数学教案-三角形全等的判定2
“p90000”通过精心收集,向本站投稿了17篇数学教案-三角形全等的判定2,下面是小编精心整理后的数学教案-三角形全等的判定2,希望能够帮助到大家。
篇1:数学教案-三角形全等的判定2
课题:全等三角形的判定(二)
教学目标 :
1、知识目标:
(1)熟记角边角公理、角角边推论的内容;
(2)能应用角边角公理及其推论证明两个三角形全等.
2、能力目标:
(1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力;
(2)通过观察几何图形,培养学生的识图能力.
3、情感目标:
(1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯 ;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.
教学重点:学会运用角边角公理及其推论证明两个三角形全等.
教学难点 :SAS公理、ASA公理和AAS推论的综合运用.
教学用具:直尺、微机
教学方法:探究类比法
教学过程 :
1、新课引入
投影显示
这样几个问题让学生议论后,他们的答案或许只是一种感觉“行或不行”.于是教师要引导学生,抓住问题的本质:“分别带去了三角形的几个元素?”学生通过观察比较就会容易地得出答案 .
2、公理的获得
问:恢复后的三角形和原三角形全等,那全等的条件是不是就是带去的元素呢?
让学生粗略地概括出角边角的公理.然后和学生一起做实验,根据三角形全等定义对公理进行验证.
公理:有两角和它们的夹边对应相等的.两个三角形全等.
应用格式: (略)
强调:
(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)
所以找条件归结成两句话:已知中找,图形中看.
(3)、公理与前面公理1的区别与联系.
以上几点可运用类比公理1的模式进行学习.
3、推论的获得
改变公理2的条件:有两角和其中一角的对边对应相等这样两个三角形是否全等呢?
学生分析讨论,教师巡视,适当参与讨论.
4、公理的应用
(1)讲解例1.学生分析完成,教师注重完成后的总结.
注意区别“对应边和对边”
解:(略)
(2)讲解例2
投影例2 :
学生思考、分析,适当点拨,找学生代表口述证明思路
让学生在练习本上定出证明,一名学生板书.教师强调
证明格式:用大括号写出公理的三个条件,最后写出
结论.
(3)讲解例3(投影)
例3已知:如图4△ABC≌△A1B1C1,AD、A1D1分别是△ABC和△A1B1C1的高.
求证:AD=A1D1
证明:(略)
学生分析思路,写出证明过程.
(投影展示学生的作业 ,教师点评)
(4)讲解例4(投影)
例4 如图5,已知:AC∥BD,EA、EB分别平分∠CAB、∠DBA而交CD于E.
求证:AB=AC+BD
证明:(略)
学生口述过程.投影展示证明过程.
学生思考、分析、讨论,教师巡视,适当参与讨论.
师生共同讨论后,让学生口述证明思路.
教师强调证明线段之间关系的常见方法:截长法或补短法.
5、课堂小结:
(1)判定三角形全等的方法:SAS、ASA、AAS
(2)三种方法的综合运用
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构.
6、布置作业
a书面作业 P68#1、2、3
b上交作业 P71B组2
思考题:
如图,已知:AD是A的平分线,AB<AC,
求证:AC-AB>OC-OB
板书设计 :
探究活动
要测量河两岸相对的两点A、B的距离,可以在AB的垂线BF上取两点C、D,
使CD=BC,再作BF的垂线DE,使A、C、E在一条直线上,这时测得DE的长就是AB的长,如图,写出已知、求证、并且进行证明.
篇2: 数学教案三角形全等的判定
教学目标:
1、知识目标:
(1)掌握已知三边画三角形的方法;
(2)掌握边边边公理,能用边边边公理证明两个三角形全等;
(3)会添加较明显的辅助线.
2、能力目标:
(1)通过尺规作图使学生得到技能的训练;
(2)通过公理的初步应用,初步培养学生的逻辑推理能力.
3、情感目标:
(1)在公理的形成过程中渗透:实验、观察、归纳;
(2)通过变式训练,培养学生“举一反三”的学习习惯.
