高中数学直线、圆的位置关系的测试题及答案
“朱迪霍普斯”通过精心收集,向本站投稿了11篇高中数学直线、圆的位置关系的测试题及答案,下面小编为大家带来整理后的高中数学直线、圆的位置关系的测试题及答案,希望能帮助大家!
篇1:高中数学直线、圆的位置关系的测试题及答案
高中数学直线、圆的位置关系的测试题及答案
一、选择题
1.(重庆理)直线与圆的位置关系为( ).
A.相切 B.相交但直线不过圆心 C.直线过圆心 D.相离
考查目的:考查直线与圆的位置关系的判定.
答案:B.
解析:圆心(0,0)到直线(即)的距离,而,∴直线与圆的位置关系为相交但直线不过圆心.
2.(2009辽宁理)已知圆C与直线及都相切,圆心在直线上,则圆C的方程为( ).
A. B.
C. D.
考查目的:考查直线和圆的位置关系,以及求圆的方程.
答案:B.
解析:设圆C圆心的坐标为(,),由点到直线的距离公式得,解得,圆C的圆心为(1,-1),半径为,方程为.本题也可以用验证法.
3.(广东文)在平面直角坐标系中,直线与圆相交于A、B两点,则弦AB的长等于( ).
A. B. C. D.1
考查目的:考查直线与圆相交所得弦长的求法.
答案:B.
解析:圆的圆心坐标为(0,0),它到弦所在直线的距离为,由垂径定理得,AB的长等于.
二、填空题
4.(天津文)已知圆C的圆心是直线与轴的交点,且圆C与直线相切,则圆C的方程为______ __.
考查目的:考查利用直线与圆相切的性质求圆的方程的方法.
答案:.
解析:直线与轴的交点为(-1,0).∵直线与圆C相切,∴圆心C到直线的距离等于半径,即,∴圆C的方程为.
5.(2009四川理)已知直线与圆,则圆上各点到直线距离的最小值为 .
考查目的:考查圆与直线的位置关系的判断,以及圆上任意一点到一条直线距离最小值的求法.
答案:.
解析:∵圆C的圆心(1,1)到直线的距离为(圆C的半径),∴圆C与直线相离,∴圆C上任意一点到直线的距离的`最小值等于圆心C到直线的距离减去半径,答案应填.
6.(湖北)过点(-1,-2)的直线被圆C:截得的弦长为,则直线的斜率为 .
考查目的:考查直线与圆的位置关系及其应用.
答案:1或.
解析:∵圆C的方程可化为,∴其圆心为(1,1),半径为1.由经过点(-1,-2)的直线被圆C所截,则直线的斜率必须存在,设其斜率为,则直线的方程为,∴圆心到直线的距离,依题意得,解得或.
三、解答题
7.自点(-3,3)发出的光线射到轴上,被轴反射后,其反射线所在直线与圆
相切,求光线所在的直线方程.
考查目的:考查光线反射的有关性质,直线和圆的位置关系和性质,以及转化化归和数形结合的思想.
答案:,或.
解析:已知圆的标准方程是,它关于轴的对称圆的方程是.由题意知,光线所在直线的斜率存在.设光线所在的直线方程是.由题设知,对称圆的圆心(2,-2)到这条直线的距离等于1,即,整理得,解得或,∴所求直线方程是,或,即,或.
8.(2011全国课标)在平面直角坐标系中,曲线与坐标轴的交点都在圆C上.
⑴求圆C的方程;
⑵若圆C与直线交于A,B两点,且,求的值.
考查目的:考查圆的方程的求法,直线与直线、直线与圆的位置关系的综合应用.
答案:⑴;⑵.
解析:⑴曲线与坐标轴的交点为(0,1),,由题意可设圆C的圆心坐标为(3,),∴,解得,∴圆C的半径为,∴圆C的方程为.
⑵设点A、B的坐标分别为A,B,其坐标满足方程组,消去得到方程.由已知得,判别式①;由根与系数的关系得,②.由得.又∵,,∴可化为③.将②代入③解得,经检验,满足①,即,∴.
篇2:直线和圆的位置关系
直线和圆的位置关系
1.知识结构
2.重点、难点分析
重点:直线和圆的位置关系的性质和判定.因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究“直线和圆的位置关系”的基础.
难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解.
3.教法建议
本节内容需要一个课时.
