欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 实用文>二元函数极限计算方法研究

二元函数极限计算方法研究

2022-06-04 07:21:58 收藏本文 下载本文

“辣条不好吃”通过精心收集,向本站投稿了9篇二元函数极限计算方法研究,下面就是小编给大家整理后的二元函数极限计算方法研究,希望您能喜欢!

二元函数极限计算方法研究

篇1:二元函数极限计算方法研究

二元函数极限计算方法研究

本文主要讨论两个方面的问题.一是二元函数的重极限的计算方法,二是重极限的不存在判别法.

作 者:符兴安  作者单位:楚雄师范学院数学系,云南,楚雄,675000 刊 名:楚雄师范学院学报 英文刊名:JOURNAL OF CHUXIONG NORMAL UNIVERSITY 年,卷(期): 18(6) 分类号:B171 关键词:二元函数   重极限   两边夹  

篇2:二元函数极限证明

二元函数极限证明

二元函数极限证明

设P=f(x,y),P0=(a,b) ,当P→P0 时f(x,y)的极限是x,y同时趋向于a,b时所得到的称为二重极限。

此外,我们还要讨论x,y先后相继地趋于a,b时的极限,称为二次极限。

我们必须注意有以下几种情形: ’

(1)两个二次极限都不存在而二重极限仍有可能存在

(2)两个二次极限存在而不相等

(3)两个二次极限存在且相等,但二重极限仍可能不存在

2

函数f(x )当x →X0时极限存在,不妨设:limf(x)=a(x →X0)

根据定义:对任意ε>0,存在δ>0,使当|x-x0|<δ时,有|f(x)-a|<ε

而|x-x0|<δ即为x属于x0的某个邻域U(x0;δ)

又因为ε有任意性,故可取ε=1,则有:|f(x)-a|<ε=1,即:a-1

再取M=max{|a-1|,|a+1|},则有:存在δ>0,当任意x属于x0的某个邻域U(x0;δ)时,有|f(x)|

证毕

3首先,我的方法不正规, 其次,正确不正确有待考察。

1,y以 y=x^2-x 的路径趋于0 Limited sin (x+y)/x^2 =Limited sinx^2/x^2=1 而 y=x 的路径趋于0 结果是无穷大。

2,3 可以用类似的方法,貌似同济书上是这么说的,二元函数在该点极限存在,是P(x,y) 以任何方式趋向于该点。

4

f(x,y)={(x^2+y^2)/(|x|+|y|)}*sin(1/x)

显然有y->0,f->(x^2/|x|)*sin(1/x)存在

当x->0,f->(y^2/|y|)*sin(1/x),sin(1/x)再0处是波动的 所以不存在

而当x->0,y->0时

由|sin(1/x)|<=1得|f|<=(x^2+y^2)/(|x|+|y|)

而x^2+y^2<=x^2+y^2+2*|x||y|=(|x|+|y|)^2

所以|f|<=|x|+|y|

所以显然当x->0,y->0时,f的极限就为0

这个就是你说的,唯一不一样就是非正常极限是不存在而不是你说的

正无穷或负无穷或无穷,我想这个就可以了

就我这个我就线了好久了

5

(一)时函数的极限:

以 时 和 为例引入.

介绍符号: 的意义, 的直观意义.

定义 ( 和 . )

几何意义介绍邻域 其中 为充分大的正数.然后用这些邻域语言介绍几何意义.

例1验证 例2验证 例3验证 证 ……

(二)时函数的极限:

由 考虑 时的极限引入.

定义函数极限的“ ”定义.

几何意义.

用定义验证函数极限的基本思路.

例4 验证 例5 验证 例6验证 证 由 =

为使 需有 为使 需有 于是, 倘限制 , 就有

例7验证 例8验证 ( 类似有 (三)单侧极限:

1.定义:单侧极限的定义及记法.

几何意义: 介绍半邻域 然后介绍 等的几何意义.

例9验证 证 考虑使 的 2.单侧极限与双侧极限的关系:

Th类似有: 例10证明: 极限 不存在.

