欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教学反思>九年级数学上册《直线与圆的位置关系》教后反思

九年级数学上册《直线与圆的位置关系》教后反思

2024-10-02 07:36:39 收藏本文 下载本文

“lorons”通过精心收集,向本站投稿了16篇九年级数学上册《直线与圆的位置关系》教后反思,以下是小编收集整理后的九年级数学上册《直线与圆的位置关系》教后反思,仅供参考,希望对大家有所帮助。

九年级数学上册《直线与圆的位置关系》教后反思

篇1:九年级数学上册圆和圆的位置关系教学反思

人教版九年级数学上册圆和圆的位置关系教学反思

这一节主要学习了圆和圆的位置关系,通过新的教学改革,学生分组学习的积极性提高了,学案的运用学生慢慢适应,并且起到了很好的作用。

通过预习学案,学生提前预习,然后结合实际生活中的例子,包括两圆外离、内含、相交、外切、内切、同心圆等不同情况,让学生对于两圆的位置关系有直观感受,然后探究和发现图形的位置关系与圆的半径、圆心距的大小有关,并完成学案的部分填表和习题,从而加深对三种不同位置的理解。

但是,对于我班的实际情况,基础差得同学很多,有几个学生甚至放弃了数学,针对这种情况,设计了一些适合他们的练习题,让他们找回学数学的信心,好些的同学做些难度大些的题着重让学生通过一定量的训练,应用所学的.知识解决问题,从而加深理解课堂上所学的重难点。学生的学习积极性大大的提高了,并且大部分学生当堂达标,效果很好。

以后应好好总结经验,继续加强这方面的训练,相信一定会有好的效果。

篇2:九年级数学上册《圆与圆的关系》教学反思

人教版九年级数学上册《圆与圆的关系》教学反思

新课标指出,自主探究,动手实践,合作交流应成为学生的主要学习方式,教师应引导学生主动地从事观察‘实验’猜测、验证、推理与交流等数学活动,使学生形成自己对数学知识的理解和有效的'学习策略。学生在前面已学习了点与圆、直线与圆的位置关系,已获得了探究此类问题的方法,因此在本节教学中让学生动手操作,自主探究,设计表格让学生探究完成,有目的、有思考。

本节课有以下几个特点:

1.圆与圆的位置关系特别是相交关系理解有一定难度,教学时借助多媒体动态演示,以帮助理解。

2.借助图形变换思想,研究图形的对称性。

3.利用生活中的数学引入本节内容。

需改进之处:教材之外内容少补充,大胆放开,把概念的形成过程、方法的探索过程,结论的推导过程、公式定理的归纳过程等充分暴露在学生面前,让学生的学习过程成为自己探索和发现的过程,真正成为认知的主体,增强求知欲,从而提高学习能力.

篇3:九年级数学《直线与圆的位置关系》说课稿

九年级数学《直线与圆的位置关系》说课稿

一.学生状况分析

在初中,学生已经直观的讨论过直线与圆的位置关系,前阶段又学习了直线方程和圆的方程。本节课主要以问题为载体,帮助学生复习、整理已有的知识结构,让学生利用已有的知识,探究直线与圆的位置关系的判断方法。通过学生参与问题的解决,让学生体验有关的数学思想,培养“数形结合”的意识。

二.教学任务分析

1、地位和作用

解析几何的本质是利用代数方法来研究几何问题,这节课我们就要用代数方法来研究直线与圆的位置关系.这样一方面可以巩固前阶段所学的知识,另一方面也显示了用代数方法研究几何问题的优越性,用解析法研究直线与圆的位置关系是从初等数学到高等数学的开始,也为后面研究直线与圆锥曲线的位置关系打好基础,这节课内容起着承前启后的作用。

2、教学重点

能根据给定的直线与圆的方程判断直线与圆的位置关系

3、教学难点

灵活运用“数形结合”思想来解决问题

4、教学目标

知识目标:

(1)能通过点到直线的距离公式和方程组的解判断直线与圆的位置关系.

(2)能够解决直线和圆的相关的问题.

能力目标

通过观察——类比——概括——抽象等思维过程,发展学生自主学习的能力;

情感德育目标:

激发学生学习数学的自主性和积极性,体验获取知识的乐趣;

三、教学过程分析

本节课分为六个教学环节:复习引入、构建新知、例题讲解、拓展提高、应用演练、归纳小结

环节1:复习引入

1、平面几何中,直线与圆有哪几种位置关系?在初中,我们怎样判断直线与圆的位置关系?

平面几何中,直线与圆有三种位置关系:

(1)直线和圆有两个公共点,直线与圆相交;

(2)直线和圆只有一个公共点,直线与圆相切;

(3)直线和圆没有公共点,直线与圆相离.

两种方法,①根据定义②圆心到直线的距离d与圆的半径r的大小关系。

反过来,直线与圆相交,直线与圆有两个公共点。

直线与圆相切直线与圆有一个公共点

直线与圆相离,直线与圆没有公共点

2、现在,如何用直线方程和圆的方程判断它们之间的位置关系?

先看以下问题,看看你能否从问题中总结来.

(设计意图:以问题为载体,帮助学生复习、整理已有的知识结构,带着问题进入下一个环节,有效的调动学生的学习兴趣。)

环节2:构建新知

分析:根据初中判断直线与圆的位置关系的两种方法,我们可以利用d和r的大小关系或直线与圆的公共点的个数来判断它们的位置关系。

直线与圆的公共点的坐标即满足直线方程又满足圆的方程,把直线方程与圆的方程联立,

(设计意图:由较简单的问题导出这节课的内容,让学生利用已有的知识,探究用坐标法判断直线与圆的位置关系的方法,一方面可以巩固前阶段所学的知识,另一方面也显示了用代数思想研究几何问题的优越性)

3、构建新知

回顾我们前面提出的问题:如何用直线和圆的方程判断它们之间的位置关系?

判断直线与圆的'位置关系有两种方法:

几何法:根据圆心到直线的距离d与圆的半径r的关系来判断.如果d

如果d=r,直线与圆相切;如果d>r,直线与圆相离.

代数法:根据直线与圆的方程组成的方程组解的情况来判断.如果有两组实数解时,直线与圆相交;

有一组实数解时,直线与圆相切;无实数解时,直线与圆相离.

(设计意图:让学生通过独立的思考,概括出利用直线与圆的方程来判断它们位置关系的两种方法,可以自己把课堂上所学的零碎的知识点连成知识线,从而加深了学习的印象.)