教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。
教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。
教学用具:直尺,微机
教学方法:自学辅导
教学过程:
1、新课引入
投影显示
问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?
这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素DD三条边。
2、公理的获得
问:通过上面问题的分析,满足什么条件的两个三角形全等?
让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)
公理:有三边对应相等的两个三角形全等。
应用格式: (略)
强调说明:
(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)
(3)、此公理与前面学过的公理区别与联系
(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
(5)说明AAA与SSA不能判定三角形全等。
3、公理的应用
(1) 讲解例1。学生分析完成,教师注重完成后的点评。
例1 如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架
求证:AD⊥BC
分析:(设问程序)
(1)要证AD⊥BC只要证什么?
(2)要证∠1= 只要证什么?
(3)要证∠1=∠2只要证什么?
(4)△ABD和△ACD全等的条件具备吗?依据是什么?
证明:(略)
(2)讲解例2(投影例2 )
例2已知:如图AB=DC,AD=BC
求证:∠A=∠C
(1)学生思考、分析、讨论,教师巡视,适当参与讨论。
(2)找学生代表口述证明思路。
思路1:连接BD(如图)
证△ABD≌△CDB(SSS)先得∠A=∠C
思路2:连接AC证△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD
(3)教师共同讨论后,说明思路1较优,让学生用思路1在练习本上写出证明,一名学生板书,教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。
例3如图,已知AB=AC,DB=DC
(1)若E、F、G、H分别是各边的中点,求证:EH=FG
(2)若AD、BC连接交于点P,问AD、BC有何关系?证明你的结论。
学生思考、分析,适当点拨,找学生代表口述证明思路
让学生在练习本上写出证明,然后选择投影显示。
证明:(略)
说明:证直线垂直可证两直线夹角等于 ,而由两邻补角相等证两直线的夹角等于 ,又是很重要的一种方法。
例4 如图,已知:△ABC中,BC=2AB,AD、AE分别是△ABC、△ABD的中线,
求证:AC=2AE.
证明:(略)
学生口述证明思路,教师强调说明:“中线”条件下的常规作辅助线法。
5、课堂小结:
(1)判定三角形全等的方法:3个公理1个推论(SAS、ASA、AAS、SSS)
在这些方法中,每一个都需要3个条件,3个条件中都至少包含条边。
(2)三种方法的综合运用
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。
6、布置作业:
a、书面作业P70#11、12
b、上交作业P70#14 P71B组3
篇3: 数学教案三角形全等的判定
〖教学目标〗
◆1、探索两个直角三角形全等的条件.
◆2、掌握两个直角三角形全等的条件(hl).
◆3、了解角平分线的性质:角的`内部,到角两边距离相等的点,在角平分线上,及其简单应用.
〖教学重点与难点〗
◆教学重点:直角三角形全等的判定的方法“hl”.
◆教学难点:直角三角形判定方法的说理过程.
〖教学过程〗
一、创设情境,引入新课:
教师演示一等腰三角形,沿底边上高裁剪,让同学们观察两个三角形是否全等?
二、合作学习:
(1) 回顾:判定两个直角三角形全等已经有哪些方法?
(2) 有斜边和一条直角边对应相等的两个三角形全等吗?如何会全等,教师可启发引导学生一起利用画图,叠合方法探索说明两个直角三角形全等的判定方法,可充分让学生想象。不限定方法。
教师归纳出方法后,要学生注意两点:<1>“hl”是仅适用于rt△的特殊方法。
(3) 教师引导、学生练习p47
三、应用新知,巩固概念
例题讲评
例:已知:p是∠aob内一点,pd⊥oa,pe ⊥ob,d,e分别是垂足,且pd=pe,则点p在∠aob的平分线上,请说明理由。
分析:引导猜想可能存在的rt△;构造两个全等的rt△;要说明p在∠aob的平分线上,只要说明∠dop=∠eop
小结:角平分线的又一个性质:(判定一个点是否在一个角的平分线上的方法)
角的内部,到角的两边距离相等的点,在这个角的平分线上。
四、学生练习,巩固提高
练一练:p48 1. 2. p49 3
五、小结回顾,反思提高
(1)本节内容学的是什么?你认为学习本节内容应注意些什么?
