欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>“用短除法求两个数的最小公倍数”教学设计

“用短除法求两个数的最小公倍数”教学设计

2023-04-06 08:13:30 收藏本文 下载本文

“会实现的”通过精心收集,向本站投稿了19篇“用短除法求两个数的最小公倍数”教学设计,小编在这里给大家带来“用短除法求两个数的最小公倍数”教学设计,希望大家喜欢!

“用短除法求两个数的最小公倍数”教学设计

篇1:“用短除法求两个数的最小公倍数”教学设计

“用短除法求两个数的最小公倍数”教学设计

这节课我是这样设计进行教学的。分如下四个环节:

一、引入自学。(8分钟)

师:上一节课我们已经学习了公倍数和最小公倍数。说说怎样求出两个数的最小公倍数?其实还有一种更简单易行的求最小公倍数的方法。引导学生自学书本第62页。

二、交流汇报。(15分钟左右)

师:通过自学,你看懂了什么?哪些地方看不懂?

学生畅所欲言,教师参与其中,一起分享学生的学习成果,一起解决学生中存在的困惑。

三、巩固练习。(10分钟左右)

1、用短除法求最小公倍数(4题)。

2、“找病因”——出示有差错的求最小公倍数的做法。(3题)

3、先把两个数分解质因数,再求出它们的最小公倍数。(2题)

四、课堂作业:(7分钟左右)

第65页第8题(6小题)。

五、教后反思

上面的设计应该来说是简单的,也是具有可操作性的。从课堂练习的情况来看效果是很好的。反思其成功之处可能有以下几点:

一、学生能自学的尽量让学生去自学。

本节课的教学内容对学生来说是比较简单的。学生完全有能力去自学掌握,为此放手让学生自学,起到了很好的效果。反思自学的效果有如下几个优势:1、学生对方法的习得更直观,更具有可感性。2、能增强学生的思考力,在自学的'过程中学生都有一种认识它、学会它、掌握它的心态,必然积极投入、积极思考。3、由于从书中直接与书本对话,对解题格式的把握上更准确、更到位。4、学生对学习中存在的困惑也更容易暴露。可见,自学是一种简单易行、高效的教学策略。

二、让学生多问问,其实也是一种不错的教学方法。

本节课的第二环节是自学后的交流,这个环节是本节课的核心。在这一环节中我没有教给学生如何做?有什么诀窍?而是充分让学生说出存在的困惑和疑问。因为,自学后,学生必然会有一些困惑,此时我鼓励学生尽量提问、尽量提出自己的意见,在教师创设的和谐氛围中一个一个精彩的问题也随之而来:“能不能用最大公约数去分别除这两个数?”、“为什么把所有的除数和最后的两个商连乘起来就求到最小公倍数了”“怎样确定除数?”……这些问题都贴近了新知领域,通过生生对话、师生对话很巧妙地、很智慧地解决了这一系列问题。随着问题的一个个解决,学生对新知的认识也就越来越明朗,越来越清晰。

三、练习不在乎多,在乎全、精、实。

本节课安排的三组练习都具有很强的针对性。第一个练习是基本练习,它是本节课应该要达到的目标。第二个练习是纠错练习,主要是针对学生可能存在的一些问题而设计的,进行这样的练习可能对以后的作业起到预防的效果。第三个练习是用分解质因数的方法来求最小公倍数,其目的是让学生充分理解求最小公倍数

的基本道理,进而能进一步理解最小公倍数。这样的练习层层递进、紧扣本课内容、练得精练、练得有效。真正让学生学到实实在在的东西。这应该是一堂课所要达到的真谛。

四、课堂作业,当堂完成,学生乐意,老师所望。

课堂作业理应在课堂中完成,课堂作业当堂完成,能够及时检测学生课堂学习的效果,即使纠正学生在学习中出现的问题,能够切实减轻学生的负担,能够让教师得到成功的喜悦。课中留给学生相对充足的时间让学生静下心来,是提高课堂教学效率不可忽视的一个环节,这一点有的教师往往忽视了。其实课堂作业当堂完成,学生做的时候注意力比较集中,做的时候就有一种力争做对的氛围,做的时候就有一种责任感,有了这一些,显然就能提高做作业的质量,显然能达到练习的效果。如果课堂作业移到课后,效果迥然不同。我想这一点大家肯定有同感。