例11设函数 在点 的某邻域内单调. 若 存在, 则有

= §2 函数极限的性质(3学时)

教学目的':使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算。

教学难点:函数极限性质证明及其应用。

教学方法:讲练结合。

一、组织教学:

我们引进了六种极限: , .以下以极限 为例讨论性质. 均给出证明或简证.

二、讲授新课:

(一)函数极限的性质:以下性质均以定理形式给出.

1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性( 不等式性质 ):

Th 4若 和 都存在, 且存在点 的空心邻域,使 , 都有 证 设 = ( 现证对 有 )

]:若在Th 4的条件中, 改“ ”为“ ”, 未必就有 以 举例说明.

5.迫敛性:

6.四则运算性质:( 只证“+”和“ ”)

(二)利用极限性质求极限: 已证明过以下几个极限:

(注意前四个极限中极限就是函数值 )

这些极限可作为公式用. 在计算一些简单极限时, 有五组基本极限作为公式用,我们将陆续证明这些公式.

利用极限性质,特别是运算性质求极限的原理是:通过有关性质, 把所求极限化为基本极限,代入基本极限的值, 即计算得所求极限.

例1( 利用极限 和 )

例2例3]:关于 的有理分式当 时的极限.

例4 [ 利用公式 ]

例5例6例7

篇3:函数极限证明

函数极限证明

函数极限证明

记g(x)=lim[f1(x)^n+...+fm(x)^n]^(1/n),n趋于正无穷;

下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。

不妨设f1(x)趋于a;作b>a>=0,M>1;

那么存在N1,当x>N1,有a/M<=f1(x) 注意到f2的极限小于等于a,那么存在N2,当x>N2时,0<=f2(x) 同理,存在Ni,当x>Ni时,0<=fi(x) 取N=max{N1,N2...Nm};

那么当x>N,有

(a/M)^n<=f1(x)^n<=f1(x)^n+...fm(x)^n 所以a/M<=[f1(x)^n+...+fm(x)^n]^(1/n)

篇4:极限的计算方法总结

极限的计算方法总结

1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。

2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。

3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。

4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!

5、无穷小于有界函数的.处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数,可能只需要知道它的范围结果就出来了!

6、夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

7、等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)。

8、各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数。

9、求左右极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,因为极限去掉有限项目极限值不变化。

10、两个重要极限的应用。这两个很重要!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大,无穷小都有对有对应的形式(第2个实际上是用于函数是1的无穷的形式)(当底数是1的时候要特别注意可能是用地两个重要极限)

11、还有个方法,非常方便的方法,就是当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的!x的x次方快于x!快于指数函数,快于幂数函数,快于对数函数(画图也能看出速率的快慢)!!当x趋近无穷的时候,他们的比值的极限一眼就能看出来了。

12、换元法是一种技巧,不会对单一道题目而言就只需要换元,而是换元会夹杂其中。

13、假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的。

14、还有对付数列极限的一种方法,就是当你面对题目实在是没有办法,走投无路的时候可以考虑转化为定积分。一般是从0到1的形式。

15、单调有界的性质,对付递推数列时候使用证明单调性!

16、直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减某个值)加减f(x)的形式,看见了要特别注意)(当题目中告诉你F(0)=0时候f(0)导数=0的时候,就是暗示你一定要用导数定义!

函数是表皮,函数的性质也体现在积分微分中。例如他的奇偶性质他的周期性。还有复合函数的性质:

1、奇偶性,奇函数关于原点对称偶函数关于轴对称偶函数左右2边的图形一样(奇函数相加为0);

2、周期性也可用在导数中在定积分中也有应用定积分中的函数是周期函数积分的周期和他的一致;

3、复合函数之间是自变量与应变量互换的关系;

4、还有个单调性。(再求0点的时候可能用到这个性质!(可以导的函数的单调性和他的导数正负相关):o再就是总结一下间断点的问题(应为一般函数都是连续的所以间断点是对于间断函数而言的)间断点分为第一类和第二类剪断点。第一类是左右极限都存在的(左右极限存在但是不等跳跃的的间断点或者左右极限存在相等但是不等于函数在这点的值可取的间断点;第二类间断点是震荡间断点或者是无穷极端点(这也说明极限即使不存在也有可能是有界的)。

数学成绩是长期积累的结果,因此准备时间一定要充分。首先对各个知识点做深入细致的分析,注意抓考点和重点题型,同时逐步进行一些训练,积累解题思路,这有利于知识的消化吸收,彻底弄清楚有关知识的纵向与横向联系,转化为自己真正掌握的东西。

篇5:函数极限的证明

函数极限的证明

函数极限的证明

(一)时函数的极限:

以 时 和 为例引入.