环节3例题讲解

分析:依据圆心到直线的距离与半径长的关系,判断直线与圆的位置关系;

分析:根据直线l与圆C的方程组成的方程组解的情况来判断

这里是利用直线与圆的位置关系的性质来解题,已知直线与圆相切,可知圆心到直线的距离等于圆的半径,直线与圆有一个公共点。

求出交点的坐标目的在于认识到方程组解得意义。让学生体会出用何法解题更为方便。例2让学生运用直线与圆的位置关系的性质解题)结合图形,无论m为何值,点(0,2)的坐标恒满足直线方程,直线恒过这个定点,

m是直线的斜率,满足题目条件的直线就是图上的这两条直线,左边这条直线的方程

是,右边直线的方程为

(设计意图:例1让学生及时的巩固直线与圆位置关系的判断方法.以期达到强化训练的目的,

环节4、拓展提高

另解:(1)因为l:y=a(x-1)+4过定点N(1,4)

N与圆心C(2,4)相距为1

显然N在圆C内部,故直线l与圆C恒相交

(2)在y=ax+4-a中,a为斜率,当a=0时,l过圆心,

显然弦AB的最大值为直径的长,等于6

(设计意图:对学生进行一题多解的训练,有利于提高思维的灵活性,在解决问题过程中,通过利用数形结合的思想,提升对知识的理解,提高分析问题,解决问题的能力。)

环节5、应用演练

练习1、

2、

(设计意图:课堂练习的目的在于及时巩固重点内容,使学生在课堂上就能掌握.

同时强调规范的书写和准确的运算,培养学生严谨认真的数学学习习惯.)

环节6、归纳小结

1、直线与圆的位置关系的判断方法:

几何法:                 代数法 :

1、确定圆的圆心坐标和半径r          1、把直线方程带入圆的方程

2、计算圆心到直线的距离d            2、得到一元二次方程

3、判断d与圆半径r的大小关系           3、求出△的值

d>r,直线与圆相离,直线与圆相交

d=r,直线与圆相切,直线与圆相切

d

(设计意图:通过小结,使学生对本节所学的知识系统化、条理化,进一步巩固知识,明确方法.)

作业:

3.已知⊙C:(x-1)2+(y-2)2=2,P(2,-1),过P作⊙C的切线,求切线方程。

(设计意图:,第1、2题是基础题,为了复习巩固这节课的内容,第3题是弹性作业,为学有余力的学生提供发展的空间)

环节6、课后反思与点评:

1、新的课标把直线和圆的位置关系作为独立的章节,说明新课标对这节内容要求有所提高。

2、判断直线与圆的位置关系为了防止计算量过大,一般采取几何的方法,但用方程思想解决几何问题

是解析几何的精髓,是以后处理圆锥曲线问题的通法,掌握好方程的方法有利于培养数形结合的思想。

3、直线与圆位置关系的相关问题如:弦长的求法、圆的切线方程求法以后还要补充。

4、用代数法判断直线与圆的位置关系,不必求出方程组的解,利用根的判别式即可。

篇4:九年级数学上册《复习直线和圆的位置关系》的说课稿

九年级数学上册《复习直线和圆的位置关系》的说课稿

一、教材分析

本单元复习内容可分为直线和圆的位置关系、直线形(三角形、四边形)与圆两部分。直线和圆位置关系的运动和变化,把圆与直线形有机地结合在一起。(1)直线和圆的位置关系是点和圆的位置关系的深化和延伸,是研究直线形与的有关性质的基础。其中切线的判定与性质尤为重要。(2)直线形与圆主要包括三角形的外接圆和内切圆、圆内接四边形的有关性质等,不仅对三角形的内心、外心,切线长定理等知识点进行了复习,还为将来复习正多边形与圆作了铺垫。

依据教学大纲和对教材的理解分析,结合学生的认知特点和学习基础,确定本单元的复习目标为:(投影)

认知 三角形的内心、外心的概念,切线的定义

掌握 圆内接四边形的性质;直线与圆的位置关系;

切线的判定与性质;切线长定理

应用 会用尺规作三角形的外接圆和内切圆;

会用本单元定理进行有关的计算和证明

智能 通过直线和圆位置关系的分类,培养学生分类讨论的思想;

通过变式教学,培养学生发散思维能力和综合运用能力

情感 通过直线和圆位置关系的变化,渗透运动观点

布鲁纳说过:掌握数学思想可以使数学更容易理解和记忆。本单元复习过程中,注重分类讨论思想和运动观点的渗透。这样,不仅可以帮助学生更有效地掌握知识,而且还能培养学生的能力,优化学生的思维品质。基于这些想法,我确定了以上的教学目标。

本单元的主要知识点有着广泛的应用,所以本单元的重点是直线和圆的位置关系、切线的判定与性质、切线长定理、圆内接四边形的性质。(投影)由于学生如何从图形中观察、分析出比较隐蔽的数量关系的方法较弱,且综合运用知识的能力较差,因此本单元的难点有两个:一是领会图形运动变化的规律;二是综合运用知识解题。(投影)突破难点一的关键在于抓住分类讨论思想,通过动画发挥直观到抽象的支柱作用;突破难点二的关键是通过知识的梳理与沟通,形成知识本质上的融合。

二、教法、学法及师生互动设计

在数学复习课中,充分调动学生学习的积极性,充分发挥学生的主体作用,是十分重要的。同时,充分发挥教师的主导作用,组织他们生动活泼地进行学习,也是教师应当掌握的一门艺术。为此,在建构主义理论的指导下,我采用教师指导学生主动探索研究发现法。具体是用题组或基本图形网络知识点,学生自主探索,发现问题,并解决之;教师必要时进行引导或点拔;最后由师生共同小结,实现真正的意义建构。在实际教学中做到:

动:教师精心备课,使用多媒体动画,促使学生动脑、动口、动手;

变:教师设计变式题组,学生变换思维角度,培养学生思维的敏捷性、广阔性、深 刻性;

点拔:在学生思维受阻或某些学生不易理解的地方,教师予以点拔;

渗透:渗透分类讨论、观察猜想等数学思想和运动观点;

5、小结:及时引导学生进行知识和思想方法的小结,以及学法的小结。

三、教学程序分析

本单元复习预计分两课时完成,第一课时复习直线和圆的位置关系,第二课时复习直线形与圆的有关性质,另根据学生掌握情况补充适当的综合训练题。

教案基本按以下流程设计:(投影)

教案设计流程图

复习目标 — 基础过关 — 小结 — 能力提高 — 小结 — 达标训练

基本题组 基本图形 引申变式 综合运用 分层练习分层指导

教案的处理:1、可提前将教(学)案发给学生,题组一可安排在课内或课前完成;题组二由师生共同分析,学生完成;题组三由学生独立完成,教师视情况予以点拔。2、题组的设计以课本为蓝本,并结合学生实际和中考要求作了适当的补充。

现就主要环节说明如下:

关于复习目标

数学复习课与新授课不同,要复习的内容都是学生早知道的。不必转弯抹角,应当直接

了当地进入主题,点明复习目标。并指明复习内容在知识结构中的位置、地位和作用。这是引导学生自主学习的始点。教师在提出复习目标时应注意:第一,目标要全面,既要注意基本知识基本方法的落实,又要注重能力的培养;第二,目标要准确,即针对性要强;第三,目标要具体。(投影)

教学目标做到: 全面 准确 具体

教师在提出单元复习目标后,对于每一课时应有更详细、更具体的目标,甚至可以具体到题组或题型。例如在复习“直线形与圆”时,我将知识要点整理成基本题组,让学生课前完成,这样做复习目标明确,学生带着问题去听课,效果很好。

关于基础过关

复习目标的提出从心理角度讲,激发了学生“认识、理解的需要”,为了满足学生的需

要,又要提高复习效率,教师选择代表性的例题十分必要。例如复习“切线的判定与性质”可选用下面的例题:(投影)