篇2:《求两个数最小公倍数的实际应用》教案设计

《求两个数最小公倍数的实际应用》教案设计

设计说明

1.充分利用教材中的素材创设情境,让学生在情境中解决问题。

结合具体的生活情境学习,有助于学生获取知识。“铺墙砖”这一生活情境,学生有一定的生活经验,也具有一定的挑战性,能有效地激发学生的学习兴趣,让学生在实践操作中加强思考与探索,经历知识的形成过程。

2.放手让学生自主探究,获取新知。

著名数学家波利亚认为:“学习任何知识的最佳途径是由自己去发现,因为这种发现,理解最深刻,也最容易掌握其中的内在规律、性质和联系。”为了使学生积极主动地参与学习过程,必须引导学生自己去观察,去思考,去探索。本设计直接出示例题,引导学生利用已有的知识经验,经过自主探究和充分的讨论,获取解决问题的方法,在解决问题的过程中,积累经验,提高解决问题的能力。

课前准备

教师准备 PPT课件

学生准备 若干张长3 dm、宽2 dm的卡片

教学过程

⊙创设情境,引入新课

1.引导学生回忆。

师:同学们还记得前面我们学习的给贮藏室铺地砖的例题吗?这节课我们来学习“铺墙砖”的知识。

2.课件出示例3:用一种长3 dm,宽2 dm的墙砖铺一个正方形(用的墙砖必须都是整块),正方形的边长可以是多少分米?最小是多少分米?

设计意图:在以前学习过的“铺地砖”的基础上创设类似的情境,让学生在实践操作中加强思考与探索,经历知识的形成过程,完成数学建模。

⊙小组合作,解决问题

1.拼一拼。

(1)用长3 dm、宽2 dm的卡片代替墙砖拼正方形。

(2)在印有格子的'纸上画出拼成的正方形。边操作边思考:正方形的边长可以是多少分米?最小是多少分米?正方形的边长与墙砖的长和宽有什么关系?

2.说发现。

师:你拼出来了吗?想一想,正方形的边长必须满足什么条件?(正方形的边长必须是2和3的公倍数)

3.解决问题。

师:正方形的边长可以是多少分米?最小是多少分米?(正方形的边长可以是6 dm,12 dm,18 dm,…最小是6 dm)

4.回顾解决“铺墙砖”问题的关键。

把“铺墙砖”问题转化成求公倍数和最小公倍数的问题,也就是铺成的正方形的边长必须是墙砖长和宽的公倍数,铺成的正方形的边长最小是墙砖长和宽的最小公倍数,这样才能保证用的墙砖都是整块。

⊙学习公倍数的应用

1.解决教材72页11题。

爸爸、妈妈和我一起跑步,爸爸跑一圈用3分钟,妈妈跑一圈用4分钟,我跑一圈用6分钟。如果爸爸、妈妈同时起跑,至少多少分钟后两人在起点再次相遇?此题爸爸、妈妈分别跑了多少圈?[学生分组讨论,教师巡视指导,各组汇报:求至少多少分钟后两人在起点再次相遇,就是求3和4的最小公倍数,3和4的最小公倍数是12,也就是至少12分钟后两人在起点再次相遇,此时爸爸跑了12÷3=4(圈),妈妈跑了12÷4=3(圈)]

2.引导学生在组内提出其他数学问题并合作解答,明确求三个数的最小公倍数的方法。

预设

生1:我和爸爸同时起跑,至少多少分钟后我们在起点再次相遇?

(3和6的最小公倍数是6,也就是至少6分钟后我们在起点再次相遇)

生2:我和妈妈同时起跑,至少多少分钟后我们在起点再次相遇?

(4和6的最小公倍数是12,也就是至少12分钟后我们在起点再次相遇)

生3:三人同时起跑,至少多少分钟后三人在起点再次相遇?

