函数奇偶性练习题
“hyizen”通过精心收集,向本站投稿了5篇函数奇偶性练习题,以下是小编为大家整理后的函数奇偶性练习题,希望对您有所帮助。
篇1:函数奇偶性练习题
函数奇偶性练习题精选
函数奇偶性练习题精选
11.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为________.
答案 0
512.设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f(=________. 2
1答案 - 2
5551111解析 依题意,得f(=-f=-f(-2)=-f=-2×(1-)=-2222222
13.函数f(x)=x3+sinx+1的图像关于________点对称.
答案 (0,1)
解析 f(x)的图像是由y=x3+sinx的图像向上平移一个单位得到的.
14.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(-log35)的值为________. 答案 -4
15.定义在(-∞,+∞)上的函数y=f(x)在(-∞,2)上是增函数,且函数y=f(x+2)为偶函数,则f(-
11),f(4),f(5的大小关系是__________. 2
1答案 f(5) 解析 ∵y=f(x+2)为偶函数, ∴y=f(x)关于x=2对称. 又y=f(x)在(-∞,2)上为增函数, ∴y=f(x)在(2,+∞)上为减函数,而f(-1)=f(5), 1∴f(5<f(-1)<f(4). 2 16.(·湖北八校)已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=-f(x),且当x∈[0,2)时,f(x)=log2(x+1),求: (1)f(0)与f(2)的值; (2)f(3)的值; (3)f(2 013)+f(-2 014)的值. B.-1 11D.-4 答案 (1)f(0)=0,f(2)=0 (2)f(3)=-1 (3)1 解析 (2)f(3)=f(1+2)=-f(1)=-log2(1+1)=-1. (3)依题意得,x≥0时,f(x+4)=-f(x+2)=f(x),即x≥0时,f(x)是以4为周期的函数. 因此,f(2 013)+f(-2 014)=f(2 013)+f(2 014)=f(1)+f(2).而f(2)=-f(0)=-log2(0+1)=0,f(1)=log2(1+1)=1,故f(2 013)+f(-2 014)=1. 17.若f(x)和g(x)都是奇函数,且F(x)=af(x)+bg(x)+2在(0,+∞)上有最大值8,求F(x)在(-∞,0)上的`最小值. 答案 -4 解析 由题意知,当x>0时,F(x)≤8. ∵f(x),g(x)都是奇函数,且当x<0时,-x>0. ∴F(-x)=af(-x)+bg(-x)+2 =-af(x)-bg(x)+2 =-[af(x)+bg(x)+2]+4≤8. ∴af(x)+bg(x)+2≥-4. ∴F(x)=af(x)+bg(x)+2在(-∞,0)上有最小值- 4. 1.已知f(x)是在R上的奇函数,f(1)=2,且对任意x∈R都有f(x+6)=f(x)+f(3)成立,则f(3)=________;f(2 019)=________. 答案 0 0 解析 在f(x+6)=f(x)+f(3)中,令x=-3,得f(3)=f(-3)+f(3),即f(-3)=0. 又f(x)是R上的奇函数,故f(3)=0. 即f(x+6)=f(x),知f(x)是周期为6的周期函数,从而f(2 019)=f(6×336+3)=f(3)=0. 12.若f(x)是定义在(-1,1)上的奇函数,且x∈[0,1)时f(x)为增函数,则不等式f(x)+f(x<0的解集2 为________. 11答案 {x|<x<} 24 解析 ∵f(x)为奇函数,且在[0,1)上为增函数, ∴f(x)在(-1,0)上也是增函数. ∴f(x)在(-1,1)上为增函数. 1f(x)+f(x-<0? 2 11f(x)<-f(x)=f(-x)? 22 1-1<2-x<1, 函数奇偶性课件 函数的奇偶性是指在关于原点的对称点的函数值相等。函数奇偶性课件内容,一起来看看! 课标分析 函数的奇偶性是函数的重要性质,是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称.这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析. 教材分析 教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义.然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例.最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系.这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性. 教学目标 1 通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力. 教学重难点 1理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性. 2 在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的. 学生分析 这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数 ,(k≠0),二次函数y=ax2,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果. 教学过程 一、探究导入 1 观察如下两图,思考并讨论以下问题: (1)这两个函数图像有什么共同特征? (2)相应的两个函数值对应表是如何体现这些特征的? 可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同. 对于函数f(x)=x2,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数. 2观察函数f(x)=x和f(x)= 的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征. 