考题型
考研数学辅导 一元函数常考题型
一元函数微分学
(①考题总数:26题 ②总分值:136分 ③占第一部分题量之比重:22%④占第一部分分值之比重:17%)
题型 1 与函数导数或微分概念和性质相关的命题(二(7),)
题型 2 函数可导性及导函数的连续性的判定(五,;二(3),;二(7),)
题型 3 求函数或复合函数的导数(七(1),)
题型 4 求反函数的导数(七(1),)
题型 5 求隐函数的导数 (一(2),2002)
题型 6 函数极值点、拐点的判定或求解(二(7),2003)
题型 7 函数与其导函数的图形关系或其他性质的判定(二(1),2001;二(3),2002)
题型 8 函数在某点可导的`判断(含分段函数在分段点的可导性的判断)(二(2),)
题型 9 求一元函数在一点的切线方程或法线方程(一(3),1997;四,2002;一(1),)
题型 10 函数单调性的判断或讨论(八(1),2003;二(8),2004)
题型11不等式的证明或判定(二(2),1997;九,;六,1999;二(1),;八(2),2003;三(15),2004)
题型12在某一区间至少存在一个点或两个不同的点使某个式子成立的证明(九,2000;七(1),2001;三(18),2005)
题型 13 方程根的判定或唯一性证明(三(18),2004)
题型 14 曲线的渐近线的求解或判定(一(1),2005)
大学网考研频道。篇3:考研数学辅导 一元函数常考题型
考研数学辅导 一元函数常考题型
》》一元函数微分学(①10年考题总数:26题 ②总分值:136分 ③占第一部分题量之比重:22%④占第一部分分值之比重:17%)
题型 1 与函数导数或微分概念和性质相关的命题(二(7),2006)
题型 2 函数可导性及导函数的连续性的判定(五,1997;二(3),2001;二(7),2005)
题型 3 求函数或复合函数的'导数(七(1),2002)
题型 4 求反函数的导数(七(1),2003)
题型 5 求隐函数的导数 (一(2),2002)
题型 6 函数极值点、拐点的判定或求解(二(7),2003)
题型 7 函数与其导函数的图形关系或其他性质的判定(二(1),2001;二(3),2002)
题型 8 函数在某点可导的判断(含分段函数在分段点的可导性的判断)(二(2),1999)
题型 9 求一元函数在一点的切线方程或法线方程(一(3),1997;四,2002;一(1),2004)
题型 10 函数单调性的判断或讨论(八(1),2003;二(8),2004)
题型11不等式的证明或判定(二(2),1997;九,1998;六,1999;二(1),2000;八(2),2003;三(15),2004)
题型12在某一区间至少存在一个点或两个不同的点使某个式子成立的证明(九,2000;七(1),2001;三(18),2005)
题型 13 方程根的判定或唯一性证明(三(18),2004)
题型 14 曲线的渐近线的求解或判定(一(1),2005)
kaoyan/篇4:考研数学备考 常考十大知识点
考研数学备考 常考十大知识点
考研数学复习方法很重要,没有掌握正确的复习方法即使付出再多的时间可能也是徒劳。20的考研备考从现在开始就要进入一个特训强化阶段了,如何运用正确的方法使考研数学的复习更加有效,考研数学老师为大家一一呈现。
强化复习阶段里,提纲挈领地把基本理论吃透,首先是概念产生的实际背景是什么,界定此概念所运用到的数学思想和方法是什么。
接下来要弄懂这个概念的定义式,包括它的数学含义、几何意义和物理意义,以及在这个概念上的拓展和延伸等等。对于每个概念我们都要尽可能地从这几个方面来理解把握。理论性的内容,比如说定理、性质、推论,首先要清楚它的条件是什么,结论是什么,这是最起码的要求。
数学考试实际上就是考察这些定理、推论的运用,只要理解透了,不管出题方式怎么刁钻,你都可以以静制动,以不变应万变。所谓万变不离其宗。