篇3:小学五年级数学《求两个数的最小公倍数》教案设计

小学五年级数学《求两个数的最小公倍数》教案设计

教学内容:求两个数的最小公倍数

教学目标:

使学生理解、掌握求两个数的最小公倍数的方法,并能正确地,合理地求两个数的最小公倍数。

教学过程:

一、复习

1、什么是公倍数,最小公倍数?

2、写出12、30的公倍数和最小公倍数?

二、教学新课

1、提出课题:“求两个数的最小公倍数”

2、把12、30和它们的最小公倍数60,分别分解质因数。

212230260

26315230

3515

5

12=2×2×3

30=2××3×5

60=2×2×3×5

观察上面各数分解质因数的情况,你发现了什么?

(最小公倍数60的质因数里,包含了12和30公有的`质因数2、3,还有12独有的质因数2,30独有的质因数5。)

3、利用上面的情况,用简便方法求12和30的最小公倍数。

21230………用公约数2除

3615……….用公约数3除

25……..只有公约数1,不必再除

把所有的除数和商连乘起来,得到:

12和30的最小公倍数是2×3×2×5=60,也可以这样表示:

[12。,30]=2×3×2×5=60

4、总结求两个数的最小公倍数,先用这两个数的连续去除,一直除到所得的商只有公约数1,然后把所有的()和()连乘起来。

5、尝试练习

求下面每组数的最小公倍数。

12和16,33和22,16和20,36和54,30和45,10和15

三、教学求倍数关系,互质关系的最小公倍数。

在下面各组数中找出倍数关系,互质关系

12和36,9和5,36和12,4和9,25和75,20和3,51和17,8和11

1、倍数关系

2、互质关系

3、想一想

(1)如果大数是小数的倍数关系,那么()就是这两个数的最小公倍数。

(2)如果两个数是互质数,那么这两个数的()就是它们的最小公倍数。

四、巩固练习

书本第56页1至4题。

五、总结归纳

六、布置作业

反思:让学生了解求两个数的最小公倍数为什么要把两个数的公约数还要各自独有的约数。这是本节课的重点。

篇4:小学数学《求两个数的最小公倍数》优秀教案

小学数学《求两个数的最小公倍数》优秀教案

教学内容:完成练习四的第5~8题。

教学目标

1、通过练习,使学生发现求两个数的最小公倍数的一些简捷的方法,并能根据两个数的关系选择用合理的方法求两个数的最小公倍数。

2、让学生感受数学与生活的联系,体会解决问题策略的多样性。

教学重、难点:求两个数的最小公倍数的一些简捷的方法。

教学过程:

一、基础练习

找出下面每组数的最小公倍数。

4和6 3和7 5和9 10和6

二、完成第25页的5~8题。

1、第5题

⑴ ①让学生观察左边4题,说说这几组数有什么共同的特点。

②找出每组两个数的最小公倍数。

③比较和交流:有什么发现?

(两个数的最小公倍数就是它们的乘积。)

⑵独立完成右边4题,再比较交流发现了什么?

2、第6题

先由学生独立完成。

然后说说分别是什么方法求出每组上数的最小公倍数的`?

3、第7题

先让学生用列表的方法找出答案,并通过交流使学生体会到列表的过

程实际上就是求7和8的最小公倍数。

4、第8题

先让学生说说求几月几日小林和小军再次相遇,可以先求哪两个数的

最小公倍数,再让学生独立解答。

三、小结:通过今天这一节课的学习,你有什么收获?

四、思考题

提示:先用列举法找3、4和6的最小公倍数。

篇5:求三个数的最小公倍数的数学教学反思

师:有的时候也需要求三个数的最小公倍数。(出示课题:求三个数的最小公倍数)

请你们来猜想一下求三个数的最小公倍数可以怎样求?