(1)教师通过电脑演示,组织学生自主观察、分析,并引导学生把“点和圆的位置关系”研究的方法迁移过来,指导学生归纳、概括;
(2)在教学中,以“形”归纳“数”, 以“数”判断“形”为主线,开展在教师组织下,以学生为主体,活动式教学.
教学目标:
1、使学生理解直线和圆的三种位置关系,掌握其判定方法和性质;
2、通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思想,培养学生
观察、分析和概括的能力;
3、使学生从运动的观点来观察直线和圆相交、相切、相离的关系、培养学生的辩证唯物主义观点.
教学重点:直线和圆的位置关系的判定方法和性质.
教学难点:直线和圆的三种位置关系的研究及运用.
教学设计:
(一)基本概念
1、观察:(组织学生,使学生从感性认识到理性认识)
2、归纳:(引导学生完成)
(1)直线与圆有两个公共点;(2)直线和圆有唯一公共点(3)直线和圆没有公共点
3、概念:(指导学生完成)
由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:
(1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.
(3)相离:直线和圆没有公共点时,叫做直线和圆相离.
研究与理解:
①直线与圆有唯一公共点的含义是“有且仅有”,这与直线与圆有一个公共点的含义不同.
②直线和圆除了上述三种位置关系外,有第四种关系吗?即一条直线和圆的公共点能否多于两个?为什么?
(二)直线与圆的`位置关系的数量特征
1、迁移:点与圆的位置关系
(1)点P在⊙O内 d (2)点P在⊙O上 d=r; (3)点P在⊙O外 d>r. 2、归纳概括: 如果⊙O的半径为r ,圆心O到直线l的距离为d,那么 (1)直线l和⊙O相交 d (2)直线l和⊙O相切 d=r; (3)直线l和⊙O相离 d>r. (三)应用 例1、在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何种位置关系?为什么? (1)r=2cm; (2)r=2.4cm; (3)r=3cm. 学生自主完成,老师指导学生规范解题过程. 解:(图形略)过C点作CD⊥AB于D, 在Rt△ABC中,∠C=90°, AB= , ∵ ,∴AB・CD=AC・BC, ∴ (cm), (1)当r =2cm时 CD>r,∴圆C与AB相离; (2)当r=2.4cm时,CD=r,∴圆C与AB相切; (3)当r=3cm时,CD<r,∴圆C与AB相交. 练习P105,1、2. (四)小结: 1、知识:(指导学生归纳) 2、能力:观察、归纳、概括能力,知识迁移能力,知识应用能力. (五)作业:教材P115,1(1)、2、3. 探究活动 问题:如图,正三角形ABC的边长为6 厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB一BC一CA运动,回到点A时,⊙O随着点O的运动而移动.在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,r的取值范围及相应的切点个数. 略解:由正三角形的边长为6 厘米,可得它一边上的高为9厘米. ①∴当⊙O的半径r=9厘米时,⊙O在移动中与△ABC的边共相切三次,即切点个数为3. ②当0<r<9时,⊙O在移动中与△ABC的边共相切六次,即 1.知识结构 2.重点、难点分析 重点:的性质和判定.因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究的基础. 难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解. 3.教法建议 本节内容需要一个课时. (1)教师通过电脑演示,组织学生自主观察、分析,并引导学生把“点和圆的位置关系”研究的方法迁移过来,指导学生归纳、概括; (2)在教学中,以“形”归纳“数”, 以“数”判断“形”为主线,开展在教师组织下,以学生为主体,活动式教学. 第 1 2 页 一、选择题 1.(重庆文)圆和圆( ). A.相离 B.相交 C.外切 D.内切 考查目的:考查圆与圆的位置关系的判定. 答案:B. 