介绍符号: 的意义, 的直观意义.

定义 ( 和 . )

几何意义介绍邻域 其中 为充分大的正数.然后用这些邻域语言介绍几何意义.

例1验证 例2验证 例3验证 证 ……

(二)时函数的极限:

由 考虑 时的极限引入.

定义函数极限的“ ”定义.

几何意义.

用定义验证函数极限的基本思路.

例4 验证 例5 验证 例6验证 证 由 =

为使 需有 为使 需有 于是, 倘限制 , 就有

例7验证 例8验证 ( 类似有 (三)单侧极限:

1.定义:单侧极限的定义及记法.

几何意义: 介绍半邻域 然后介绍 等的几何意义.

例9验证 证 考虑使 的 2.单侧极限与双侧极限的关系:

Th类似有: 例10证明: 极限 不存在.

例11设函数 在点 的某邻域内单调. 若 存在, 则有

= §2 函数极限的性质(3学时)

教学目的:使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的`基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算。

教学难点:函数极限性质证明及其应用。

教学方法:讲练结合。

一、组织教学:

我们引进了六种极限: , .以下以极限 为例讨论性质. 均给出证明或简证.

二、讲授新课:

(一)函数极限的性质:以下性质均以定理形式给出.

1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性( 不等式性质 ):

Th 4若 和 都存在, 且存在点 的空心邻域,使 , 都有 证 设 = ( 现证对 有 )

]:若在Th 4的条件中, 改“ ”为“ ”, 未必就有 以 举例说明.

5.迫敛性:

6.四则运算性质:( 只证“+”和“ ”)

(二)利用极限性质求极限: 已证明过以下几个极限:

(注意前四个极限中极限就是函数值 )

这些极限可作为公式用. 在计算一些简单极限时, 有五组基本极限作为公式用,我们将陆续证明这些公式.

利用极限性质,特别是运算性质求极限的原理是:通过有关性质, 把所求极限化为基本极限,代入基本极限的值, 即计算得所求极限.

例1( 利用极限 和 )

例2例3]:关于 的有理分式当 时的极限.

例4 [ 利用公式 ]

例5例6例7

篇6:常函数有极限吗

什么是极限

“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的`永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。

篇7:常用函数极限的求法

常用函数极限的求法

极限被称为高等数学基本运算,其方法多变,技巧性强,为此对一元函数极限的'常见求解方法进行了归纳总结,以便我们了解函数的各种极限以及对各类函数极限进行计算,帮助初学者深刻地理解极限的概念并熟练掌握.

作 者:马艳慧  作者单位:长春医学高等专科学校,长春,130031 刊 名:中国科教创新导刊 英文刊名:CHINA EDUCATION INNOVATION HERALD 年,卷(期): “”(35) 分类号:G64 关键词:函数   极限   求法  

篇8:函数极限的性质证明

函数极限的性质证明

函数极限的性质证明

X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限

求极限我会

|Xn+1-A|<|Xn-A|/A

以此类推,改变数列下标可得 |Xn-A|<|Xn-1-A|/A ;

|Xn-1-A|<|Xn-2-A|/A;

……

|X2-A|<|X1-A|/A;

向上迭代,可以得到|Xn+1-A|<|Xn-A|/(A^n)

2

只要证明{x(n)}单调增加有上界就可以了。

用数学归纳法:

①证明{x(n)}单调增加。

x(2)=√[2+3x(1)]=√5>x(1);

设x(k+1)>x(k),则

x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化)

=[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。

②证明{x(n)}有上界。

x(1)=1<4,

设x(k)<4,则

x(k+1)=√[2+3x(k)]<√(2+3*4)<4。

3

当0

当0

构造函数f(x)=x*a^x(0

令t=1/a,则:t>1、a=1/t

且,f(x)=x*(1/t)^x=x/t^x(t>1)