C

已知:如图,AB是⊙O的直径,⊙O过BC的中 D

点D,DE⊥AC。E B

求证:DE是⊙的切线。A O

A

已知:如图,AB切⊙于A,CD切⊙O于C,且 B

AB∥CD。 O

求证:AC是⊙O的直径。(至少用三种方法)

C D

对于例1主要是复习切线的判定定理,鼓励学生采取不同的方法证明。学生完成后可让学生自己归纳出切线的判定方法;教师强化,视情况让学生回答教材P95—例4、L1、2各用何种判定方法,并加以区别。

例2主要是复习切线的性质及推论。考虑证明中要证三点共线,学生不易把握,教师处理时可将三种证明方法呈现出来,让学生指出划线处分别应用了切线的什么性质。这样既突出了重点,又拓宽了学生的视野。从而就起到了“以少胜多”、“事半功倍”的作用,大大减少了题量,提高了复习效率,实现了复习目标提出的要求。

此时,学生的自主性可以体现在多“讲”、多“议”上面。例如对上面的例题,学生通过思考能够讲得出的,一定要让学生自己讲解,教师不要包办代替。教师只重点讲清切线的判定与性质的区别,以及常用的辅助线作法这类学生较模糊的内容。所以使学生越听越专心,越听越有劲,这样上课效率会倍增。

数学复习课的另一个特征是回忆。回忆,应尽最大可能让学生独立完成。常用的办法如独立默写、同桌互说、启发得结果等。但回忆往往造成知识不系统、不完整,这就需要教师及时进行梳理。例如复习“切线长定理”及相关结论时,学生印象较深的只是定理本身,而对基本图形的识别和相关结论的回忆则显得把握不住重点。教师在处理时设计这样一道多结论的开放题加以梳理。(投影)

DMC

例3、如图,⊙O为等腰梯形ABCD的内切圆,M、M、P P

为⊙O与AB、CD、BD相切的切点,由这些条件, O

你可以得出哪些结论?(要求:结论不添加字母和A

辅助线) N B

此时,学生的自主性体现在多“想”上面。教学过程中,教师不应过早的把结论告诉学生,而采取教师引在前,讲在后,学生想在前,听在后的方法。上例中,即使基础很差的学生,稍加思考也能说出二、三个正确结论。这样可以扩大参入面,让每个学生都体验成功的喜悦。必要时,教师进行分类提示。(投影)在教学中,应鼓励学生大胆求异,以训练学生的发散思维能力。

由此可见,回忆是实现复习目标的重要组成部分,同时也进一步强化记忆的过程,还是互相启发获得联想结果的过程。

关于能力的提高

综合应用能力的.提高很大程度上取决于知识间的沟通是否顺畅。沟通是数学复习课鲜明的特征。因为新授课的主要目的是将知识点分化,把握单个知识点的本质属性,一般很少也不可能同后继知识发生关联。复习课中,正好就是将所学知识前后贯通、沟通起来。这就是所谓知识的泛化。沟通不同于知识间的简单联结,而是知识本质上的融合。因此,沟通不仅有异中求同,而且也有同中求异,是知识结构转化为认知结构的重要环节。为了实现沟通,选题应具有层次性。一是题目应有一定的“坡度”,对一些难题可以增设一些“台阶”;二是选题要符合学生的水平层次,更须定准的“难度”,恰当的难度会对学生产生良好的激励作用。

例如在“直线与圆的位置关系”一课中,为沟通圆与平面直角坐标系,我设计了这样一道例题,同时训练了学生分类讨论的思想方法。(投影)

已知点A(0,6),B(3,0),C(2,0),M(0,m),其中m﹤6,以

M为圆心,MC为半径作圆,则

(1)当m为何值时,⊙M与直线AB相切?

(2)当m=0时,⊙M与直线AB有怎样的位置关系?

当m=3时,⊙M与直线AB有怎样的位置关系?

(3)由第二题的验证结果,你是否得到启发,从而说出在什么范围内取值

时,⊙M与直线AB相离,相交?

本例是为沟通圆与平面直角坐标系而设计的。第(1)(3)问属条件开放,(2)属结论开放。三个小题由浅入深,由具体到一般,(1)(2)两小题是(3)的铺垫,(3)是对(1)(2)的引申和抽象概括。

分析时引导学生画出图形,找出关键是确定⊙M的半径和直线AB到⊙M的距离的大小关系,从而引出辅助线,方向已明。

考虑学生识图困难,用多媒体动画演示m在范围内移动,直线与圆的各种位置关系。(演示)可见相切是各种位置关系的界点,从而正确引导学生把m值进行正确全面的分类讨论,进而突破了难点。

复习课上沟通的目的不仅仅是求同与求异,更重要的是灵活运用知识解决数学问题,进而拓展学生的思维。因此,选题要有思考性。思考性强的习题,不仅能激发学生的兴趣和求知欲,而且有利于深化对问题的认识。

例如教案中对题组一的第2题进行变式,来训练学生的思维:(本例的原型来自书本)(投影)

原型(A2):如图,AB是⊙O的直径,⊙O过BC的中点D,CD

DE⊥AC,求证:DE是⊙O 的切线。

变式(一):若∠ACB=90°,其他条件不变,除上述结论外,E

你还能推出哪些正确结论?请画出图形。 A B

变式(二):若点O在AB上向点B移动,以O为圆心,OB

长为半径的圆仍交BC于D,DE⊥AC的条件不变,那么

上述结论是否成立?请说明理由。

变式(三):如果AB=AC=5cm,sinA=,那么圆心O在AB的什么位置时⊙O与AC相切?

三个问题的结论未定,有待探索,而且要求学生自己画出图形。这无疑对学生的能力水平是一个挑战,正因为结论不定,才能使学生尝到成功的喜悦,激发兴趣。在设计中注意与教材的呼应,充分发挥教材的功能,并运用多媒体的动画功能,动态地演示出问题原形经过平移、旋转形成变式题的全过程。(动画演示)通过动画让学生对图形和图形的性质有了更深刻的理解,形成知识本质上的融合。

4.关于归纳与小结

复习完本单元内容之后,教师应及时引导学生进行归纳、整理,找出知识之间的联系,甚至可以布置学生进一步在课后写出单元总结。这不仅有利于全面地理解和掌握知识,而且能形成技能,为今后的学习扫清障碍。例如复习完“直线和圆的位置关系”后,教师应及时将其置于“圆”这一知识系统中,认清“直线和圆的位置关系”与其它图形与圆位置关系的异同及相互关系。进而得出运动变化是它们的共同特征,而分类讨论是研究图形运动变化的基本思想方法。

5、关于巩固训练

中学数学教学大纲提出:“数学教学中,发展思维能力是培养能力的核心。”而数学思维能力是通过各种训练才能逐步形成的。数学复习课的训练,不是知识的被动再现,不是让学生扎进题海,重要的是通过训练,使学生能从一个新的角度和高度去审视,思考学过的内容,达到深化认识,优化知识结构,提高能力的目的。为满足不同层次学生的需要,我设计了:A组,教材跟踪训练题;B组,综合应用创新训练题。