解析:化圆、方程为标准方程知,它们的圆心分别为(1,0),半径为1;圆(0,2),半径为1,∴,,,∴,∴圆、圆相交. 2.(湖北)过点P(1,1)的直线,将圆形区域分两部分,使这两部分的面积之差最大,则该直线的方程为( ). A. B. C. D. 考查目的:考查圆的有关性质,以及直线与圆位置关系的综合运用. 答案:A. 解析:要使点P(1,1)的直线将圆形区域分成两部分的面积之差最大,必须使过点P的圆的弦长达到最小,此时该直线与直线OP垂直. ∵,∴所求直线的斜率为.又∵所求直线经过点P(1,1),∴所求直线的方程为,即. 3.(江西理)直线与圆C:相交于M,N两点.若,则的取值范围是( ). A. B. C. D. 考查目的:考查直线与圆的位置关系、点到直线距离公式的运用. 答案:A. 解析:圆C的圆心坐标为C(3,2),半径为2,且圆C与轴相切.当时,过圆心C作CK⊥MN,垂足为K,则,,∴,即点C(3,2)到直线的距离公式为1,∴,解得,,结合图示可知,的取值范围是. 二、填空题 4.(2012安徽)若直线与圆有公共点,则实数取值范围是 . 考查目的:考查直线与圆的位置关系及其应用. 答案:. 解析:圆的圆心C(,0)到直线的距离为,则 ,∴,∴,解得. 5.(2012江西)过直线上点P作圆的两条切线,若两条切线的夹角是,则点P的坐标是__________. 考查目的:考查直线与圆的位置关系的综合运用. 答案:. 解析:如图,由题意知.由切线性质可知.在直角三角形中,,又∵点P在直线上,∴不妨设点P的坐标为,则,即,整理得,即,∴,即点P的坐标为. 6.(2012江苏)在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值是 . 考查目的:考查圆与圆的位置关系,点到直线的距离公式. 答案:. 解析:∵圆C的方程可化为,∴圆C的圆心为(4,0),半径为1.由题意知,直线上至少存在一点A,以该点为圆心、1为半径的圆与圆C有公共点,∴存在,使得成立,即.∵即为点到直线的距离,∴,解得,∴的最大值是. 三、解答题 7.已知圆C:,是否存在斜率为1的直线,使直线被圆C截得的弦AB为直径的圆过原点,若存在,求出直线的方程;若不存在,说明理由. 考查目的:考查直线和圆的位置关系及其综合应用. 答案:或. 解析:化圆C方程为标准方程,其圆心C的坐标为(1,-2).假设存在以AB为直径的圆M,圆心M的坐标为(,).∵CM⊥,∴,∵,∴,整理得,∴①. 又∵直线的方程为,即,∴. ∵以AB为直径的圆M过原点,∴.∵,,∴②.把①代入②得,∴或. 当时,,此时直线的方程为; 当时,,此时直线的方程为. 故存在这样的直线,其方程为或. 8.(2009江苏)在平面直角坐标系中,已知圆和圆 ⑴若直线过点A(4,0),且被圆截得的弦长为,求直线的方程; ⑵设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的.弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标. 考查目的:考查直线与圆的方程、点到直线的距离公式,以及综合分析问题的能力. 答案:⑴或;⑵(,)或(,). 解析:⑴由题设易得直线的斜率存在.设直线的方程为,即.由垂径定理得,圆心到直线的距离,结合点到直线的距离公式得,化简得,解得或,∴直线的方程为或,即或. ⑵设点P坐标为,直线,的方程分别为,,即,.∵直线被圆截得的弦长与直线被圆截得的弦长相等,∴两圆半径相等.由垂径定理得,圆心到直线的距离与圆心直线的距离相等,∴ ,化简得,或.关于的方程有无穷多个解,∴,或,解得点P的坐标为(,)或(,). 直线和圆的位置关系的'性质: (1)直线l和⊙O相交,d<r (2)直线l和⊙O相切,d=r; (3)直线l和⊙O相离,d>r。 尊敬的各位评委,亲爱的各位同行,大家好!今天我的说课内容是人教版九年级上册第二十四章第二节第二课时的直线与圆的位置关系。下面我将以教什么、怎么样教、为什么这样教为思路从教材分析、学情分析、教学目标、学法教法、教学过程和板书设计六个方面对本课进行说明。 一、教材分析 教材的地位和作用。 圆在平面几何中占有重要地位,它被安排在初中数学第二十四章,属于一个提高阶段。而直线和圆的位置关系又是本章的一个中心内容。