考研数学老师为同学们总结了近年来考研数学常考十大知识点:
(1)运用洛必达法则和等价无穷小量求极限问题,直接求极限或给出一个分段函数讨论基连续性及间断点问题。
(2)运用导数求最值、极值或证明不等式。
(3)微积分中值定理的运用,证明一个关于“存在一个点,使得……成立”的'命题或者证明不等式。
(4)重积分的计算,包括二重积分和三重积分的计算及其应用。
(5)曲线积分和曲面积分的计算。
(6)幂级数问题,计算幂级数的和函数,将一个已知函数用间接法展开为幂级数。
(7)常微分方程问题。可分离变量方程、一阶线性微分方程、伯努利方程等的通解、特解及幂级数解法。
(8)解线性方程组,求线性方程组的待定常数等。
(9)矩阵的相似对角化,求矩阵的特征值,特征向量,相似矩阵等。(10)概率论与数理统计。求概率分布或随机变量的分布密度及一些数字特征,参数的点估计和区间估计。
篇5:考研数学高数六大常考题型总结
考研数学高数六大常考题型总结
题型一:求极限
求极限是高等数学的基本要求,所以也是每年必考的内容。无论数学一、数学二还是数学三,每年的考题都会涉及到,区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。比如大题可能需要用到等价无穷小代换、泰勒展开式、洛比达法则、分离因式、重要极限等几种方法,有时考生需要选择多种方法综合完成题目。另外,分段函数在个别点处的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性的研究等也需要使用极限手段达到目的。
题型二:利用中值定理证明等式或不等式,利用函数单调性证明不等式
证明题虽不能说每年一定考,但也基本上十年有九年都会涉及。等式的证明包括使用4个常见的微分中值定理(即罗尔中值定理、拉格朗日中值定理、柯西中值定理、泰勒中值定理),一个定积分中值定理;不等式的证明有时既可使用中值定理,也可使用函数单调性。这里泰勒中值定理的使用时的一个难点,但考查的概率不大。
题型三:一元函数求导数,多元函数求偏导数
求导数问题主要考查基本公式及运算能力,当然也包括对函数关系的处理能力。一元函数求导可能会以参数方程求导、变限积分求导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基本上每年都会考查,给出的函数可能是较为复杂的显函数,也可能是隐函数(包括方程组确定的隐函数)。
另外,二元函数的极值与条件极值与实际问题联系极其紧密,是一个考查重点。极值的充分条件、必要条件均涉及二元函数的偏导数。
题型四:级数问题
常数项级数(特别是正项级数、交错级数)敛散性的`判别,条件收敛与绝对收敛的本质含义均是考查的重点,但常常以小题形式出现。函数项级数(幂级数,对数一的考生来说还有傅里叶级数,但考查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在一点的幂级数展开在考试中常占有较高的分值。
题型五:积分的计算
积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对数一考生来说常主要是三重积分、曲线积分、曲面积分的计算。这是以考查运算能力与处理问题的技巧能力为主,以对公式的熟悉及空间想象能力的考查为辅的。需要注意在复习中对一些问题的灵活处理,例如定积分几何意义的使用,重心、形心公式的使用,对称性的使用等。
题型六:微分方程
解常微分方程方法固定,无论是一阶线性方程、可分离变量方程、齐次方程还是高阶常系数齐次与非齐次方程,只要记住常用形式,注意运算准确性,在考场上正确运算都没有问题。但这里需要注意:研究生考试对微分方程的考查常有一种反向方式,即平常给出方程求通解或特解,现在给出通解或特解求方程。这需要考生对方程与其通解、特解之间的关系熟练掌握。
篇6:高考常考数学题型