四、教学评价分析

本单元无论在教案的设计还是在教学过程中,都以发展学生的思维能力为主,在注重基础知识的落实的同时,注重能力的培养与提高。反馈与调节的主要措施是通过学生回答问题的积极性、主动性和练习的准确度的掌握来反馈信息,教师及时调整教法,分层指导。媒体的选择与组合,主要是在突出重点和突破难点时引入文字或动画,不扎花架子,本着实用够用的原则。在教学中,始终以思想方法统领,注重知识的梳理与沟通。使学生在轻松愉快的环境中,掌握知识,训练能力,体验情感,达到预期教学目标。 (片尾动画) 这样,站在高山俯瞰云海翻腾,青松临风让学生呼吸到最新鲜的氧气,得到昂扬的精、气、神,真正体验到杜老夫子那种“一览众山小”的感觉。

篇5:九年级数学《8.4 直线与圆的位置关系》评课稿

九年级数学《8.4 直线与圆的位置关系》评课稿

本节课由蔡**老师执教,主要有三部分组成。首先前面两个问题通过复习前几课学过的点到直线的距离公式以及两条直线的位置关系的判定,为下面例子中判断直线与圆的位置关系作好铺垫。紧接着通过回顾直线与圆的三种位置关系引入新课,并结合图形深入探究每种关系中圆心到直线的距离d与圆的半径r的大小关系以及交点个数的情况。再通过例题的讲解与练习的训练去总结直线和圆的位置关系所反映出来的数量关系。最后师生对本节课知识点进行共同小结,完成本节课的整体教学内容。

听了这节课之后,我认为本节课的整体思路清晰、流畅,结构合理,重点突出,较好地完成了本节课的教学目标。在引导学生归纳出直线与圆的`位置关系的数量关系后再进行相关的例题讲解和习题训练,确保了学生对本节课重点知识的掌握。不过,个人认为本节课还是有一些值得探讨的问题:1、例1是对本节课所学知识的应用,是本节课的重点及难点,应该着重分析这块。学生对带有绝对值符号的C的范围并不能很好地理解,因涉及先前学过的内容,可举个适当小例子帮助学生回顾,如: ,则 的范围是什么等等。2、个人觉得练习一中判断直线与圆的位置关系时,圆心到直线的距离计算得d= ,让学生求k的范围难度太大。本来学生才刚掌握点到直线的距离公式,还不能很好熟练的运用,现在式子中又有绝对值又有根号求k的范围,学生的积极性很容易被打压,应当换个适当难度的,及时提高学生的积极性,培养他们的兴趣。3、应让学生多动手、动口回答问题,及时巩固所学知识。

本节课是在直线和直线的基础上进一步学习的内容,也是后面学习直线与圆的方程的应用的基础,起着承上启下的作用,而且三种位置关系的研究方法和思路基本一直,都是从研究位置关系开始进而研究位置关系而发生的数量关系,教师可以用类比的教学方式使学生掌握这种学习方法。其实,一堂课的教学很大程度上受教学细节的影响,比如:语言的描述是否准确,是否及时对学生进行表扬等。每次听完课,我都会拿自己进行比较,看看还有哪些自己没做到的,或是没注意的,然后多多实践,尽量充实自己,收获不少啊。

篇6:九年级数学公开课《直线与圆的位置关系》说课材料

九年级数学公开课《直线与圆的位置关系》说课材料

一、教材分析:

(一)教材的地位和作用

本节课华师版九年义务教育课程标准实验教科书九年级数学(下册)28.2.2《直线与圆的位置关系》(课本第46-47页内容)。

本节课是在学习《点与圆的位置关系》的基础上学习的,也是为后面学习《圆与圆的位置关系》及继续学习几何知识作铺垫。它起着承上启下的作用,是本章中的重点。

(二)教学目标

根据学生已有的认知基础及本课的教材地位、作用,依据新课标确定本课的教学目标为:

1、知道直线和圆相交、相切、相离的定义。

2、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。

3、通过直线与圆的相对运动,培养学生运动变化的辩证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。

(三)教材的重点、难点

重点:掌握直线与圆的三种位置关系的定义,性质及判定方法。

难点:用数量关系来刻画直线与圆的位置关系和灵活应用判定方法。

二、教学方法

本课将采用教学方法有:

情境教学法

2.导学发现法

3.直观演示法

4.数形结合法

5.观察归纳法

三、学习方法:

本节课学习方法:

实验法

2.类比法

3.合作学习法

教具和学具

1.学生自制一个圆形纸片。

2.多媒体课件等教学设备。

四、教学程序设计:

(一)复习回顾,做好铺垫

[教学设计]

1、请回忆一下,点和圆有哪几种位置关系?

2、如何通过数量关系,确定它们的位置关系?

[设计意图]

1、复习点和圆的位置关系,为本节直线和圆的位置关系作好铺垫。

2、通过复习使学生认识到“位置关系?数量关系”这个模式,为本节课探究直线和圆的位置与数量关系建立了模型。

(二)联系实际,情景导入

[教学设计]

1、微机演示唐朝诗人王维《使至塞上》:

单车欲问边,属国过居延。征蓬出汉塞,归雁入胡天。

大漠孤烟直,长河落日圆。萧关逢候骑,都护在燕然。

第三句以出色的描写,道出了边塞之景的奇特壮丽和作者的孤寂之感。如果我们从数学的角度看到的将是这样一幅几何图形:一条直线垂直于一个平面。那么“圆圆的落日慢慢地沉入黄河之中”又是怎样的几何图形呢?请同学们猜想并动手画一画。

2、借助微机展示“圆圆的落日慢慢地沉入黄河之中”的动画图片从而展现直线与圆的三种位置关系。

3、引入课题――直线与圆的位置关系

[设计意图]

通过直观画面展示问题情景,学生大胆猜想,激发学生学习兴趣,营造探索问题的氛围。。同时让学生体会到数学知识无处不在,应用数学无处不有。符合“数学教学应从生活经验出发”的新课程标准要求。

(三)引出概念,辨析理解

[教学设计]

1、概括直线与圆有哪几种位置关系,你是怎样区分这几种位置关系的?

2、如何用语言描述三种位置关系?

3、回顾点与圆的位置关系,你能不能探索圆心到直线的距离与圆的半径之间的数量关系。(小组交流合作)

[设计意图]

通过学生概括定义,培养学生归纳概括能力。由点与圆的位置关系的性质与判定,迁移到直线与圆的位置关系,学生较容易想到画图、测量等实验方法,小组交流合作,教师适时指导,探索圆心到直线的距离与圆的'半径之间的数量关系。

(四)讲解新知,探索结论

[教学设计]

1、利用直线与圆的公共点情况,引导学生分析、小结三种位置关系:

(1)直线与圆没有公共点,称为直线与圆相离

(2)直线与圆只有一个公共点,称为直线与圆相切,此时这条直线叫做圆的切线,这个公共点叫切点。

(3)直线与圆有两个公共点,称为直线与圆相交。此时这条直线叫做圆的割线。

[设计意图]

学生通过画图,测量等实验方法对直线与圆的位置关系已有了一定的认识,通过动画演示,让学生认真观察思考,使之认识到区分直线与圆的位置关系的依据是直线与圆的公共点个数,以此让学生形成相离、相切、相交的定义。这样让学生动手操作、观察、探究、思考获取新知,把学习的主动权交还给学生,让学生养成自主探究思考的习惯,培养学生终身学习的意识。

[教学设计]

2、微机演示三个图形,观察圆心到直线的距离d与圆半径r之间的大小关系。

(1)当d>r时,直线在圆的外部,与圆没有公共点,因此此时直线与圆相离;

(2)当d=r时,直线与圆只有一个公共点,此时直线与圆相切;

(3)当d<r时,直线与圆有两个公共点,此时直线与圆相交。

反之:若直线与圆相离,有d>r吗?