从知识体系上看:它有着承上启下的作用,既是对点与圆的位置关系的延续与提高,又是后面学习切线的性质和判定、圆和圆的位置关系及高中继续学习几何知识的基础。从数学思想方法层面上看:它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比等数学思想方法,有助于提高学生的数学思维品质。 二、学情分析 在此之前学生已经学习了点和圆的位置关系,对圆有了一定的感性和理性认识,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象。加之九年级学生好奇心强,活泼好动,注意力易分散,认知水平大都停留在表面现象,对亲身体验的事物容易激发求知的渴望,因此要想方设法,引导学生深入思考、主动探究、主动获取新知识。 三、教学目标: 根据学生已有的认知基础及本课的教材的地位、作用,结合数学课程标准我将确定如下的教学目标: (1)掌握直线和圆的三种位置关系性质及判定。 (2)通过观察、实验、合作交流等数学活动使学生了解探索问题的一般方法; (3)通过直线和圆的位置关系的探究,向学生渗透分类讨论、数形结合、类比的数学思想, 陪养学生观察、分析和概括的能力; (4)体会事物间的相互渗透,感受数学思维的严谨性,并在合作学习中体验成功的喜悦。 教学的重难点: 重点:直线和圆的三种位置关系的性质与判定。 难点:用数量法刻画直线与圆的三种位置关系。 突破难点的策略:引导学生动手动脑、操作实践,类比点和圆的位置关系的判定方法,配合几何画板直观演示来加深学生对知识的理解。 四、学法教法 教无定法,教学有法,贵在得法。根据新课改理念及学生特点,本节课主要采用“启发式”问题教学法,根据维果斯基的“最近发展区理论”,站在学生思维的最近发展区上启发诱导,用环环相扣的问题将探究活动层层深入;整堂课紧紧围绕“情景问题――学生体验――合作交流”的学习模式展开,并充分发挥几何画板、多媒体课件直观、形象的功能辅助教学,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。 五、教学过程 (1)创设情境,引出课题(3分钟) 从学生的生活经验和已有知识出发,创设情境。通过多媒体课件展示《海上日出》的朗诵视频,让学生观察并抽象出其中的几何图形(直线和圆),营造探索问题的氛围,从而引出课题(直线和圆的位置关系)。同时让学生体会到数学知识无处不在,应用数学无处不有,符合“数学教学应从生活经验出发”的新课标要求。 (2)动手操作、探求新知(20分钟) a.学生动手实验――探究位置关系得出概念 美国学者说过:听过的会忘记,看过的会记得,做过的能学会。可见实验法在教学中有着何等重要的作用。从这一思想出发,我设计了一个动手操作的环节:让学生在纸上画一条直线,把课前准备好的圆卡片,在纸上移动,再现日出的整个过程,并归纳其公共点的个数变化情况。然后提出问题:你能由此归纳出直线和圆有几种不同的位置关系吗?你是怎样区分这几种位置关系的?如何用语言描述位置关系?教师层层设问,让学生思维自然发展,教学有序的进入实质部分。由于动手操作环节的铺垫,学生很容易能够从公共点个数的变化情况对直线和圆的位置关系进行分类。通过学生演示归纳,师生共同得出有关概念。教师板书讲解内容并总结:可利用直线与圆的交点个数判断直线与圆的三种位置关系。特别强调相切中“只有一个交点”的含义。 b.讲练结合――运用定义法、引出数量法 在学习了直线和圆的位置关系后,学生自然就得到了直线和圆的位置关系的第一种判定方法:定义法,这种方法对学生而言比较直观简单,因此教材上没有相应的练习。于是我设计了一道练习题:在练习中让学生发现用定义法来判断直线和圆的位置关系的局限性,当公共点个数不好判断时又该怎么办呢?你能类比之前所学的点和圆的位置关系的判定方法加以说明吗?从而引出用数量关系刻画直线和圆的位置关系的学习。 c.类比总结――探究第二种判定方法 由点与圆的位置关系的性质与判定,类比迁移到直线与圆的位置关系,学生较容易想到画图、测量等实验方法,小组交流合作,教师适时指导,再利用几何画板重复演示得出结论: ①d>r,直线L和⊙O相离; ②d=r,直线L和⊙O相切; ③d<r,直线L和⊙O相交,也就是用圆心到直线的距离d与半径r的大小关系来判定直线和圆三种位置关系,并强调:既是性质也是判定。 