题型1、集合的基本概念
题型2、集合间的基本关系
题型3、集合的运算
题型4、四种命题及关系
题型5、充分条件、必要条件、充要条件的判断与证明
题型6、求解充分条件、必要条件、充要条件中的参数范围
题型7、判断命题的真假
题型8、含有一个量词的命题的否定
题型9、结合命题真假求参数的范围
题型10、映射与函数的概念
题型11、同一函数的判断
题型12、函数解析式的求法
题型13、函数定义域的求解
题型14、函数定义域的应用
题型15、函数值域的求解
题型16、函数的奇偶性
题型17、函数的单调性(区间)
题型18、函数的周期性
题型19、函数性质的综合
题型20、二次函数、一元二次方程、二次不等式的关系
题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件
题型22、二次函数“动轴定区间”、“定轴动区间”问题
题型23、指数运算及指数方程、指数不等式
题型24、指数函数的图像及性质
题型25、指数函数中的恒成立的问题
题型26、对数运算及对数方程、对数不等式
题型27、对数函数的图像与性质
题型28、对数函数中的恒成立问题
题型29、幂函数的定义及基本性质
题型30、幂函数性质的综合应用
题型31、判断函数的图像
题型32、函数图像的应用
题型33、求函数的零点或零点所在区间
题型34、利用函数的零点确定参数的取值范围
题型35、方程根的个数与函数零点的存在性问题
题型36、函数与数列的综合
题型37、函数与不等式的综合
题型38、函数中的创新题
题型39、导数的定义
题型40、求函数的导数
题型41、导数的几何意义
题型42、利用原函数与导函数的关系判断图像
题型43、利用导数求函数的单调区间
题型44、含参函数的单调性(区间)
题型45、已知含参函数在区间上单调或不单调或存在单调区间,求参数范围
题型46、函数的极值与最值的求解
题型47、方程解(函数零点)的个数问题
题型48、不等式恒成立与存在性问题
题型49、利用导数证明不等式
题型50、导数在实际问题中的应用
题型51、终边相同的角的集合的表示与识别
题型52、等分角的象限问题
题型53、弧长与扇形面积公式的计算
题型54、三角函数定义题
题型55、三角函数线及其应用
题型56、象限符号与坐标轴角的三角函数值
题型57、同角求值---条件中出现的角和结论中出现的角是相同的
题型58、诱导求值与变形
题型59、已知解析式确定函数性质
题型60、根据条件确定解析式
题型61、三角函数图像变换
题型62、两角和与差公式的证明
题型63、化简求值
题型64、正弦定理的应用
题型65、余弦定理的应用
题型66、判断三角形的形状
题型67、正余弦定理与向量的综合
题型68、解三角形的实际应用
题型69、共线向量的基本概念
题型70、共线向量基本定理及应用
题型71、平面向量的线性表示
题型72、平面向量基本定理及应用
题型73、向量与三角形的四心
题型74、利用向量法解平面几何
题型75、向量的坐标运算
题型76、向量平行(共线)、垂直充要条件的坐标表示
题型77、平面向量的数量积
题型78、平面向量的应用
题型79、等差、等比数列的通项及基本量的求解
题型80、等差、等比数列的求和
题型81、等差、等比数列的性质应用
题型82、判断和证明数列是等差、等比数列
题型83、等差数列与等比数列的综合
题型84、数列通项公式的求解
题型85、数列的求和
题型86、数列与不等式的综合
题型87、不等式的性质
题型88、比较数(式)的大小与比较法证明不等式
题型89、求取值范围
题型90、均值不等式及其应用
题型91、利用均值不等式求函数最值
题型92、利用均值不等式证明不等式
篇7:考研数学 微积分大纲要求及常考题型
考研数学 微积分大纲要求及常考题型
微分学在考研数学中的要求