若直线与圆相切,有d=r吗?

若直线与圆相交,有d<r吗?

总结: d>r?直线与圆相离

d=r ?直线与圆相切

d<r?直线与圆相交

[设计意图]

这样做既能拓展学生的思维空间,又能调动学生思维的积极性,同时从数量关系的角度来探讨直线和圆的位置关系,让学生学会运用数形结合的数学思想解题,通过这一活动,培养学生学会探究的方法,形成良好的科学研究习惯,培养学生思维的深刻性。

(五)延伸概念,渗透思想

[教学设计]

例1:请举例说明你身边的直线和圆的位置。

篇7: 《24.2直线与圆的位置关系》教学反思

《24.2直线与圆的位置关系》教学反思

本节课研究圆与圆的位置关系,重点是研究两圆位置关系的判断方法,并应用这些方法解决有关的实际问题。《圆与圆的位置关系》在旧教材中比重不大,但是在新课标中,被作为一个独立的章节,说明新课标对这一章节的要求已经有所提高。教材是在初中平面几何对圆与圆的位置关系的初步分析的基础上得到圆与圆的位置关系的判断方法,北师大版教材中着重强调了根据圆心到直线的距离与圆的半径的关系进行判断,对用方程的思想去处理位置关系没作要求,但用方程的思想来解决几何问题是解析几何的精髓,是平面几何问题的深化,它将是以后处理圆锥曲线的基本方法,因此,我增加了用方程的思想来分析位置关系,这样有利于培养学生数形结合、经历几何问题代数化等解析几何思想方法及辩证思维能力,其基本思维方法和解决问题的技巧在今后整个圆锥曲线的学习中有着非常重要的意义。

作为解析几何的一堂课,判断圆与圆的位置关系,体现的正是解析几何的思想:用方程处理几何问题,用几何方法研究方程性质。所以我在教材处理上,对判断两圆位置关系用了方程的思想和几何两种方法,两种方法贯穿始终,使学生对解析几何的本质有所了解。

下面是我在设计这堂课时的一些想法。

第一,学生学习新知识必须在已有知识和经验的基础上自主建构与形成。所以,我一开始便提出了三个问题,即复习此节相关的知识点,通过问题解决,以旧引新,提出新的问题,以类比的方法研究圆与圆的位置关系。配合几何画板的动画演示,启发学生思考当初是怎样研究判断直线与圆的位置关系的方法?这种方法是不是同样可以运用到研究圆与圆的位置关系上来?能不能用来判断圆与圆的位置关系?使学生很自然地从直线与圆的位置关系的判断方法类比到圆与圆的位置关系的判断方法。

第二,新的课程标准非常重视学生的自主探究,这是学习方式的一次革命,老师的教授过程固然重要,但学生对知识的掌握是在学生自己对知识有体验、有独立的思考和探讨的基础上,才能成为可能。所谓“学在讲之前,讲在关键处”,学生先有一个对知识的认识过程,老师再在关键处进行讲解,使学生真正完成对知识感知、形成和巩固的过程,才是对知识最好的吸收。

第三,学生的学习是在教师引导下的有目的`的学习,从而教学的过程就是在教师控制下的学生自主学习和合作探究学习的过程,这个过程中的关键点是怎么样有效地控制学生自主学习和合作探究学习的时间和空间,在教学的过程中,我较好地处理了学生学习的空间与时间,既留给学生充分思考与探索的时间与空间,又严格限定时间,由此培养学生思维的敏捷性,提高课堂效率。

第四,把解决问题的步骤算法化,提前介入算法的思想,有利于后续学习,也有利于学生理清解决问题的思路和规范

解决问题的程序。

对于问题探究的题型选择的一些思考:第一个问题研究,侧重点之一是必须注意到相切的两种位置关系:内切与外切;侧重点之二在于如何找到这两个圆的圆心,是为了让学生回顾两相切圆心与切点在同一直线上这一条性质,由此得到圆心坐标。第二个问题研究是研究一个半径变化的圆与定圆相切,求题中参数变化的问题,这道题中同样要注意的是相切的两种情况,并且对于内切,要充分结合数形结合的思想,判断出两圆的半径大小关系。两题都有一定难度,处理时必须牢牢掌握知识,灵活运用。

上完这堂课有几个值得反思的问题:

1.设计思路。我在开始思考设计这个课题时,并不是很有把握。圆与圆的位置关系在教材中不如之前直线与圆位置关系的应用性广,有关它的题型受教学要求的局限,使教学设计增加了难度,但是运用已学的直线与圆的位置关系,用类比的方法去处理圆与圆的位置关系又是一个很好的材料,所以我采用了类比的思想,让学生自主探讨出圆与圆位置关系的判断方法,这也比再次独立研究圆与圆位置关系大大地缩短了时间,为后面节省了时间,这种思路是否可行?

2.时间把握。课前复习是有必要的,是为了学生类比旧知识,联想新知识,但复习旧知识的时间应该限定在三分钟以内,复习时间长会导致巩固练习的时间不足和问题展开不够充分。

3.限时训练。限时训练的目的是为了让学生更有效率地做题,限定时间过长或是过短都不利于学生提高数学能力,这点还有待研究。

篇8:《直线与圆的位置关系》教学案例及反思

《直线与圆的位置关系》教学案例及反思

[设计理念]

依据《数学课程标准》,数学源于生活,从生活中构建数学模型,应用数学思维方式观察、分析、探索、发现规律,并应用其解决生活中的实际问题,培养学生的实践能力,使学生学有所值,且能学以致用,《直线与圆的位置关系》教学案例与反思。

[教学过程及步骤]

1、教学目标:

(1)知识目标:理解直线与圆有三种位置关系,并能利用公共点的个数、圆心到直线的距离与半径之间关系来判定它。

(2)能力目标:培养学生类比、归纳、观察及想象的能力

(3)情感目标:渗透从特殊到一般、数学转化的思想及运动的观点

(4)德育目标:创设问题的情景,让学生主动地发展

2、教学重点:理解直线与圆的三种位置关系的定义,并能准确的判定

3、教学难点:

(1)理解“切线”定义中的:“唯一”。

(2)灵活准确应用相关性质解决问题

4、教学方法:想象观察法、类比归纳法、讨论法、练习法

5、教学手段:多媒体投影

6、教学过程

(1)激情引入:根据太阳东升西落的自然景观引入新课,让学生在美的'境界中进入学习状态,教育论文《直线与圆的位置关系》教学案例与反思》。

(2)探索发现:教师画一直线,并拿圆环在直线上移动,提问:直线与圆的公共点有几种情况?学生思考、观察并回答。由想象过度到实物演示,让学生直观看到变化过程,又抽象到具体,形成知识,然后生自读课文,理解概念,并动手画出直线与圆的三种不同位置关系图。让学生在操作中再现知识的形成过程。