生1:我觉得求三个数的最小公倍数的方法和求两个数的最小公倍数的方法差不多。

生2:我觉得三个数的最小公倍数的`求法和两个数的最小公倍数的求法应该有所不同。……

师:好,那就请大家用自己的猜想方法来试求6、8和12的最小公倍数吧。请两种不同想法

生1和生2同时板演。

6、8和12的最小公倍数6、8和12的最小公倍数是:的是:2×3×4×6=144。2×2×3×2=24。

师:这是两种不同的结果,下面的同学们还有不同的结果吗?(学生没有举手)

师:现在大家已经见到了2种不同的结果,到底哪一种的结果是6、8和12的最小公倍数呢?下面请大家运用分解质因数的方法和求两个数的最小公倍数的分析方法来研究怎样可以使得到的数是三个数的最小公倍数?(教师组织学生进行小组研究学习,同时参与到小组研究学习中去。)

生1:我们组把它们的倍数写出来,发现这三个数的最小公倍数应该是24。生2是对的。

生2:我们通过分解质因数发现它们三个数只有一个公有质因数2。

生3:我们发现6和12也有一个公有质因数3。

生4:我们也发现:8和12也有一个公有质因数2。

生5:我们觉得生2对的,于是我们发现不止要用2去除。

师:这个2是什么?生5:是6、8、12公有的质因数。然后还要用2和3去除,2是4和6公有的质因数,3是3和3公有质因数。……

生6:我们求两个数的最小公倍数是要除到互质为止,求三个数的最小公倍数时三个数的商一定要除到两两互质为止。

反思:

《数学课程标准》指出:学生的数学学习内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流。教师只有在思想上真正顾及学生多方面成长,顾及生命活动的多面性和师生共同活动中多种组合和发展方式的可能性,才能发现课堂教学具有生成性的特征。因此,我们应该把新课程改革的实践目标定在探索、创造互动发生式的课堂教学,用心收集、捕捉和筛选学习活动中学生反馈出来的有利于促进学生进一步学习建构的生动情境和鲜活的课程资源。如果说过去教师备课主要着眼于如何教,那么今天教师们备课的出发点和归结点必须是引导学生如何学。这就要求教师的备课要充分地研究学生的特点及其与教材之间的关系,努力寻找教师与学生的契合点,从而真正地把教和学结合起来。这样,师生才是全身心投入,不只是在教和学,还在感受课堂中生命的涌动和成长;这样,学生才能获得多方面的满足和发展,教师的劳动才会闪现出创造的光辉和人性的魅力,教学才会成为师生共同创造课程的过程,课程实施才会从“执行教案”走向师生“互动发生”,如此课堂才会真正体现出育人的本质。

篇6:《求特殊情况下两个数的最大公约数和最小公倍数》教案设计

关键词:观察、分析、猜测、推理、验证与交流;自主探索、合作交流

内容:九年义务教育六年制小学教科书第十册P67-73求特殊情况下两个数的最大公约数和最小公倍数。

课堂实录:

一、复习:

1、求两个数的最大公约数和最小公倍数的方法各是什么?

2、求出每组数的最大公约数和最小公倍数(用短除法)

20和2436和5428和1413和40

[评析:复习用短除法求每组数的最大公约数和最小公倍数,体现了教学新旧知识的联系,又体现了知识的循序渐进。]

二、导入新课:

前面我们学习了用短除法来求两个数的最大公约数和最小公倍数,那么是不

是对所有求两个数的最大公约数和最小公倍数的题都要用短除法呢?这就是我们本节课所要研究的内容————求特殊情况下两个数的最大公约数和最小公倍数(板书课题)。

[评析:学源于思,思源于疑,人类思维活动往往是由于解决当前面临的问题而引发的。因此,设置疑问导入新课,能激发学生的好奇心,引起学生的求知欲,开拓学生的思路,使学生兴趣盎然地去探求知识。]

三、新授:

1、电脑出示下面几组数,让学生判断每组数成什么关系?

7和218和912和3614和19

生:7和21,12和36,成倍数关系;8和9,14和19成互质关系。

师:那么成互质关系或倍数关系的两个数的最大公约数和最小公倍数不用短

除法大家能很快求出来吗?

生:能

生:不能

生:能

师:下面我们共同来研究一下,看哪些同学说的对。

师:请分别找出8,9的约数和倍数。韩晓斌严春花

学生回答完后电脑出示:

8的约数:1,2,4,8

9的约数:1,3,9

8的倍数:8,16,24,32,40,48,56,64,72,80,88,96……

9的倍数:9,18,27,36,45,54,63,72,81……

师:请同学们先找出8和9的最大公约数,再找出它们的最小公倍数。

生:8和9的最大公约数是1。

生:8和9的最小公倍数是72。

师:请同学们再观察8,9,72这三个数之间有什么关系?