按照《考试大纲》,本篇要求理解和掌握的是:导数和微分的概念,导数与微分的关系,导数的几何意义,函数的可导性与连续性之间的关系,导数的四则运算法则和复合函数的求导法则,基本初等函数的求导公式,罗尔定理、拉格朗日中值定理和泰勒定理,用洛必达求未定式极限的方法,函数的极值概念,用导数判断函数单调性和求函数极值的方法,函数最大纸和最小值的求法及其应用。
要求会求和了解的是:平面曲线的切线与法线方程,导数的物理意义,用导数描述一些物理量,微分的四则运算和一阶微分的形式不变性,函数的微分,高阶导数的概念,简单函数的高阶导数,分段函数的导数,隐函数和由参数方程确定的函数以及反函数的导数,应用罗尔定理、朗格朗日中值定理、柯西中值定理和泰勒定理,用导数判断函数的凹凸性,函数图形的拐点以及垂直、水平和斜渐近线,描绘函数的图形,曲率、曲率圆和曲率半径的概念。
微分学在考研数学中的地位
微分学这部分内容是是高等数学的重要部分,导数作为高数的.三大工具之一,每年必考。一元函数微分学是多元函数微分学的基础,尤其是导数的计算是偏导数计算的基础,至于一元函数微分学基础打好了,多元函数微分学学起来才得心应手。另外导数计算这部分也是后面不定积分计算的基础,如果导数计算相当熟练,求导公式熟记于心,不定积分计算这部分学习起来就能很顺利。这章在考试中每年必考,是一个比较容易命题并且具有一定综合性题目的章节。
微分学在考研数学中的常见题型
微分学这部分在同一张试卷上几乎有一半多的题目都会用到导数计算,除此之外该部分每年必会单独直接命题,既有大题又有小题,分值一般是2道小题(8分)和1道大题(10分),由此可见本章的重要性。
直接命题常见题型:(1)直接考察导数定义或可微定义;(2)导数计算:参数方程求导或隐函数求导或变限积分求导;(3)求函数的单调区间、凹凸区间、极值和拐点;(4)求切线与法线方程;(5)求渐近线;(6)用中值定理进行相关证明;(7)不等式证明;(8)根据已知函数图像画出导函数图像。其中(1)(2)(3)(4)(5)(8)常见于小题,(3)(6)(7)常见于大题。
间接命题:(1)与微分方程相结合;(2)与变限积分相结合;(3)与幂级数相结合。
由此可看出导数这部分在整个高数乃至考研数学中的重要性,就直接命题而言,分值就占到了20分左右,再加上间接用到导数的题目,甚至线性代数概率论与数理统计中也会用到导数,分值占得比重之大不言而喻。
以上是对导数部分的概述,希望对大家复习有所帮助。暑期将近,天气也越来越热了,希望大家在学习的同时能够照顾好自己的身体。最后祝大家复习顺利!
篇8:考研数学:历年常考的十种题型
考研数学:历年常考的十种题型
考研数学常考的十种题型总结如下,以期对2014考研学子有所帮助。
一、运用洛必达法则和等价无穷小量求极限问题,直接求极限或给出一个分段函数讨论基连续性及间断点问题。
二、运用导数求最值、极值或证明不等式。
三、微积分中值定理的运用,证明一个关于“存在一个点,使得……成立”的命题或者证明不等式。
四、重积分的计算,包括二重积分和三重积分的计算及其应用。
五、曲线积分和曲面积分的计算。
六、幂级数问题,计算幂级数的.和函数,将一个已知函数用间接法展开为幂级数。
七、常微分方程问题。可分离变量方程、一阶线性微分方程、伯努利方程等的通解、特解及幂级数解法。
八、解线性方程组,求线性方程组的待定常数等。
九、矩阵的相似对角化,求矩阵的特征值,特征向量,相似矩阵等。
十、概率论与数理统计。求概率分布或随机变量的分布密度及一些数字特征,参数的点估计和区间估计。
篇9:考研数学复习常考的十种题型
考研数学复习常考的十种题型
考研数学常见的十种题型列出如下:
一、运用洛必达法则和等价无穷小量求极限问题,直接求极限或给出一个分段函数讨论基连续性及间断点问题。
二、运用导数求最值、极值或证明不等式。
三、微积分中值定理的运用,证明一个关于“存在一个点,使得……成立”的命题或者证明不等式。
四、重积分的`计算,包括二重积分和三重积分的计算及其应用。
五、曲线积分和曲面积分的计算。