(3)类比归纳:师提问:点与圆的位置关系如何判定,能否类比点与圆位置关系的判定方法来判定直线与圆的位置关系呢?学生以小组的形式研究、探讨用圆心到直线的距离与半径的大小关系来判定直线与圆的位置关系。

师通过提出问题给学生充分的合作探讨的机会,让学生自主发展,并充分展示自己的发现,最后师生共同归纳直线与圆的位置关系的判定方法。

(4)典型题训练:出示例题,学生独立解决并指名讲解,师指导方法。

(5)知识应用:分A、B、C三个层次,

A层:基础篇:直接利用本节课的知识点解决问题

B层:提高篇:灵活、综合的应用知识,解决相关的问题

C层:视野拓展篇:把生活中的实际问题与本节课的知识有机的结合起来,并应用数学方法解决生活中的实际问题。

篇9:《圆与圆的位置关系》数学教学反思

本节课在教学上采用了探究性的学习方法,通过学生动手实践等手段使学生在做中学,充分体现出“先学后教,当堂训练”的洋思理念。

为了调动学生学习的积极性和对本节课的兴趣,我利用多媒体播放日食的形成过程引入新课,极大的刺激了学生的感官,学生热情高涨都跃跃欲试,积极参与。洋思中学的“目标教学”,在两年多的课堂教学实践中,我尝到了操作性强、目的性强的甜头,学生在学习目标自学指导的引领下,学生动手实践,在实践中探索,感知两圆的位置关系,并通过阅读教材进行确认,感知概念并归纳圆与圆的五种位置关系。让学生自主学,探究学,而不是放任学。学生掌握了恰当的学习方法,这样的自学才有效。同时以图形运动的手段向学生直观展现知识发生过程,化静态为动态,强化了学生对知识的记忆,再通过两等圆的位置关系的判断,教会学生从不同角度思考问题,来拓展学生思维,培养学生全面思考问题的能力。

在研究两圆位置关系与两圆的圆心距、两圆的半径之间的数量关系时,我大胆放手让学生讨论,然后让学生将探究得到结论写在黑板上,最大限度的暴露存在的疑难问题,引导学生更正,凡是学生能解决的就让他们自己解决,这个环节既是补差,又是培尖,不同层次的学生都有提高。对于两圆相交的情形是本节课的难点,很多同学只考虑到d<R+r而忽略了d>R—r这一限制条件,于是我精心制作课件,通过课件的演示启发学生思维,让他们通过图形的变换,通过教师点拨,给学生思维搭桥,把抽象的转关系转换到一个三角形当中,通过这样的思维学生悟出两圆相交的必备条件。学生的恍然大悟,难点的迎刃而解学生感到轻松愉悦,我也尝到了启发教学、点到为止的怡然之乐。

例题的处理是在学生充分自学后教师与学生、学生与学生之间进行互动式的学习,即体现出“洋思”的“后教”环节,让已经会的学生来教不会的学生促使学生相互交流、互相帮助达到了“兵教兵”的目的。通过填空题、选择题和解答题的`当堂检测,着重让学生通过一定量的训练,应用所学的知识解决问题,从而加深理解课堂上所学的重难点。达到了当堂清的目的,以督促学生自主学习、强化学习,从而最大程度的提高了学生的自学能力,养成自主思考、自能学习的学习惯,让学生受益终生。

两年多来,我一直实践着洋思中学的“先学后教、当堂训练”的课堂教学模式,体味到身为人师放手引领的喜悦,也在不断的摸索更适合学情的最有效最便捷的方式方法,尽最大的努力给学生带来意料不到的成功。

篇10:《圆与圆的位置关系》数学教学反思

新课标指出,自主探究,动手实践,合作交流应成为学生的主要学习方式,教师应引导学生主动地从事观察‘实验’猜测、验证、推理与交流等数学活动,使学生形成自己对数学知识的理解和有效的学习策略。学生在前面已学习了点与圆、直线与圆的位置关系,已获得了探究此类问题的方法,因此在本节教学中让学生动手操作,自主探究,设计表格让学生探究完成,有目的、有思考。

本节课有以下几个特点:

1、圆与圆的位置关系特别是相交关系理解有一定难度,教学时借助多媒体动态演示,以帮助理解。

2、借助图形变换思想,研究图形的对称性。

3、利用生活中的数学引入本节内容。

需改进之处:教材之外内容少补充,大胆放开,把概念的形成过程、方法的探索过程,结论的推导过程、公式定理的归纳过程等充分暴露在学生面前,让学生的学习过程成为自己探索和发现的过程,真正成为认知的主体,增强求知欲,从而提高学习能力。

篇11:《直线和圆的位置关系》教学反思

《直线与圆的位置关系》是人教版九年级(下)第三章第一节的内容,它和点与圆的位置关系、圆与圆的位置关系同是研究图形之间位置关系的重要内容。下面谈谈自己的做法和体会:

一、重视定义的形成和概括过程:

“直线与圆的位置关系”是由公共点的个数来定义的。定义的教学是在教师引导下,通过学生观察、思考、交流、概括等探究活动亲身经历概念的形成过程,形成新知识的建构。首先引导学生回忆点和圆的位置关系及判定方法,通过对已有研究方法的揭示,增强学生运用迁移方法研究新问题的意识。接着,借助多媒体引导学生观察并思考:在不同的位置关系下,直线和圆的公共点的个数有什么不同?从而引导学生揭示出直线与圆的位置关系与公共点的个数之间存在着对应关系的本质特征。到此,我并没有急于给出定义,而是进一步引导学生在定义的形成上下工夫,又提出两个问题:一是直线与圆有三个或三个以上公共点吗?二是通过刚才的研究,你认为直线和圆的位置关系可分为几种类型呢?分类的标准是什么?定义的教学不只是以直接感知教材为出发点,而是力图还原定义的形成过程,这样既加深了学生对定义本身的理解,又提高学生对定义形成过程中所涉及的思想、方法的认识。而多媒体课件在这里的作用主要是通过“直线动圆不动”“圆动直线不动”“圆心直线不动半径变”三种运动方式的演示,有效创设符合教学内容的情景,把知识的形成过程直观化,提高学生的兴趣,增强学生的参与性。

二、重视定理的发现和总结过程:

本课内容的第二个知识点是运用圆心到直线的距离与半径的大小关系来判定直线与圆的位置关系,并反过来得到直线与圆的位置关系下所具有的数量特征。难点是如何引导学生去发现隐含在图形中的这两个数量并加以比较,为此,我设计了一个问题串,以问题为导向,以探究问题的方式引导学生自学自悟,为学生提供了自主合作探究的舞台,闪现了学生思维创新的火花。

引导1:通过刚才的研究我们知道,利用公共点的个数可以判定直线与圆的位置关系,请同学想一想,能否像判定点与圆的位置关系那样,通过数量关系来判定直线与圆的位置关系?