则:

lim(x→+∞)f(x)=lim(x→+∞)x/t^x

=lim(x→+∞)[x'/(t^x)'](分子分母分别求导)

=lim(x→+∞)1/(t^x*lnt)

=1/(+∞)

=0

所以,对于数列n*a^n,其极限为0

4

用数列极限的定义证明

3.根据数列极限的定义证明:

(1)lim[1/(n的平方)]=0

n→∞

(2)lim[(3n+1)/(2n+1)]=3/2

n→∞

(3)lim[根号(n+1)-根号(n)]=0

n→∞

(4)lim0.999…9=1

n→∞ n个9

5几道数列极限的`证明题,帮个忙。。。Lim就省略不打了。。。

n/(n^2+1)=0

√(n^2+4)/n=1

sin(1/n)=0

实质就是计算题,只不过题目把答案告诉你了,你把过程写出来就好了

第一题,分子分母都除以n,把n等于无穷带进去就行

第二题,利用海涅定理,把n换成x,原题由数列极限变成函数极限,用罗比达法则(不知楼主学了没,没学的话以后会学的)

第三题,n趋于无穷时1/n=0,sin(1/n)=0

不知楼主觉得我的解法对不对呀limn/(n^2+1)=lim(1/n)/(1+1/n^2)=lim(1/n)/(1+lim(1+n^2)=0/1=0

lim√(n^2+4)/n=lim√(1+4/n^2)=√1+lim(4/n^2)=√1+4lim(1/n^2)=1

limsin(1/n)=lim[(1/n)*sin(1/n)/(1/n)]=lim(1/n)*lim[sin(1/n)]/(1/n)=0*1=0

篇9:幂指函数求极限

方法一:取对数法

这是“幂指型”函数极限求解最普遍、最一般的方法,利用的是幂指型通过取对数可以转化为复合函数的特点。由于lnf(x)g(x)=g(x)lnf(x),f(x)g(x)=eg(x)lnf(x)。由于指数函数的连续性,求解幂指型f(x)g(x)的`极限的问题就归结为求g(x)lnf(x)的极限问题。

方法二:等价代换法

利用等价无穷小(或无穷大)作代换是很重要并且有技巧性的一种求极限的方法。由于lnf(x)g(x)=g(x)lnf(x),如果f(x)~?(x),g(x)~ψ(x),自然有g(x)lnf(x)~ψ(x)ln?(x),于是f(x)g(x)~?(x)ψ(x)。由此我们可以得到:如果f(x)>0,?(x)>0,f(x)~?(x),g(x)~ψ(x),而limf(x)g(x)存在,那么lim?(x)ψ(x)=limf(x)g(x)。

方法三:配凑法

一般来说,配凑法往往利用重要极限limx→0(1+x)1x=e,所以一般用于求解“1∞”型极限。若α(x)>0,α(x)是无穷小量,那么

如果α(x)β(x)的极限存在,那么就达到配凑法求解极限的目的了,因此我们可以考虑先求α(x)β(x)的极限。

上述三种方法为幂指型函数求极限的主要方法,最常规的方法是取对数法,后面两种方法有一定技巧性,不过也可以归结为取对数的方法。掌握好它们,我们在遇到这类问题的时候就不再会感到非常吃力了。

幂指函数

将形如y=[f(x)]^g(x)的函数称为幂指函数。也就是说,它既像幂函数,又像指数函数,二者的特点兼而有之。作为幂函数,其幂指数确定不变,而幂底数为自变量;相反地,指数函数却是底数确定不变,而指数为自变量。幂指函数就是幂底数和幂指数同时都为自变量的函数。这种函数的推广,就是广义幂指函数。

【二元函数极限计算方法研究】相关文章:

1.函数极限的证明

2.再一次突破极限

3.垂直极限观后感

4.空间碎片超高速撞击极限穿透比动能研究

5.二元一次方程组练习题

6.初中二元一次方程知识

7.函数教案

8.函数课件

9.生活函数

10.函数数学教案

下载word文档
《二元函数极限计算方法研究.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部