六、幂级数问题,计算幂级数的和函数,将一个已知函数用间接法展开为幂级数。
七、常微分方程问题。可分离变量方程、一阶线性微分方程、伯努利方程等的通解、特解及幂级数解法。
八、解线性方程组,求线性方程组的待定常数等。
九、矩阵的相似对角化,求矩阵的特征值,特征向量,相似矩阵等。
十、概率论与数理统计。求概率分布或随机变量的分布密度及一些数字特征,参数的点估计和区间估计。
此外还需提醒考生,到考前一周,考研数学,这个时候就只能在考场上看看题型,总结失利原因了。若因晚上熬夜影响考试是最得不偿失的事情,而在考前一周能预防的就是此事的发生了。即使开了夜车而在考场也没有睡着,但头脑不清楚,对数学的考试依然是非常不利的,因为数学计算与证明思路最需要清醒和快速的反应。
篇10:考研数学 常考知识点
考研数学 常考知识点精华集锦
1、两个重要极限,未定式的极限、等价无穷小代换
这些小的知识点在历年的考察中都比较高。而透过我们分析,假如考极限的话,主要考的是洛必达法则加等价无穷小代换,特别针对数三的同学,这儿可能出大题。
2、处理连续性,可导性和可微性的关系
要求掌握各种函数的求导方法。比如隐函数求导,参数方程求导等等这一类的,还有注意一元函数的应用问题,这也是历年考试的一个重点。数三的同学这儿结合经济类的一些试题进行考察。
3、微分方程:一是一元线性微分方程,第二是二阶常系数齐次/非齐次线性微分方程
对第一部分,考生需要掌握九种小类型,针对每一种小类型有不同的解题方式,针对每个不同的方程,套用不同的公式就行了。对于二阶常系数线性微分方程大家一定要理解解的结构。另一块对于非齐次的方程来说,考生要注意它和特征方程的联系,有齐次为方程可以求它的通解,当然给出的通解大家也要写出它的特征方程,这个变化是咱们这几年的一个趋势。这一类问题就是逆问题。
对于二阶常系数非齐次的线性方程大家要分类掌握。当然,这一块对于数三的同学来说,还有一个差分方程的问题,差分方程不作为咱们的一个重点,而且提醒大家一下,学习的'时候要注意,差分方程的解题方式和微方程是相似的,学习的时候要注意这一点。
4、级数问题,主要针对数一和数三
这部分的重点是:一、常数项级数的性质,包括敛散性;二、牵扯到幂级数,大家要熟练掌握幂级数的收敛区间的计算,收敛半径与和函数,幂级数展开的问题,要掌握一个熟练的方法来进行计算。对于幂级数求和函数它可能直接给咱们一个幂级数求它的和函数或者给出一个常数项级数让咱们求它的和,要转化成适当的幂级数来进行求和。
5、一维随机变量函数的分布
这个要重点掌握连续性变量的这一块。这里面有个难点,一维随机变量函数这是一个难点,求一元随机变量函数的分布有两种方式,一个是分布函数法,这是最基本要掌握的。另外是公式法,公式法相对比较便捷,但是应用范围有一定的局限性。
6、随机变量的数字特征
要记住一维随机变量的数字特征都要记熟,数字特征很少单独性考察,往往和前面的一维随机变量函数和多维随机变量函数和第六章的数理统计结合进行考察。特别针对数一的同学来说,考察矩估计和最大似然估计的时候会考察无偏性。
7、参数估计
这一点是咱们经常出大题的地方,这一块对咱们数一,数二,数三的考生来讲,包含两块知识点,一个是矩估计,一个是最大似然估计,这两个集中出大题。
篇11:考研数学 容易忽略的六大常考题型
考研数学 容易忽略的六大常考题型
第一:求极限
无论数学一、数学二还是数学三,求极限是高等数学的基本要求,所以也是每年必考的内容。区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。比如大题可能需要用到等价无穷小代换、泰勒展开式、洛比达法则、分离因式、重要极限等几种方法,有时考生需要选择多种方法综合完成题目。另外,分段函数在个别点处的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性的研究等也需要使用极限手段达到目的,须引起注意!