(2)学习本节内容你有哪些体会?
(3)你认为有没有其他的方法可以证明直角三角形全等(勾股定理)
(4)你现在知道的有关角平分线的知识有哪些?
六、布置作业
篇4: 数学教案三角形全等的判定
如图(1)A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,
若AB=CD求证:BD平分EF。若将△DEC的边EC沿AC方向移动变为如图(2)时,其余条件不变,上述结论是否成立,请说明理由。
篇5: 数学教案三角形全等的判定
教学目标:
1、知识目标:
(1)熟记边角边公理的内容;
(2)能应用边角边公理证明两个三角形全等.
2、能力目标:
(1) 通过“边角边”公理的运用,提高学生的逻辑思维能力;
(2) 通过观察几何图形,培养学生的识图能力.
3、情感目标:
(1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;
(2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.
教学重点:学会运用公理证明两个三角形全等.
教学难点:在较复杂的图形中,找出证明两个三角形全等的条件.
教学用具:直尺、微机
教学方法:自学辅导式
教学过程:
1、公理的发现
(1)画图:(投影显示)
教师点拨,学生边学边画图.
(2)实验
让学生把所画的 剪下,放在原三角形上,发现什么情况?(两个三角形重合)
这里一定要让学生动手操作.
(3)公理
启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)
作用:是证明两个三角形全等的依据之一.
应用格式:
强调:
1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.
2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看.
3、平面几何中常要证明角相等和线段相等,其证明常用方法:
证角相等DD对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地.
证线段相等的方法DD中点定义;全等三角形的对应边相等;等式性质.
2、公理的应用
(1)讲解例1.学生分析完成,教师注重完成后的总结.
分析:(设问程序)
“SAS”的三个条件是什么?
已知条件给出了几个?
由图形可以得到几个条件?
解:(略)
(2)讲解例2
投影例2:
例2如图2,AE=CF,AD∥BC,AD=CB,
求证:
学生思考、分析,适当点拨,找学生代表口述证明思路
让学生在练习本上定出证明,一名学生板书.教师强调
证明格式:用大括号写出公理的三个条件,最后写出
结论.(3)讲解例3(投影)
证明:(略)
学生分析思路,写出证明过程.
(投影展示学生的作业,教师点评)
(4)讲解例4(投影)
证明:(略)
学生口述过程.投影展示证明过程.
教师强调证明线段相等的几种常见方法.
(5)讲解例5(投影)
证明:(略)
学生思考、分析、讨论,教师巡视,适当参与讨论.
师生共同讨论后,让学生口述证明思路.
教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明.
3、课堂小结:
(1)判定三角形全等的方法:SAS
(2)公理应用的书写格式
(3)证明线段、角相等常见的方法有哪些?
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构.
6、布置作业
a书面作业P56#6、7
b上交作业P57B组1
篇6:三角形全等的判定2
课题:全等三角形的判定(二)
教学目标:
1、知识目标:
(1)熟记角边角公理、角角边推论的内容;
(2)能应用角边角公理及其推论证明两个三角形全等.
2、能力目标:
(1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力;
(2)通过观察几何图形,培养学生的识图能力.
3、情感目标:
(1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯 ;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.
教学重点:学会运用角边角公理及其推论证明两个三角形全等.
教学难点:SAS公理、ASA公理和AAS推论的综合运用.
教学用具:直尺、微机
教学方法:探究类比法
教学过程:
1、新课引入
投影显示
这样几个问题让学生议论后,他们的答案或许只是一种感觉“行或不行”.于是教师要引导学生,抓住问题的本质:“分别带去了三角形的几个元素?”学生通过观察比较就会容易地得出答案 .
2、公理的获得
问:恢复后的三角形和原三角形全等,那全等的条件是不是就是带去的元素呢?