在动手操作,探索新知的过程中,让学生参与到定义的形成与给出过程中,在练习中发现定义法的局限性,从而引出对数量法的学习,让学生类比点和圆的位置关系的判定,验证直线和圆的位置关系,更加直接而自然,有效的突破教学难点,也让学生感受到所学知识间的相互联系。 (3)巩固练习,提高能力(10分钟) 为得到及时的反馈情况,我设计了如下的练习,而这个时段的学生因疲劳,注意力易分散,我抓住学生的好胜心理,首先设计了一道填空题:看谁抢得快 1、(P96练习)已知圆的直径为13cm,设直线和圆心的距离为d: 1)若d=4.5cm,则直线和圆 ,直线和圆有____个公共点; 2)若d=6.5cm,则直线和圆______,直线和圆有____个公共点; 3)若d=8cm,则直线和圆______,直线和圆有____个公共点。 这道题同时运用了数量法和定义法的判定,解题关键是要引导学生找出d与r并进行比较,从中体现数学中的转化思想。 2、Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,判断以点C为圆心,下列r为半径的⊙C与AB的位置关系:(1)r=2cm;(2)r=2.4cm;(3)r=3cm。(P101习题24.2第2题) 3、在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆 (1)当圆C与线段AB相交时,r; (2)当圆C与线段AB相切时,r; (3)当圆C与线段AB相离时,r; 解题关键是要引导学生找出这两个问题的不同与联系,再进行求解。通过这两个题可以培养学生解决变式问题的能力。教师引导学生完成,加强个别指导。 (本环节的练习难度层层加大,其目的是让学生加强对新知的理解和应用,培养学生解决问题的能力;基础题目和变式题目的结合既面向全体学生,也考虑到了学有余力的学生的学习,体现了因材施教的教学原则。) (4)课堂小结构建体系(5分钟) 本节课你有哪些收获?你还有哪些疑惑? (通过提问方式进行小结,交流收获与不足,让学生养成学习知识―总结―再学习的良好学习习惯。教师再总结:这节课我们学习了三种位置关系、两种判定方法、三种思想,有利于帮助学生理清知识脉络,巩固学习效果。3、2、3) 难点: 用数量法刻画 直线与圆的三种位置关系。 突破难点的策略: 引导学生动手动脑、操作实践 , 类比点和圆的位置关系的判定方法,配合几何画板直观演示 来 加深学生对知识的理解。 四、学法教法 教无定法,教学有法,贵在得法。根据新课改理念及学生特点,本节课 主要 采用 “启发式”问题教学法 , 根据 维果斯基 的“ 最近发展区理论 ”, 站在学生思维的最近发展区上启发诱导,用环环相扣的问题将探究活动层层深入 ; 整堂课紧紧围绕 “情景问题——学生体验——合作交流”的学习模式 展开 ,并充分发挥 几何画板、多媒体课件直观、形象的功能辅助教学 ,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。 五、教学过程 (1) 创设情境,引出课题(3分钟) 从学生的生活经验和已有知识出发,创设情境 。 通过多媒体课件展示《海上日出》的朗诵视频,让学生观察并抽象出其中的几何图形(直线和圆) , 营造探索问题的氛围 , 从而引出课题(直线和圆的.位置关系) 。 同时让学生体会到数学知识无处不在,应用数学无处不有 , 符合“数学教学应从生活经验出发”的新课标要求。 (2) 动手操作 探求新知(20分钟) a. 学生动手实验——探究位置关系 得出概念 美国学者说过:听过的会忘记,看过的会记得,做过的能学会。可见实验法在教学中有着何等重要的作用。从这一思想出发,我设计了一个动手操作的环节:让学生在纸上画一条直线, 把课前准备好的圆卡片,在纸上移动,再现日出的整个过程,并归纳其公共点的个数变化情况。 然后提出问题: 你能 由此 归纳出直线和圆有几种不同的位置关系吗? 你是怎样区分这几种位置关系的?如何用语言描述位置关系? 教师层层设问,让学生思维自然发展,教学有序的进入实质部分。 由于动手操作环节的铺垫, 学生很容易能够从公共点个数的变化 情况对 直线和圆的位置关系 进行分类 。通过学生演示归纳,师生共同 得出 有关概念。教师板书讲解内容并总结:可利用直线与圆的交点个数判断直线与圆的三种位置关系。