生:8和9都是72的约数。

生:72是8的倍数,也是9的倍数。

生:8×9=72,即:72是8和9的乘积。

师:大家都说得对,但是,有一位同学观察得更仔细,思考得更认真,他发现72是8和9的乘积,而72是8和9的最小公倍数,也就是说8和9的最小公倍数是它们的什么?

生:8和9的最小公倍数是它们的乘积。

师:又因为8和9成互质关系,那么我们从中能得出什么呢?

生:成互质关系的两个数的最小公倍数是它们的乘积。

师:那么是不是所有成互质关系的两个数的最小公倍数都是它们的乘积呢?

师:写出几组成互质关系的两个数,让学生自己去验证(师边巡视边低声指导)。

例如:7和94和53和5

最后讨论得出:如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

师:我们还知道8和9的最大公约数是1,下面请同学们联系前面那个结论的推导过程,想一想,然后分组讨论,看从这句话中能得到什么?

生:成互质关系的两个数的最大公约数是1。

同样让学生自己验证,最后讨论得出:

如果两个数是互质数,它们的最大公约数就是1。

2、请同学们分别找出7、21的约数和倍数。

学生回答完后电脑出示:

7的约数:1,7

21的约数:1,3,7,21

7的'倍数:7,14,21,28,35,42……

21的倍数:21,42,63……

师:下面请同学们先找出7和21的最大公约数,再找出它们的最小公倍数。

生:7和21的最大公约数是7。

生:7和21的最小公倍数是21。

师:请同学们观察7和21的最大公约数和最小公倍数,再和原数进行对照,

想一想,有什么规律?

生:7和21的最大公约数和最小公倍数就是这两个数。

生:7和21的最大公约数和最小公倍数分别是这两个数当中的一个。

生:7和21的最大公约数和最小公倍数与这两个数有关系,即:7和21的最大公约数是这两个数中的较小数7,它们的最小公倍数是这两个数中的较大数21。

生:因为7和21成倍数关系,所以,成倍数关系的两个数的最大公约数是这两个数中的较小数,它们的最小公倍数是这两个数中的较大数。

篇7:《求特殊情况下两个数的最大公约数和最小公倍数》教案设计

小大。

这时,学生们的思维都非常活跃,而且回答的内容逐渐趋向完整、准确,此时,教师让学生们根据以上同学的回答,看哪个更加完整、准确,如何概括成一句简练的话?

这样,经过学生们的分组讨论,轻而易举的就得出了结论:如果两个数成倍数关系,那么它们的最大公约数就是两个数中的较小数;它们的最小公倍数就是两个数中的较大数。

同时,让学生自己举例验证得出的结论是否正确。

最后让学生打开课本,阅读完书上的结论后进行比较,看与自己总结的是否一样,进而分享由自己的劳动成果所带来的喜悦。

[评析:以学生的观察、分析、猜测、推理、验证与交流为认知结构,把抽象的数学知识具体化,从而激发了学生的求知欲和学习情趣。通过学生自主探索合作交流,真正理解和掌握了求特殊情况下两个数的最大公约数和最小公倍数的方法,同时获得了更为广泛的数学活动经验。]

四、反馈练习:

很快说出每组数的最大公约数和最小公倍数。

9和367和1329和3013和5236和725和17

[评析:通过反馈练习,不仅能锻炼学生的观察、思维、判断、表达等能力,而且无形当中也就提高了学生运用所学的数学知识和方法解决一些简单问题的能力。]

五、总结:

你有什么感想和收获?