引导2:点与圆的位置关系的判定运用了哪两个数量之间的关系?直线与圆的位置关系中可以出现哪两个量呢?

引导3:如何用图形来反映半径和圆心到直线的距离这两个量呢?

引导4:如何由数量关系并结合图形判定相应的位置关系呢?

引导5:运用数量关系判定直线与圆的位置关系以及点与圆的位置关系,这两者之间有何区别与联系?

引导6:以上三个判定反过来成立吗?

通过以上问题,学生不仅加深了对判定直线与圆的位置关系的方法的理解,更重要的是使学生学会运用联想、化归、数形结合等思想方法去研究问题,这无疑促进学生在学会数学的过程中顺利地向“会学”的方向发展。而多媒体课件在这里的作用在于把“形”和“数” 的关系及其变化动态呈现在屏幕上,成为学生探索验证的好帮手。

三、尊重学生的主体地位:

教学设计应为学生自主学习,实现知识的建构服务。这节课为学生提供了大量问题情境、活动方式,使学生通过“做一做”“想一想”“练一练”“议一议”充分地实践与探索,不断地归纳与总结,引导学生发现规律、拓展思路。而多媒体的介入,为学生实现“意义建构”创设了更为逼真的“情景”,改善了认知环境,有利于提高课堂效率,有利于学生思维和技能的训练。如“议一议”:(1)已知⊙O半径为4cm,直线l上的点A满足OA=4cm,能否判定直线l和⊙O相切?为什么?

(2)已知⊙O半径为4cm,直线l上的点A满足OA=5cm,能否判定直线l和⊙O相离?为什么?

此题重在强调判定方法中圆心到直线的距离,利用多媒体演示,更直观地说明:(1)中当OA不是圆心到直线的距离时,直线l和⊙O相交;当OA是圆心到直线距离时,直线l是⊙O相切。(2)方法同(1),通过此题练习提高了学生思维的深刻性和批判性。

四、重视规律的揭示和提炼过程:

某个数学知识的教学可以在短期内完成,数学技能也可通过强化训练形成,而掌握学习的规律是一个长期渐进的过程,我认为教师在教学过程中应增强揭示规律的意识,引导学生从学习、研究的过程加以提炼,通过日积月累产生认识的飞跃。因此,在回顾与反思中,我组织学生以小组交流的形式讨论以下问题:一是通过刚才的学习,你对如何研究图形之间的位置关系有什么收获和体会?二是“点与圆的位置关系”与“直线与圆的位置关系” 有哪些联系?通过比较你有何启发?这一设计的做法虽小,作用却大,它使学生的认识上升到一个新的高度。也确保了学生在学会数学的过程中顺利地向“会学”的方向发展。

五、拓宽学习的时间和空间:

课后作业的设计不仅要达到巩固知识的目的,更重要的是有研究性和探索性。本节的课后作业有一道探究价值的题目:在Rt△ABC 中,∠C=Rt∠,AC=8cm,BC=6cm,若要以C为圆心,R为半径画圆,请根据下列条件,求半径R的值或取值范围。 1、AB与圆相离 2、AB与圆相交 3、AB与圆相切。

学生需通过动手动脑来完成,使学生的探索精神由课内延伸到课外。多媒体课件的作用在于通过圆的半径的动态变化,为学生研究直线与圆的位置关系提供思路和分类方法。

总之,通过这节课的教学,力图达到以下三个目标:一是知识目标,就是使学生理解概念,掌握性质和判定并能够利用它们分析问题和解决问题;二是能力目标,培养学生运用迁移、联想、类比、化归、数形结合等数学思想方法发现问题解决问题的能力和创新能力;三是情感目标,通过学生的主动参与,在学会数学的过程中向“会学”的方向发展,培养运动、变化、发展的辨证唯物主义观点。

篇12:《直线和圆的位置关系》教学反思

这是我第一次进入初三进行教学,即紧张又兴奋。经过一个学期的历练,在校领导和组内老教师的无私帮助下我有了一些进步。现以《直线和圆的位置关系》第一课时为例,反思如下。

在初三的教学过程中,我几乎是听一节上一节。而集体备课也给了我很大的帮助。通过集体备课和听课,在《直线和圆的位置关系》这节课中,我首先引导学生回忆了点与圆的位置关系及所对应的点到圆心的距离与圆半径的数量关系。从而引出课题:直线和圆的位置关系。然后由学生平移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的'现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:

1、在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。

2、新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了两道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”“公路边的学校会不会受到噪声的影响?”培养学生解决实际问题的能力。由于这两题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。

同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:

1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。讲得过多,学生被动的接受,思考得不够,对概念的理解不是很深刻。可以改为让学生类比点与圆的位置关系下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。

2、虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。

3.对“做一做”的处理不够,这一环节是对探究的成绩与效果的探索与检验,重在帮助学生掌握方法,我在讲解“做一做”时,没有充分展示解题思路,没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。并在进行下面的解题时体现出来。教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,不能想当然,否则会影响学生对知识的消化吸收。

总之,在今后的数学教学中还有很多需要我学习和掌握的东西,希望能和学生们一起共同进步,真正成为一名合格的数学教师。

篇13:《直线和圆的位置关系》教学反思

《直线和圆的位置关系的复习》一课的教学,可以说非常成功。教学设计充分体现了新的教学理念,重点突出、层次清楚、构思新颖,整个教学过程教师采用多样化的呈现方式为学生搭建参与探究的平台,高度重视学生的主动参与,有意识地为学生创设了良好的数学交流情境。注意学生的情感与态度,知识与技能的形成和发展,使每个学生都有表现的机会和获得成功的体验。

亮点一:由于本节课综合性强,涉及到的知识面广,对学生的能力水平要求高。教师结合本节课的教学目标,突出重点,突破难点。采用教师启发引导,学生合作交流的方式来组织本节课的教学。注重解题思路分析和方法引导,善于引导学生寻找图形中的数量关系,选用适当的知识和方法正确解答问题。

亮点二:在学习知识的同时,注意数学思想方法的渗透。在教学中,数学知识是一条明线,数学思想方法是一条暗线。崔老师在引导学生学习的同时,教给学生思考方法、学习方法和解决问题的方法,为学生未来发展服务,让学生在脑海里留下数学意识,长期下去,学生将终身受用。

亮点三:板书条理分明,布局合理,文字与图形完美结合,板书设计不仅让学生对直线和圆的位置关系图形的特征一目了然,而且也便于揭示它们之间的区别和联系。体现了板书的形式美和简洁美,真正使板书起到了画龙点睛的作用。

亮点四:充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使题意理解更清楚,结论更准确。

亮点五:教师教态自然,语言清晰,数学语言表述准确,操作演示熟练,提问率高,体现素质教育面向全体学生的要求。

亮点六:教师注意培养学生的自信心,在教学过程的设计上体现了层次性和梯度性。防止学生对一些问题出现畏惧情绪,鼓励学生敢于知难而进,让学生树立战胜困难的勇气和决心。例题的设计,按照由易到难的顺序呈现,关于直线和圆的复习教学中能利用一个图形提出尽可能多的问题,并尽可能的覆盖到圆的大多数知识,尽可能的加强知识间的横纵的联系,尽可能渗透多种数学思想和方法,最大限度的榨取它的利用价值,达到了一线串珠的目的。体现了综合性例题的大容量、大综合的特点,非常有效地达成本节课的教学目标。