让学生粗略地概括出角边角的公理.然后和学生一起做实验,根据三角形全等定义对公理进行验证.
公理:有两角和它们的夹边对应相等的两个三角形全等.
应用格式: (略)
强调:
(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)
所以找条件归结成两句话:已知中找,图形中看.
(3)、公理与前面公理1的区别与联系.
以上几点可运用类比公理1的模式进行学习.
3、推论的获得
改变公理2的条件:有两角和其中一角的对边对应相等这样两个三角形是否全等呢?
学生分析讨论,教师巡视,适当参与讨论.
4、公理的应用
(1)讲解例1.学生分析完成,教师注重完成后的总结.
注意区别“对应边和对边”
解:(略)
(2)讲解例2
投影例2 :
学生思考、分析,适当点拨,找学生代表口述证明思路
让学生在练习本上定出证明,一名学生板书.教师强调
证明格式:用大括号写出公理的三个条件,最后写出
结论.
第 1 2 页
篇7:全等三角形判定2课件
全等三角形判定2课件
教学目标:
1、知识目标:
(1)熟记角边角公理、角角边推论的内容;
(2)能应用角边角公理及其推论证明两个三角形全等。
2、能力目标:
(1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力;
(2)通过观察几何图形,培养学生的识图能力。
3、情感目标:
(1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯 ;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。
教学重点:学会运用角边角公理及其推论证明两个三角形全等。
教学难点:sas公理、asa公理和aas推论的综合运用。
教学用具:直尺、微机
教学方法:探究类比法
教学过程:
1、新课引入
投影显示
这样几个问题让学生议论后,他们的答案或许只是一种感觉“行或不行”。于是教师要引导学生,抓住问题的本质:“分别带去了三角形的几个元素?”学生通过观察比较就会容易地得出答案 。
2、公理的获得
问:恢复后的三角形和原三角形全等,那全等的条件是不是就是带去的元素呢?
让学生粗略地概括出角边角的公理。然后和学生一起做实验,根据三角形全等定义对公理进行验证。
公理:有两角和它们的'夹边对应相等的两个三角形全等。
应用格式:
(略)
强调:
(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)
所以找条件归结成两句话:已知中找,图形中看。
(3)、公理与前面公理1的区别与联系。
以上几点可运用类比公理1的模式进行学习。
3、推论的获得
改变公理2的条件:有两角和其中一角的对边对应相等这样两个三角形是否全等呢?
学生分析讨论,教师巡视,适当参与讨论。
4、公理的应用
(1)讲解例1。学生分析完成,教师注重完成后的总结。
篇8:三角形全等的判定2教学设计
三角形全等的判定2教学设计
课题:全等三角形的判定(二)
教学目标:
1、知识目标:
(1)熟记角边角公理、角角边推论的内容;
(2)能应用角边角公理及其推论证明两个三角形全等.
2、能力目标:
(1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力;
(2)通过观察几何图形,培养学生的识图能力.
3、情感目标:
(1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯 ;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.
教学重点:学会运用角边角公理及其推论证明两个三角形全等.
教学难点:SAS公理、ASA公理和AAS推论的综合运用.
教学用具:直尺、微机
教学方法:探究类比法
教学过程:
1、新课引入
投影显示
这样几个问题让学生议论后,他们的答案或许只是一种感觉“行或不行”.于是教师要引导学生,抓住问题的本质:“分别带去了三角形的几个元素?”学生通过观察比较就会容易地得出答案 .
2、公理的获得
问:恢复后的'三角形和原三角形全等,那全等的条件是不是就是带去的元素呢?
让学生粗略地概括出角边角的公理.然后和学生一起做实验,根据三角形全等定义对公理进行验证.
公理:有两角和它们的夹边对应相等的两个三角形全等.
应用格式: (略)
强调:
(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)
所以找条件归结成两句话:已知中找,图形中看.
(3)、公理与前面公理1的区别与联系.
以上几点可运用类比公理1的模式进行学习.
3、推论的获得
改变公理2的条件:有两角和其中一角的对边对应相等这样两个三角形是否全等呢?