第二:利用中值定理证明等式或不等式,利用函数单调性证明不等式
证明题虽不能说每年一定考,但也基本上十年有九年都会涉及。等式的证明包括使用4个常见的微分中值定理(即罗尔中值定理、拉格朗日中值定理、柯西中值定理、泰勒中值定理),1个定积分中值定理;不等式的证明有时既可使用中值定理,也可使用函数单调性。这里泰勒中值定理的使用时的`一个难点,但考查的概率不大。
第三:一元函数求导数,多元函数求偏导数
求导数问题主要考查基本公式及运算能力,当然也包括对函数关系的处理能力。一元函数求导可能会以参数方程求导、变限积分求导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基本上每年都会考查,给出的函数可能是较为复杂的显函数,也可能是隐函数(包括方程组确定的隐函数)。
另外,二元函数的极值与条件极值与实际问题联系极其紧密,是一个考查重点。极值的充分条件、必要条件均涉及二元函数的偏导数。
第四:级数问题
常数项级数(特别是正项级数、交错级数)敛散性的判别,条件收敛与绝对收敛的本质含义均是考查的重点,但常常以小题形式出现。函数项级数(幂级数,对数一的考生来说还有傅里叶级数,但考查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在一点的幂级数展开在考试中常占有较高的分值。
第五:积分的计算
积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对数一考生来说常主要是三重积分、曲线积分、曲面积分的计算。这是以考查运算能力与处理问题的技巧能力为主,以对公式的熟悉及空间想象能力的考查为辅的。需要注意在复习中对一些问题的灵活处理,例如定积分几何意义的使用,重心、形心公式的使用,对称性的使用等。
第六:微分方程
解常微分方程方法固定,无论是一阶线性方程、可分离变量方程、齐次方程还是高阶常系数齐次与非齐次方程,只要记住常用形式,注意运算准确性,在考场上正确运算都没有问题。但这里需要注意:研究生考试对微分方程的考查常有一种反向方式,即平常给出方程求通解或特解,现在给出通解或特解求方程。这需要考生对方程与其通解、特解之间的关系熟练掌握。
这六大题型可以说是考试的重点考查对象,考生可以根据自己的实际情况围绕重点题型复习,争取达到高分甚至满分!
篇12:考前必看 考研数学常考的十种题型
考前必看 考研数学常考的十种题型
考研前这10多天很重要,但不是说考生就可以完全不用摸书本了。几天时间就可能使知识回生。这段时间对于考研数学复习来说,不用做什么题了,最好看一看基本公式,定理,图表,特别是概率中的公式。一般同学们高数(微积分)中的公式会比较熟,因为它们在容易入手,但较难精通,而概率中的公式较难入手,但一旦入手就完全没有问题,那些公式并不复杂,而且考的题目也不难。
然后在头脑中回想一下一些解题方法,特别是常考的十种题型的各种处理办法。比如,二重积分与三重积分的定限方法:先积后定限,限中画条线,进限的曲线为下限,出限的.曲线为上限。
考研数学常考的十种题型列出如下:
一、运用洛必达法则和等价无穷小量求极限问题,直接求极限或给出一个分段函数讨论基连续性及间断点问题。
二、运用导数求最值、极值或证明不等式。
三、微积分中值定理的运用,证明一个关于“存在一个点,使得……成立”的命题或者证明不等式。
四、重积分的计算,包括二重积分和三重积分的计算及其应用。
五、曲线积分和曲面积分的计算。
六、幂级数问题,计算幂级数的和函数,将一个已知函数用间接法展开为幂级数。
七、常微分方程问题。可分离变量方程、一阶线性微分方程、伯努利方程等的通解、特解及幂级数解法。
八、解线性方程组,求线性方程组的待定常数等。