特别强调 相切中 “只有一个交点”的含义。 b. 讲练结合—— 运用 定义法、引出数量法 在学习了直线和圆的位置关系后,学生自然就得到了直线和圆的位置关系的第一种判定方法:定义法 ,这种方法对学生而言比较直观简单,因此教材上没有相应的练习。于是我设计了一道练习题:在练习中 让学生发现用定义法来判断直线和圆的位置关系的局限性, 当公共点个数不好判断时又该怎么办呢? 你能类比之前所学的点和圆的位置关系的判定方法加以说明吗? 从而引出用数量关系刻画直线和圆的位置关系的学习。 c. 类比总结——探究第二种判定方法 由点与圆的位置关系的性质与判定,类比迁移到直线与圆的位置关系,学生较容易想到画图、测量等实验方法,小组交流合作,教师适时指导 , 再利用几何画板 重复演示 得出结论:①d>r,直线L和⊙O相离;②d=r,直线L和⊙O相切;③d<r,直线L和⊙O相交,也就是用圆心到直线的距离d与半径r的大小关系来判定直线和圆三种位置关系, 并强调:既是性质也是判定 。 在动手操作, 探索新知 的过程中,让学生参与到定义的形成与给出过程中,在练习中发现定义法的局限性,从而引出对数量法的学习,让学生类比点和圆的位置关系的判定, 验证 直线和圆的位置关系,更加直接而自然 ,有效的突破教学难点 ,也让学生感受到所学知识间的相互联系。 (3) 巩固练习,提高能力(10分钟) 为 得到及时的反馈情况, 我设计了如下的练习,而这个时段的学生 因 疲劳,注意力 易 分散,我抓住学生的好胜心理,首先设计了 一 道填空题:看谁抢得快 1、( P96练习) 已知圆的直径为13cm,设直线和圆心的距离为d : 1)若d=4.5cm ,则直线和圆 , 直线和圆有____个公共点; 2)若d=6.5cm ,则直线和圆______, 直线和圆有____个公共点; 3)若d= 8 cm ,则直线和圆______, 直线和圆有____个公共点。 这 道 题 同时运用了数量法和定义法的判定 ,解题关键是 要引导学生 找出d与r并进行比较,从中体现数学中的转化思想。 2 、Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm, 判断以点 C为圆心,下列r为半径的 ⊙ C与AB的位置关系 : (1)r =2cm ; (2)r =2.4cm ; (3)r =3cm 。 (P101习题24.2第2题) 3 、 在Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm,以C为圆心,r为半径的圆 (1)当圆C与线段AB相交时,r ; (2)当圆C与线段AB相切时,r ; (3)当圆C与线段AB相离时,r ; 解题关键是要引导学生 找出这两个问题的不同与联系,再进行求解。通过这两个题可以培养学生解决变式问题的能力。 教师引导学生完成,加强个别指导。 (本环节的练习难度层层加大,其目的是让学生加强对新知的理解和应用,培养学生解决问题的能力;基础题目和变式题目的结合既面向全体学生,也考虑到了学有余力的学生的学习,体现了因材施教的教学原则。) (4) 课堂小结 构建体系(5分钟) 本节课你有哪些收获? 你还有哪些疑惑 ? (通过提问方式进行小结,交流收获与不足,让学生养成学习—总结—再学习的良好学习习惯。教师再总结:这节课我们学习了三种位置关系、两种判定方法、三种思想,有利于帮助学生理清知识脉络,巩固学习效果。3、2、3) (5) 作业布置 课后延伸 (2分钟) 必做题: 1.阅读教材100-101 2.P112练习2 选做题:如图,已知∠AOB=β(β为锐角) ,M为OB上一点,且 OM=5cm,以M为圆心、以 2.5为半径作圆 (1)⊙M与直线OA的位置关系由 大小决定; (2)若⊙M与直线OA相切,则β= ; (3)若⊙M与直线OA相交,则β的取值范围是 。 六、板书设计: 尊敬的各位评委,亲爱的各位同行,大家好!今天我 的说课 内容是人教版九年级上册第二十四章第二节第二课时的直线与圆的位置关系。下面我将以教什么、怎么样教、为什么这样教为思路从教材分析、学情分析、教学目标、学法教法、教学过程和板书设计六个方面对本课进行说明。 一、教材分析 教材的地位和作用。 圆在平面几何中占有重要地位, 它被安排在初中数学第二十四章, 属于 一个提高阶段 。