学生分析讨论,教师巡视,适当参与讨论.
4、公理的应用
(1)讲解例1.学生分析完成,教师注重完成后的总结.
注意区别“对应边和对边”
解:(略)
(2)讲解例2
投影例2 :
学生思考、分析,适当点拨,找学生代表口述证明思路
让学生在练习本上定出证明,一名学生板书.教师强调
证明格式:用大括号写出公理的三个条件,最后写出
结论.
(3)讲解例3(投影)
例3已知:如图4△ABC≌△A1B1C1,AD、A1D1分别是△ABC和△A1B1C1的高.
求证:AD=A1D1
证明:(略)
学生分析思路,写出证明过程.
(投影展示学生的作业,教师点评)
(4)讲解例4(投影)
例4 如图5,已知:AC∥BD,EA、EB分别平分∠CAB、∠DBA而交CD于E.
求证:AB=AC+BD
证明:(略)
学生口述过程.投影展示证明过程.
学生思考、分析、讨论,教师巡视,适当参与讨论.
师生共同讨论后,让学生口述证明思路.
教师强调证明线段之间关系的常见方法:截长法或补短法.
5、课堂小结:
(1)判定三角形全等的方法:SAS、ASA、AAS
(2)三种方法的综合运用
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构.
6、布置作业
a书面作业P68#1、2、3
b上交作业P71B组2
思考题:
如图,已知:AD是A的平分线,AB<AC,
求证:AC-AB>OC-OB
篇9:初中2年级数学教案全等三角形
知识与技能目标:
掌握怎样的两个图形是全等形,了解全等形,了解全等三角形的的概念及表示方法。。掌握全等三角形的性质。体会图形的变换思想,逐步培养动态研究几何意识。初步会用全等三角形的性质进行一些简单的计算。
过程与方法目标:
围绕全等三角形的对应元素这一中心,。设计一系列问题,给出三组组合图形,让学生找出它的对应顶点、对应边、对应角,进面引入本节问题的主题,强化了本课的中心问题-----全等三角形的性质,经历理解性质的过程。,体会图形的变换思想,逐步培养学生动态研究几何图形的意识。
情感与态度目标:
学生在富有趣味的活动中进行全等三角形的学习,提供学生发现规律的空间,激发学生学习兴趣。
篇10:初中2年级数学教案全等三角形
一、创设情境,引入新课
1、问题:各组图形的形状与大小有什么特点?
一般学生都能发现这两个图形是完全重合的。
归纳:能够完全重合的两个图形叫做全等形。
2.学生动手操作
⑴在纸板上任意画一个三角形ABC,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。
⑵问题:如何在另一张纸板再剪一个三角形DEF,使它与△ABC全等?
3.板书课题:全等三角形
定义:能够完全重合的两个三角形叫做全等三角形
“全等”用“≌”表示,读着“全等于”
如图中的两个三角形全等,记作:△ABC≌△DEF
二、探究
全等三角形中的对应元素
1. 问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?
2.学生讨论、交流、归纳得出:
⑴.两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。
⑵.表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。
全等三角形的性质
1.观察与思考:
寻找甲图中两三角形的对应元素,它们的对应边
有什么关系?对应角呢?
全等三角形的性质:
全等三角形的对应边相等.
全等三角形的对应角相等.
2.用几何语言表示全等三角形的性质
如图:∵∆ABC≌ ∆DEF
∴AB=DE,AC=DF,BC=EF(全等三角形对应边相等)
∠A=∠D,∠B=∠E,∠C=∠F(全等三角形对应角相等)
探求全等三角形对应元素的找法
1.动画(几何画板)演示
(1)图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?
归纳:两个全等的三角形经过一定的转换可以重合.一般是平移、翻折、旋转的方法.
(2)说出每个图中各对全等三角形的对应边、对应角
归纳:从运动角度可以很轻松解决找对应元素的问题.可见图形转换的奇妙.