[评析:总结的设计,是本课教学的升华。在此,教师给学生提供了一个充分动脑、动口、表现自我的平台,不仅是所学知识的反馈,更是有效地促进数学课中学生口语表达的训练。]

六、作业:(略)

教学反思:

数学教学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有利于学生自主学习、合作交流的情境,使学生通过观察、分析、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣。所以,我在教学“求特殊情况下两个数的最大公约数和最小公倍数”这一课时,充分发挥了学生的主体作用,促使学生自主探索、合作交流,挖掘学生的思维潜能,培养学生的观察、分析、归纳、猜测、推理、交流能力,真正让学生学会思考,学会学习。

学习任何知识的最佳途径是由自己去发现,因为这种发现最容易被理解,也最容易被掌握。因此,整堂课我始终以学生的活动为主,让学生自己去发现其中的规律和联系,我只是适当点拨、引导而已。显然,课堂气氛非常活跃,学生在快乐的气氛中轻松地学到了知识,发展了能力,同时也获得了成功的体验。

反思本课教学,最大的启示是:在数学课堂教学中,只要我们转变教学观念,以学生为主体,充分调动学生的学习积极性,使之主动参与到学习过程中,就能提高课堂教学效率,使人人有所得,个个有收获。

教学需改进之处———进一步处理好师生之间“教”与“学”的互动关系,充分发挥教师的“主导性”和学生的“主体性”作用,彻底改变习以为常的传统教学观念,为培养出数量多、素质高、能力强的跨世纪人才拼搏奋进!

篇8:求特殊情况下两个数的最小公倍数 教案教学设计(人教新课标五年级下册)

课题二:

教学要求  在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的最小公倍数。

教学重点  掌握求两个数的最小公倍数的方法。

教学难点  正确、熟练地求出特殊情况下两个数的最小公倍数。

教学过程

一、创设情境

1.口算练习:将练习十五的第五题做在书上,做完后集体修订正。

2.回答问题:什么是公倍数?什么是是最小公倍数?

3.求24和32的最小公倍数。

4.说说下面每组中的两个数有什么关系?

12和36      4和5

二、揭示课题

我们已经学会求两个数的最小公倍数,这节课我们将继续学习求特殊情况下两个数的最小公倍数。(板书课题:求特殊情况下两个数的最小公倍数)

三、探索研究

1.教学例3

(1)先让学生用上节课学的方法分别求出这两组数的最小公倍数。

(2)观察结果:通过这两组数的最小公倍数,你发现了什么?

(3)归纳方法:先让学生讲,再指导学生看教材第73页的结论。

(4)尝试练习。

做教材第74页下面的“做一做”,先让学生判断每组中两个数的关系,再解答出来集体订正。

四、课堂实践

1、做练习十五的第6题,先让学生写,再让学生说,最后集体订正。

2、做练习十五的第7题,先让学生观察每组中两个数的关系,再让学生正确、熟练地说出它们的最小公倍数,并订正。

3、做练习十五的第9题。先让学生独立判断,对的打√,错的打×,再点几名学生讲打√或×的理由。

五、课堂小结

学生小结今天学习的内容、方法。

六、课堂作业

做练习十五的第8题。

篇9:求两个数的最小公倍数的练习教案教学设计(苏教国标版五年级下册)

第二课时:求两个数的最小公倍数的练习

教学内容:完成练习四的第5~8题。

教学要求:

1、通过练习,使学生发现求两个数的最小公倍数的一些简捷的方法,并能根据两个数的关系选择用合理的方法求两个数的最小公倍数。

2、让学生感受数学与生活的联系,体会解决问题策略的多样性。

教学过程:

一、基础练习

找出下面每组数的最小公倍数。

4和6     3和7     5和9     10和6

二、完成第25页的5~8题。

1、第5题

⑴  ①让学生观察左边4题,说说这几组数有什么共同的特点。

②找出每组两个数的最小公倍数。

③比较和交流:有什么发现?

(两个数的最小公倍数就是它们的乘积。)

⑵独立完成右边4题,再比较交流发现了什么?

2、第6题

先由学生独立完成。

然后说说分别是什么方法求出每组上数的最小公倍数的?

3、第7题

先让学生用列表的方法找出答案,并通过交流使学生体会到列表的过程实

际上就是求7和8的最小公倍数。

4、第8题

先让学生说说求几月几日小林和小军再次相遇,可以先求哪两个数的最小公倍数,再让学生独立解答。

三、小结:通过今天这一节课的学习,你有什么收获?