可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数. 二、师生互动 由上面的分析讨论引导学生建立奇函数、偶函数的定义 1 奇、偶函数的定义 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数. 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数. 2 提出问题,组织学生讨论 (1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗? (f(x)不一定是偶函数) (2)奇、偶函数的图像有什么特征? (奇、偶函数的图像分别关于原点、y轴对称) (3)奇、偶函数的'定义域有什么特征? (奇、偶函数的定义域关于原点对称) 三、难点突破 例题讲解 1 判断下列函数的奇偶性. 注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1〕. 2 已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式. 解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x), 而f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=x(1-x). (2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0. 3 已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论. 解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下: 任取x1>x2>0,则-x1<-x2<0. ∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2). 又f(x)是偶函数,∴f(x1)>f(x2). ∴f(x)在(0,+∞)上是增函数. 思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系? 巩固创新 1 已知:函数f(x)是奇函数,在〔a,b〕上是增函数(b>a>0),问f(x)在〔-b,-a〕上的单调性如何. 2 f(x)=-x|x|的大致图像可能是( ) 3 函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数.(2)函数f(x)是奇函数. 4 设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式. 四、课后拓展 1 有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2 设f(x),g(x)分别是R上的奇函数,偶函数,试研究: (1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性. 3已知a∈R,f(x)=a- ,试确定a的值,使f(x)是奇函数. 4 一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式? 教学后记 这篇案例设计由浅入深,由具体的函数图像及对应值表,抽象概括出了奇、偶函数的定义,符合职高学生的认知规律,有利于学生理解和掌握.应用深化的设计层层递进,深化了学生对奇、偶函数概念的理解和应用.拓展延伸为学生思维能力、创新能力的培养提供了平台。 判断方法 1、先分解函数为常见的一般函数,比如多项式x^n,三角函数,判断奇偶性。 2、根据分解的函数之间的运算法则判断,一般只有三种种f(x)g(x)、f(x)+g(x),f(g(x))(除法或减法可以变成相应的乘法和加法) 3、若f(x)、g(x)其中一个为奇函数,另一个为偶函数,则f(x)g(x)奇、f(x)+g(x)非奇非偶函数,f(g(x))奇。 4、若f(x)、g(x)都是偶函数,则f(x)g(x)偶、f(x)+g(x)偶,f(g(x))偶。 5、若f(x)、g(x)都是奇函数,则f(x)g(x)偶、f(x)+g(x)奇,f(g(x))奇。 函数奇偶性知识点总结 函数奇偶性知识点总结 指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。 可以看到: (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的.位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。 (7)函数总是通过(0,1)这点。 (8)显然指数函数无界。 奇偶性 注图:(1)为奇函数(2)为偶函数 1、定义 一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(—x)=—f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(—x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 (4)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 说明:①奇、偶性是函数的整体性质,对整个定义域而言 ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。 (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论) ③判断或证明函数是否具有奇偶性的根据是定义 2、奇偶函数图像的特征: 定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。 f(x)为奇函数《==》f(x)的图像关于原点对称 点(x,y)(—x,—y) 奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。 偶函数在某一区间上单调递增,则在它的对称区间上单调递减。 3、奇偶函数运算 (1)、两个偶函数相加所得的和为偶函数。 (2)、两个奇函数相加所得的和为奇函数。 (3)、一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数。 (4)、两个偶函数相乘所得的积为偶函数。 (5)、两个奇函数相乘所得的积为偶函数。 (6)、一个偶函数与一个奇函数相乘所得的积为奇函数。 一、教材分析 (一)教材特点、教材的地位与作用 本节课的主要学习内容是理解函数的奇偶性的概念,掌握利用定义和图象判断函数的奇偶性,以及函数奇偶性的几个性质。 函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关,而且为后面学习幂函数、指数函数、对数函数的性质打下了坚实的基础。因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。 (二)重点、难点 1、本课时的教学重点是:函数的奇偶性及其几何意义。 2、本课时的教学难点是:判断函数的奇偶性的方法与格式。 (三)教学目标 1、知识与技能:使学生理解函数奇偶性的概念,初步掌握判断函数奇偶性的方法; 2、方法与过程:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶性概念解决简单的问题;使学生领会数形结合思想方法,培养学生发现问题、分析问题和解决问题的能力。 3、情感态度与价值观:在奇偶性概念形成过程中,使学生体会数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。 二、教法、学法分析 1、教学方法:启发引导式 结合本章实际,教材简单易懂,重在应用、解决实际问题,本节课准备采用“引导发现法”进行教学,引导发现法可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,在解决问题的过程中,体验成功与失败,从而逐步建立完善的认知结构。使用多媒体辅助教学,突出了知识的产生过程,又增加了课堂的趣味性。 2、学法指导:引导学生采用自主探索与互相协作相结合的学习方式。让每一位学生都能参与研究,并最终学会学习。 三、教辅手段 以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方式进行教学 四、教学过程 为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了五个主要的教学程序:设疑导入,观图激趣。指导观察,形成概念。学生探索、发展思维。知识应用,巩固提高。归纳小结,布置作业。 (一)设疑导入,观图激趣 让学生感受生活中的美:展示图片蝴蝶,雪花。 学生举例生活中的对称现象 折纸:取一张纸,在其上画出直角坐标系,并在第一象限任画一函数的图象,以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形。 问题:将第一象限和第二象限的图形看成一个整体,观察图象上相应的点的坐标有什么特点。 以y轴为折痕将纸对折,然后以x 轴为折痕将纸对折,在纸的背面(即第三象限)画出第二象限内图象的.痕迹,然后将纸展开。观察坐标喜之中的图形: 问题:将第一象限和第三象限的图形看成一个整体,观察图象上相应的点的坐标有什么特点 (二)指导观察,形成概念 这节课我们首先从两类对称:轴对称和中心对称展开研究。 思考:请同学们作出函数y=x2的图象,并观察这两个函数图象的对称性如何 给出图象,然后问学生初中是怎样判断图象关于 轴对称呢此时提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律。 借助课件演示,学生会回答自变量互为相反数,函数值相等。接着再让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得到f(-1)=f(1),f(-2)=f(2),进而提出在定义域内是否对所有的x,都有类似的情况借助课件演示,学生会得出结论,f(-x)=f(x),从而引导学生先把它们具体化,再用数学符号表示。 思考:由于对任一x,必须有一-x与之对应,因此函数的定义域有什么特征。 引导学生发现函数的定义域一定关于原点对称。根据以上特点,请学生用完整的语言叙述定义,同时给出板书: (1)函数f(x)的定义域为A,且关于原点对称,如果有f(-x)=f(x),则称f(x)为偶函数。 提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢 。 学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义: (2)函数f(x)的定义域为A,且关于原点对称,如果有f(-x)=f(x), 则称f(x)为奇函数 强调注意点:“定义域关于原点对称”的条件必不可少。 接着再探究函数奇偶性的判断方法,根据前面所授知识,归纳步骤: (1)求出函数的定义域,并判断是否关于原点对称。 (2)验证f(-x)=f(x)或f(-x)=-f(x) 3)得出结论。 给出例题,加深理解: 例1,利用定义,判断下列函数的奇偶性: (1)f(x)= x2+1 (2)f(x)=x3-x (3)f(x)=x4-3x2-1 (4)f(x)=1/x3+1 提出新问题:在例1中的函数中有奇函数,也有偶函数,但象(4)这样的是什么函数呢? 得到注意点:既不是奇函数也不是偶函数的称为非奇非偶函数。 接着进行课堂巩固,强调非奇非偶函数的原因有两种,一是定义域不关于原点对称,二是定义域虽关于原点对称,但不满足f(-x)=f(x)或f(-x)=-f(x) 然后根据前面引入知识中,继续探究函数奇偶性的第二种判断方法:图象法: 函数f(x)是奇函数=图象关于原点对称 函数f(x)是偶函数=图象关于y轴对称 给出例2:书P63例3,再进行当堂巩固, 1。书P65ex2 2。说出下列函数的奇偶性: Y=x4 ; Y=x-1 ;Y=x ;Y=x-2 ;Y=x5 ;Y=x-3 归纳:对形如:y=xn的函数,若n为偶数则它为偶函数,若n为奇数,则它为奇函数 (三)学生探索,发展思维。 思考:1,函数y=2是什么函数 2,函数y=0有是什么函数 (四)布置作业: 课本P39习题1、3(A组) 第6题, B组第3 五、板书设计 【函数奇偶性练习题】相关文章: 5.二次函数练习题 6.奇偶性说课稿 8.数的奇偶性教案篇2:函数奇偶性课件
篇3:函数奇偶性判断
篇4:函数奇偶性知识点总结
篇5:《函数的奇偶性》说课稿






文档为doc格式