2. 动画(几何画板)演示
图中的两个三角形通过怎样的变换才能重合?用式子表示全等关系.并说出其中的对应关系.
3. 归纳:找对应元素的常用方法有两种:
(1)从运动角度看
a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素.
b.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.
c.平移法:沿某一方向推移使两三角形重合来找对应元素.
(2)根据位置元素来推理
a.有公共边的,公共边是对应边;
b.有公共角的,公共角是对应角;
c.有对顶角的,对顶角是对应角;
d.两个全等三角形最大的边是对应边,最小的边也是对应边;
e.两个全等三角形最大的角是对应角,最小的角也是对应角;
三、课堂练习
练习1.△ABD≌△ACE,若∠B=25°, BD=6㎝,AD=4㎝,
你能得出△ACE中哪些角的大小,哪些边的长度吗?为什么 ?
练习2.△ABC≌△FED
⑴写出图中相等的线段,相等的角;
⑵图中线段除相等外,还有什么关系吗?请与同伴交
流并写出来.
四、课堂小结
通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,探索了找两个全等三角形对应元素的方法,并且利用性质解决简单的问题。
找对应元素的常用方法有三种:
(一)从运动角度看
1.平移法:沿某一方向推移使两三角形重合来找对应元素.
2.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.
3.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.
(二)根据位置元素来推理
1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.
2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.
(三)根据经验来判断
1. 大边对应大边,大角对应大角
2. 公共边是对应边,公共角是对应角
五、课堂作业
必做题:课本第38页1、2、选做题:第3题
六、板书设计 12.1 全等三角形
一、概念 二、全等三角形的性质 三、性质应用 例题
四、小结:找对应元素的方法
运动法:翻折、旋转、平移.
位置法:对应角→对应边,对应边→对应角.
经验:大边→大边,大角→大角.公共边是对应边,公共角是对应角。
篇11:初中2年级数学教案全等三角形
教学重点:全等三角形的性质
教学难点:寻找全等三角形中的对应元素
教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。
学情分析:这节课是学了三角形的基本知识后的一节课、只要实际操作不出错、学生一定能学好。
课前准备 :全等三角形纸片
篇12:全等三角形判定课件
教学目标:
1、知识目标:
(1)知道什么是全等形、全等三角形及全等三角形的对应元素;
(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;
(3)能熟练找出两个全等三角形的对应角、对应边。
2、能力目标:
(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;
(2)通过找出全等三角形的对应元素,培养学生的识图能力。
3、情感目标:
(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的.创造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角
教学用具:直尺、微机
教学方法:自学辅导式
教学过程:
1、全等形及全等三角形概念的引入
(1)动画(几何画板)显示:
问题:你能发现这两个三角形有什么美妙的关系吗?
一般学生都能发现这两个三角形是完全重合的。
(2)学生自己动手
画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。
(3)获取概念
让学生用自己的语言叙述:
全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发现:
(1)电脑动画显示:
问题:对应边、对应角有何关系?
由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。
3、找对应边、对应角以及全等三角形性质的应用
(1) 投影显示题目:
D、AD∥BC,且AD=BC
分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来
说明:根据位置元素来找:有相等元素,其即为对应元素:
然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
说明:利用“运动法”来找
翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素
旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素
平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素
求证:AE∥CF
分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等
∴AE∥CF
说明:解此题的关键是找准对应角,可以用平移法。
分析:AB不是全等三角形的对应边,
但它通过对应边转化为AB=CD,而使AB+CD=AD-BC
可利用已知的AD与BC求得。
说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。
(2)题目的解决
这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:
投影显示:
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
(3)有公共边的,公共边一定是对应边;
(4)有公共角的,角一定是对应角;
(5)有对顶角的,对顶角一定是对应角;
两个全等三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)
4、课堂独立练习,巩固提高
此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。
5、小结:
(1)如何找全等三角形的对应边、对应角(基本方法)
(2)全等三角形的性质
(3)性质的应用
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。
6、布置作业
a.书面作业P55#2、3、4
b.上交作业(中考题)
思考题:
板书设计:
探究活动
(2)证明 :AF∥DE
篇13:三角形全等的判定1
课题:全等三角形的判定(一)
教学目标:
1、知识目标:
(1)熟记边角边公理的内容;
(2)能应用边角边公理证明两个三角形全等.