四、思考题

提示:先用列举法找3、4和6的最小公倍数。

第三课时:公因数和最大公因数

教学目标:

1、使学生在具体的操作活动中,认识公因数和最大公因数,会在集合图中分别表示两个数的因数和它们的公因数。

2、使学生学会用列举的方法找到100以内两个数的公因数和最大公因数,并能在解决问题的过程中进行有条理的思考。

3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

教学准备:

长18厘米、宽12厘米的长方形纸片,边长6厘米、4厘米的正方形纸片。教学过程:

一、经历操作活动,认识公因数

1、操作活动。

⑴先让学生用边长6厘米、4厘米的正方形纸片分别铺长18厘米、宽12厘米的长方形。

再提问:哪种纸片能将长方形正好铺满?

⑵交流:还有哪些边长是整厘米数的正方形纸片也能正好铺满这个长方形?xkb1.com 新课标第一网

⑶1、2、3、6有什么共同的特征?

⑷4为什么不是12和18的公因数?

揭示:1、2、3、6既是12的因数,又是18的因数,它们是12和18的公因数。

二、自主探索,用列举的方法求公因数和最大公因数

1、自主探索。

提问:8和12的公因数有哪些?最大的公因数是几?你能试着找一找吗?

学生自主活动,在小组里交流。可能的方法有:

①先找出8的因数,再从8的因数中找出12的因数。

②先找出12的因数,再从12的因数中找出8的因数。

2、明确8和12的公因数中最大的一个是4,指出:就是8和12的最大公因数。

3、用集合图表示。

出示相交的集合圈,让学生把8和12的因数分别填在集合图中的合适部分,再看图说说各自的想法。

4、完成“练一练”

重点让学生操作与填空。

三、巩固练习,加深对公因数和最大公因数的认识

1、练习五第1题。

填好后让学生看图说说15和20的因数分别有哪些,公因数有哪些,最大公因数是几?

2、练习五第2题。

3、练习五第3题。

先让学生独立完成,再具体说说找两个数的公因数和最大公因数的方法。

4、练习五第4题。

先出示第1组数,让学生判断,并说说是怎样判断的。然后完成先面几组。

5、练习五第5题。

鼓励学生用自己的方法找出每组数的最大公因数,并说说是怎样做的,怎样想的。

四、全课小结

提问:今天学习的是什么内容?什么是两个数的公因数和最大公因数?怎样找两个数的最大公因数?

引导:你还有什么疑问?

第四课时:求两个数的最大公因数的练习(一)

教学内容:完成练习五的第6~11题。

教学要求:

1、通过练习,使学生发现求两个数的最大公因数的一些简捷的方法,并能根据两个数的关系选择用合理的方法求两个数的最大公因数。

2、让学生感受数学与生活的联系,体会解决问题策略的多样性。

教学过程:

一、基础练习

找出下面每组数的最大公因数。

14和16     30和10    15和9     21和28

二、完成第29页的第6~11题。

1、第6题

⑴①让学生观察左边4题,说说这几组数有什么共同的特点。

②找出每组两个数的最大公因数。

③比较和交流:有什么发现?

(有些情况下,两个数的最大公因数是它们中较小的那个数。)

⑵独立完成右边4题,再比较交流发现了什么?

(有些情况下,两个数的最大公因数就是1。)

2、第7题

先由学生独立完成,然后说说分别是什么方法求出每组数的最大公因数的?体会方法的多样性。

3、第8题

如果有困难,可让学生用自己熟悉的方法具体地找一找。

4、第9题

先让学生填表,并说说其中的规律;然后小组合作找出2、4、5分别与1、2、3、4、5……20等各数的最大公因数,并说说其中的规律。

5、第10题

先帮助学生弄清题意,知道裁出的正方形的边长应该是12和20的最大公因数,再让学生在图中画一画,并回答提出的问题。

6、第11题

三、小结:通过今天这一节课的学习,你有什么收获?