篇14:《直线和圆的位置关系》教学反思

今天,我顺利地上完《直线和圆的位置关系》第一课时。

本节课,我先让学生在课前自行完成教学案中“课前预习与导学”这一部分,情况良好。上课后先信息反馈进行评讲,然后引导学生回忆了点与圆的位置关系及如何用数量关系来判断点与圆的位置关系。接着以《海上日出》图创设情景,从而引出课题:直线和圆的位置关系。然后由学生平移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由小“练习”进行应用,最后通过“例题”“课堂检测”去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:

1、在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。

2、新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在小练习之后我及时地进行总结归纳方法,让学生在以后解决实际问题过程中能一下子找到切入点,培养学生解决实际问题的能力。

同时,我也感觉到本节课的教学有不妥之处,主要有以下三点:

1、学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。讲得过多,学生被动的接受,思考得不够,对概念的理解不是很深刻。可以改为让学生类比点与圆的位置关系下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。

2、对于我们学生的情况,初三的教学始终没有摆脱灌输式教学,尽管课上也让学生自主操作、思考,但老师讲的太多,没有给予学生足够的探索、交流的时间,势必会影响到部分学生的思维,限制了学生的发展。所以,我们也要学会该“放手时就放手”,大胆地让学生去思考,也许会有意外的收获。

3、对教材的把握,对学生的实情,在备课时都要考虑。在选题时不仅要照顾到基础薄弱的同学,也要照顾到基础好些的同学,适时选做。对于有些题可以适当地进行变式训练,拓展灵活运用,活跃学生的思维。

总之,在今后的数学教学中还有很多需要我学习和掌握的东西,希望能和学生们一起共同进步,真正成为一名合格的数学教师。

篇15:《直线和圆的位置关系》教学反思

本节课的教学我采用先亮标,亮自学提示及检测题的形式让学生先自学。依据自学检测题检验学生自学结果。然后精讲了切线性质定理及分析两种证明方法。然后结合小黑板练习巩固提高这节知识。

讲课时我改变了原来讲后再练的方式,采用了讲评一个知识点后配基础练习题,巩固此知识点的方法。避免讲后再练,练习与知识的脱节,练习紧跟。精讲知识后,再配以比基础题(巩固基础知识点)层次高的两组练习,让学生先做,采用举手的方式调查学生自己运用知识解决问题的情况。讲前85%的同学都举手做完,还有个别同学做到运用灵活方法解决问题。中午三道作业学生掌握良好。其余学生在我的讲解下也掌握今天的内容,会运用两种方法判断直线和圆的位置关系。知道有切线可连圆心和切点得垂直关系这种基本辅助线。

本节课的教学总的来说很顺利,学生掌握良好,由于课程标准对于本节课要求不高,紧扣标准,走进中招。本节课若能再配合课后检测题,及时精确把握,学生掌握情况会更完美。

重建:讲课前,先亮标,亮自学提示及检测题,以问题形式精讲切线性质定理及证明。配合练习、提高练习,下课前5分钟配简单检测题以便更全面把握学生掌握的情况。

教师的行为直接影响着学生的学习方式,要让学生真正成为学习的主人,积极参与课堂学习活动,因此在教学中让学生想象、观察、动手实践、发现内在的联系并利用类比归纳的方法,探索规律,指导学生合作、研究并尝试用学到的知识解决实际问题。

篇16:《直线和圆的位置关系》教学反思

“思之不慎,行而失当”,“学然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自强也。”反思意识人类早就有之。作为教师,在教学中也应适时反思教学过程的得与失。

在《直线和圆的位置关系》一课教学后,感受颇多,现分享如下:

开课时,借助微机展示“圆圆的落日慢慢从海平面升起”的动画,从而展现直线与圆的位置关系。由此引入课题——直线与圆的位置关系,学生比较感兴趣,充分感受生活中的数学知识,体验数学来源于生活。然后提出问题,引导学生大胆猜想,思考,发现三种位置关系,激发学生学习兴趣,营造探索问题的氛围。同时让学生从生活中“找”数学,“想”数学,体会到数学知识无处不在,应用数学无处不有。这也符合“数学教学应从生活经验出发”的新课程标准要求。

在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生用类比的方法来研究直线与圆的位置关系,在研究过程中,采用小组讨论的方法,给予学生足够的探索、交流的时间,培养学生互助、协作的精神,让学生在相互讨论中,集思广益,形成思维互补,从而使概念更清楚,结论更准确。 最后由学生小结这一知识点,我板书在黑板上,培养学生用数学语言归纳问题的能力,同时感受收获知识的快乐。

在新知教授完毕,知识升华这块,我安排了一道实际问题,一辆火车的噪首会不会影向处在与铁路相交的另一条公路旁的学校?如果会影响,影响的时间有多长?新课标下的数学强调人人学有价值的数学,人人学有用的数学,由于此题要学生回到生活中去运用数学知识解决生活中遇到的问题,学生的积极性高涨,都急着讨论解决方案,使乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。

一堂课教学下来,也发现有诸多不妥之处,让我认识到自己需要继续努力。归纳主要有以下三点:

1、教师在课堂应当以引导者的身份出现,把课堂和讲台让位于学生,让“教师的教”真正服务于“学生的学”,而我在这一节课中因为一方面担心学生在自主研究知识的形成时会浪费时间,另一方面担心会产生意想不到的或者课前备课时没有考虑到的回答,总是把自己的思想强加给学生,比如学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生只是被动的接受,这样就会对概念的理解不是很深刻。这里可以改为让学生自己下定义,教师适当放手,以师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。

2、有些课堂提问欠合理化、科学化,提问随意性大,缺乏针对性和启发性,导致课堂教学引导不力,问题缺乏精心安排这就使得课堂存在着不少“徒劳的提问”。让课堂时间分配的不太合理。今后应该把一些提问设计再提炼,能达到精而准。

3、在处理课后练习时,做的不够细致,这一环节是对前面探究新知识是否掌握的一个小测试,重在帮助学生掌握方法,而我在讲解练习时,只展示了解题思路,并没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。这里教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,巩固和扩大知识,吸收、内化知识,充分体现”授人以鱼不如授人以渔"。

总之,这是我对自己本节课的一些教学反思,或者说是对新课程理念的浅薄认识。

【九年级数学上册《直线与圆的位置关系》教后反思】相关文章:

1.《直线与圆的位置关系》教学案例与反思

2.九年级数学《圆和圆的位置关系》教学反思

3.九年级数学《圆和圆的位置关系》说课稿

4.数学教案-直线和圆的位置关系公开课

5.高中数学直线、圆的位置关系的测试题及答案

6.北师版九年级数学下册教案与圆有关的位置关系

7.九年级数学上册《根与系数的关系》的教学反思

8.《圆的周长》教后反思

9.初中数学《点和圆的位置关系》的教案设计

10.教后反思

下载word文档
《九年级数学上册《直线与圆的位置关系》教后反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部