2、能力目标:
(1) 通过“边角边”公理的运用,提高学生的逻辑思维能力;
(2) 通过观察几何图形,培养学生的识图能力.
3、情感目标:
(1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;
(2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.
教学重点:学会运用公理证明两个三角形全等.
教学难点:在较复杂的图形中,找出证明两个三角形全等的条件.
教学用具:直尺、微机
教学方法:自学辅导式
教学过程:
1、公理的发现
(1)画图:(投影显示)
教师点拨,学生边学边画图.
(2)实验
让学生把所画的 剪下,放在原三角形上,发现什么情况?(两个三角形重合)
这里一定要让学生动手操作.
(3)公理
启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)
作用:是证明两个三角形全等的依据之一.
应用格式:
强调:
1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.
2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看.
3、平面几何中常要证明角相等和线段相等,其证明常用方法:
证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地.
证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质.
2、公理的应用
(1)讲解例1.学生分析完成,教师注重完成后的总结.
分析:(设问程序)
“SAS”的三个条件是什么?
已知条件给出了几个?
由图形可以得到几个条件?
解:(略)
(2)讲解例2
投影例2:
例2如图2,AE=CF,AD∥BC,AD=CB,
求证:
学生思考、分析,适当点拨,找学生代表口述证明思路
让学生在练习本上定出证明,一名学生板书.教师强调
证明格式:用大括号写出公理的三个条件,最后写出
结论.
第 1 2 页
篇14:全等三角形判定教学反思
[授课流程反思]
本节课的设计先让学生动手操作以便使学生对三角形的内角和有一定感性认识,然后再根据拼图说出结论成立的理由,由浅入深,循序渐进,学生易接受.教师引导学生对三角形的三个内角进行拼合,可以出现不同的方法,这样能让学生充分发挥白己的主动性和创新能力。
[讲授效果反思]
组织学生进行探索或分组讨论,经过讨论找到不同的解决方法.在解决问题的过程中,关注学生在推理过程中语言使用的准确性,引导学生用规范的格式进行书写。
[师生互动反思]
无论是例题还是习题的教学均采用“尝试一交流一讨论”的方式,充分发挥学生的主体性,教师起引导、点拨的作用。
篇15:全等三角形的判定定理
一、
二、
全等三角形。 教学内容:探索三角形全等的判定(ASA,AAS),以及利用全等三角形证明。 学情分析:学生已经学习全等三角形的概念以及掌握了运用SSS与SAS来证明
教学目标: 三、
1、知识与技能:理解“角边角”、“角角边”判定三角形全等的方法;
2、过程与方法:经历探索“角边角”、“角角边“判定三角形全等的过程,能运用已学三角形判定方法解决实际问题;
3、情感态度与价值观:培养良好的集合推理意识,发张数学思维,感悟全等三角形的应用价值。
四、教学重、难点:
重点:掌握三角形全等的判定方法――“ASA”、“AAS”
难点:三角形全等判定“ASA”、“AAS”定理的应用。
五、
六、教学用具:电脑课件,三角板,纸片 教学过程:
(一) 创设情境
老师不小心将一个三角形玻璃打碎为两块,想要去商店配一块跟原来一样的三角形玻璃,要带两块去呢还是带一块就行了呢?如果带一块的话,要带那一块呢?
(引导学生思考,第一块不只能画一个三角形,第二块根据两边延伸只能确定一个三角形,所以只需要带第二块)
问:那我们从第二块玻璃可以得到关于三角形的什么信息呢?
学生答:两个角和一条边。
(此时教师应该强调是边是两个角的夹边)
师;那老师是不是可以不带然和一块玻璃,通过测量这两个角和它们的夹边就可以呢?我们根据这些信息买来的新三角形玻璃和原来的是不是就完全一样呢?也就是说,能不能通过“角边角“来判定两个三角形是否全等呢?