而 直线和圆的位置关系 又是本章的一个中心内容。 从知识体系上看 :它有 着承上启下的作用 , 既是 对 点与圆的位置关系的延续与提高,又是 后面 学习切线的性质和判定、圆和圆的位置关系 及高中继续学习几何知识 的基础 。 从数学思想方法层面上看 : 它运用运动变化的观点揭示了知识的发生过程 以及相关知识 间的内在联系,渗透了数形结合、分类讨论、类比等数学思想方法,有助于提高学生的数学思维品质 。 二、学情分析 在此之前学生已经 学习了点和圆的位置关系 , 对圆有了一定 的 感性和理性认识 ,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象。加之 九年级学生好奇心强,活泼好动 , 注意力易分散 , 认知水平大都停留在表面现象, 对亲身体验的事物容易激发求知的渴望 , 因此要想方设法,引导学生深入思考、主动探究、主动获取新知识。 三、教学目标: 根据学生已有的认知基础及本课的教材的地位、作用 ,结合数学课程标准 我将确定如下的 教学 目标: (1) 掌握直线和圆的三种位置关系 性质及判定。 (2) 通过观察、实验、合作 交流 等数学活动使学生了解探索问题的一般方法; (3) 通过直线和圆的位置关系的探究,向学生渗透分类讨论、数形结合 、类比 的数学思想 , 陪养学生观察、分析和概括的能力; ( 4 ) 体会事物间的相互渗透 , 感受数学思维的严谨性,并在合作学习中 体验 成功的 喜悦 。 教 学 的重难点 : 教学目标: 1.使学生理解直线和圆的相交、相切、相离的概念。 2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。 3.培养学生把实际问题转化为数学问题的能力及分类和化归的能力。 重点难点: 1.重点:直线与圆的三种位置关系的概念。 2.难点:运用直线与圆的位置关系的性质及判定解决相关的问题。 教学过程: 一.复习引入 1.提问:复习点和圆的三种位置关系。 (目的:让学生将点和圆的位置关系与直线和圆的位置关系进行类比,以便更好的掌握直线和圆的位置关系) 2.由日出升起过程中的三个特殊位置引入直线与圆的位置关系问题。 (目的:让学生感知直线和圆的位置关系,并培养学生把实际问题抽象成数学模型的能力) 二.定义、性质和判定 1.结合关于日出的三幅图形,通过学生讨论,给出直线与圆的三种位置关系的定义。 (1)线和圆有两个公共点时,叫做直线和圆相交。这时直线叫做圆的割线。 (2)直线和圆有唯一的公点时,叫做直线和圆相切。这时直线叫做圆的切线。唯一的公共点叫做切点。 (3)直线和圆没有公共点时,叫做直线和圆相离。 如果⊙O半径为r,圆心O到直线l的距离为d,那么: (1)线l与⊙O相交 d<r (2)直线l与⊙O相切d=r (3)直线l与⊙O相离d>r 三.例题分析: 例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C为圆心,r为半径。 ①当r= 时,圆与AB相切。 ②当r=2cm时,圆与AB有怎样的位置关系,为什么? ③当r=3cm时,圆与AB又是怎样的位置关系,为什么? ④思考:当r满足什么条件时圆与斜边AB有一个交点? 四.小结(学生完成) 五、随堂练习: (1)直线和圆有种位置关系,是用直线和圆的个数来定义的;这也是判断直线和圆的位置关系的重要方法。 (2)已知⊙O的直径为13cm,直线L与圆心O的距离为d。 ①当d=5cm时,直线L与圆的位置关系是; ②当d=13cm时,直线L与圆的位置关系是; ③当d=6.5cm时,直线L与圆的'位置关系是; (3)⊙O的半径r=3cm,点O到直线L的距离为d,若直线L 与⊙O至少有一个公共点,则d应满足的条件是() (A)d=3 (B)d≤3 (C)d<3 (D)d>3 【高中数学直线、圆的位置关系的测试题及答案】相关文章: 6.测试题及答案 10.爱情测试题及答案篇3:直线和圆的位置关系
篇4:《4.2 直线、圆的位置关系2》测试题
篇5:直线和圆的位置关系知识点
篇6:直线和圆的位置关系说课稿
篇7:直线和圆的位置关系说课稿
篇8:直线和圆的位置关系说课稿
篇9:第六册直线和圆的位置关系
篇10:第六册直线和圆的位置关系
篇11:第六册直线和圆的位置关系






文档为doc格式