九、矩阵的相似对角化,求矩阵的特征值,特征向量,相似矩阵等。
十、概率论与数理统计。求概率分布或随机变量的分布密度及一些数字特征,参数的点估计和区间估计。
此外提醒考生,到考前一周,考研数学,这个时候就只能在考场上看看题型,总结失利原因了。若因晚上熬夜影响考试是最得不偿失的事情,而在考前一周能预防的就是此事的发生了。即使开了夜车而在考场也没有睡着,但头脑不清楚,对数学的考试依然是非常不利的。数学计算与证明思路最需要清醒快速的反应。
最后祝各位考生这几天吃好、睡好,考场上发挥好。
篇13:考研数学概率各章节重点及常考题型
【随机变量及其分布】
一、本章的重点内容:
・随机变量及其分布函数的概念和性质(充要条件);
分布律和概率密度的性质(充要条件);
・八大常见的分布:0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用;
・会计算与随机变量相联系的任一事件的概率;
・随机变量简单函数的概率分布。
近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布。
二、常见典型题型:
1.求一维随机变量的分布律、分布密度或分布函数;
2.一个函数为某一随机变量的分布函数或分布律或分布密度的判定;
3.反求或判定分布中的参数;
4.求一维随机变量在某一区间的概率;
5.求一维随机变量函的分布。
篇14:考研数学概率各章节重点及常考题型
【二维随机变量及其分布】
一、本章的重点内容:
・二维随机变量及其分布的概念和性质,
・边缘分布,边缘密度,条件分布和条件密度,
・随机变量的独立性及不相关性,
・一些常见分布:二维均匀分布,二维正态分布,
・几个随机变量的简单函数的分布。
本章是概率论重点部分之一!应着重对待。
二、常见典型题型:
1.求二维随机变量的联合分布律或分布函数或边缘概率分布或条件分布和条件密度;
2.已知部分边缘分布,求联合分布律;
3.求二维连续型随机变量的分布或分布密度或边缘密度函数或条件分布和条件密度;
4.两个或多个随机变量的独立性或相关性的判定或证明;
5.与二维随机变量独立性相关的命题;
6.求两个随机变量的`相关系数;
7.求两个随机变量的函数的概率分布或概率密度或在某一区域的概率。
篇15:考研数学概率各章节重点及常考题型
一、本章的重点内容:
・四个关系:包含,相等,互斥,对立;
・五个运算:并,交,差;
・四个运算律:交换律,结合律,分配律,对偶律(德摩根律);
・概率的基本性质:非负性,规范性,有限可加性,逆概率公式;
・五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式;
・条件概率;
・利用独立性进行概率计算;
・n重伯努利概型的计算。
近几年单独考查本章的考题相对较少,从考试的角度来说不是重点,但第一章是基础,大多数考题中将本章的内容作为基础知识来考核,都会用到第一章的知识。
二、常见典型题型:
1.随机事件的关系运算;
2.求随机事件的概率;
3.综合利用五大公式解题,尤其是常用全概率公式与贝叶斯公式。
篇16:考研数学概率各章节重点及常考题型
【大数定律和中心极限定理】
一、本章的重点内容:
・三个大数定律:切比雪夫定律、伯努利大数定律、辛钦大数定律;
・两个中心极限定理:棣莫弗――拉普拉斯定理、列维――林德伯格定理。
本章的内容不是重点,也不经常考,只要把这些定律、定理的条件与结论记住就可以了。
二、常见典型题型:
1.估计概率的值;
2.与中心极限定理相关的命题。
【考研数学:常考十大高频题型总结】相关文章:
6.考研数学考什么?






文档为doc格式