(二) 探究新知:
1、师:你们能画出两个内角分别是60°和45°它们的.夹边长是4cm的三角形吗?画完之后剪下来跟同桌比较一下,看有什么样的特点。(同时用几何画板演示)
2、师:这样我们就得到了证明三角形全等的另外一个判定定理,即“有两个角及它们的夹边对应相等的两个三角形全等”,要注意的是这条边必须是两个角所夹的边,同时要注意这三个元素一定要是对应相等的。
3、给出两个全等三角形规范证明过程;
书写格式:
证明:
在△ABC和△DEF中 (指明范围)
因为 ∠A=∠D
AC=DF (列出条件)
篇16:全等三角形的判定定理
所以 △ABC≌△DEF (ASA) (得出结论)
4、练习巩固:
如图,已知△ABC≌△A'B'C',CF,C'F'分别是∠ACB和∠A'C'B'的角平分线,求证
:CF=C'F
5、探究“角角边”是否也能证明两个三角形全等
6、练习
七、总结
今天我们学了哪几种三角形全等的判定方法呢?
我们要记住这两节课所学的判定三角形全等的方法,下节课我们也将会学习另一种判定方法,大家可以先回家研究一下还可以怎样证明。
篇17:《全等三角形的判定》教案设计
《全等三角形的判定》教案设计
【教学目标】
1.使学生理 解边边边公理的 内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;
2.继续培养学生画图、实 验,发现新知识的能力.
【重点难点】
1.难点:让学生掌握边边边 公理的内容和运用公理 的自觉性;
2.重点:灵活运用SSS判定两个三角形是否全等.
【教学过程 】
一、创设问题情境,引入新课
请问同学,老师在黑板上画得两个三角形,△ ABC与△ 全等吗? 你是如何判定的.
(同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观 察是否有三条边对应相等,三个角对应相等.)
上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全
等.满足三个条件时,两个三 角形是否全等呢?现在,我们就一起来探讨研究.
二、实践探索,总结规律
1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段 、、,分别为 、、,你能画出这个三角形吗?
先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤.
步骤:
(1)画一线段AB使 它的长度等于c(4.8cm).
(2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的.长为半径画圆弧;两弧交于点C.
(3)连结AC、BC.
△ABC即为所求
把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?
换三条线段,再试试看,是否有同样的 结论
请你结合画图、对比,说说你发现了什么?
同学们各抒己见,教师总结:给定三条线段,如果它们能组 成三角形,那么所画的三角形都是全等的. 这样我们就得到判定三角形全等的一种简便 的方法: 如果两个三角形的 三 条边分别对应相等,那么这两个三角形全等.简写为“边边边”,或简记为(S.S.S.).
2、问题2:你能用 相似三角形的判定法解释这个(SSS)三角形全等的判定法吗?
(我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形.)
3、问题3、你用这个“SSS”三角形全等的判定法解释三角形具有稳定性吗?
(只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了)
4、范例:
例1 如图19.2.2,四边形ABCD中,AD=BC,AB=DC,试说明△ABC≌△CDA. 解:已知 AD=BC,AB=DC , 又因为AC是公共边,由(S.S.S.)全等判定法,可知 △ABC≌△CDA
5、练习:
6、试一试:已知一个三角形的三个内 角分别为 、、,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,你发现了什么?
(所画出的三角形都是相似的 ,但大小不一定相 同).
三个对应角相等的两个三角形不一定全等.
三、加强练习,巩固知识
1、如图, , ,△ABC≌△DCB全等吗?为什么?
2、如图,AD是△ABC的中线, . 与 相等吗?请说明理由.
四、小结
本节课探讨出可用(SSS)来判定两个三角形全等,并能灵活运用( SSS )来判定三角形全等.三个角对应相等的两个三角不一定会全等.
五、作业
【数学教案-三角形全等的判定2】相关文章:
2.全等三角形教案






文档为doc格式