篇10:《求两个数的最大公因数的练习二》教学设计

《求两个数的最大公因数的练习二》教学设计

教学内容:完成练习五的第12~14题。

教学要求:

1、通过练习,使学生能进一步明确求两个数的最小公倍数和最大公因数的方法。

2、使学生能对所学的知识进行整理,并建立合理的认知结构。

教学重点:巩固求两个数的最小公倍数和最大公因数的方法。

教学难点:完善学生的'认知结构。

教学过程:

一、完成第30页的12~14题。教学过程:

1、第12题

先让学生连一连,交流使说说公因数和公倍数的含义。

2、第13题

先由学生独立完成。

然后说说分别是什么方法求出每组数的最大公因数的。

什么情况下可以根据两个数的特征直接写出它们的最大公因数?

3、第14题

先由学生独立完成。

然后说说分别是什么方法求出每组数的最小公倍数的。

什么情况下可以根据两个数的特征直接写出它们的最小公倍数?

4、联系第13题和第14题比较求两个数的最小公倍数和最大公因数的方法有什么相同与不同?[小学教学设计网=-www.Xxjxsj.CN=]

二、思考题

帮助学生弄清两点:

⑴水果实际上分掉45块,巧克力实际分掉35块。

⑵由于每种糖果都是平均分给这个小组的同学,因此小组的人数既是45的因数,又是35的因数。

然后让学生解答。

三、“你知道吗”

让学生读一读,并说一说从中了解到了哪些知识,自己对哪部分比较有兴趣,还想进一步了解哪些知识?鼓励学生用上述方法试着找两个数的最小公倍数和最大公因数。

篇11:求两个数的最大公因数教学反思

求两个数的最大公因数教学反思

这部分内容是在学生掌握了因数、倍数概念的基础上进行教学的,主要是为下续学习约分作准备。教材先创设了一个剪纸的问题情境,从实际生活中抽象出概念。这样处理的好处便于揭示数学与现实世界的联系,有利于学生理解公因数、最大公因数的概念及现实意义,也有利于培养学生的数学抽象能力。但是将解决问题与概念引入结合在一起,教学上自然会有一定的`难度,所以我将主题图的自由探索与尝试选正方形的大小来剪。适当降低了一些难度并提高了教学的效率,最后的效果还是不错的,很容易就引入了公因数和最大公因数的概念。

在现行《课标》中有关求最大公因数的要求是:“能找出两个自然数的公因数和最大公因数”。重在“找”,而现行教材的分子分母都比较小,学生熟练了以后都能准确的进行约分,关键还是在练习的力度上多下功夫。

融入生活实际。我把找公因数的问题融入实际生活情景中,比如:“有两根绳子,一根长12米,另一根长28米,要把它们截成同样长的小段,而且没有剩余,每段最长应是几米?一共截几段?”这时学生理解了求最大公因数的方法和作用,就不难解决这一问题。结合生活实际,使学生真正体会到数学学习的价值,并清楚地知道“为什么学”,真正做到了生活知识数学化。

篇12:《求两个数的最大公因数》教学反思

《求两个数的最大公因数》教学反思

本节课的教学内容是求两个数的公因数和两个数的最大公因数的第二课时。教学目标是进一步理解两个数的公因数和最大公因数的意义,比较熟练地求出两个数的最大公因数,包括两种特殊情况。这节课上的非常顺利,课堂气氛活跃,师生互动和谐,取得了较好的课堂教学效果。

上课的第一环节,是复习两个数的公因数和最大公因数的意义。在复习的过程中,我不是单纯地让学生复述两个数的公因数和最大公因数的意义,而是让学生举例说明。学生说出了许多组数,找出了它们的公因数和最大公因数。在学生举例的过程中,对它们的意义有了更深的理解。我择其四组板书在黑板上:4和5,5和6,5和7,7和9。让学生观察,这四组数有什么特点。我的本意是让学生发现两个数的最大公因数的一种特殊情况,即两个数的公因数只有1,那么它们的最大公因数就是1。 “我发现两个数中只要有一个质数,它们的最大公因数就是1。”这是一个大胆的猜测,虽说是出乎意料,但更使课堂充满了生机。我让学生判断他的观点是否正确。在小组讨论的过程中,有学生提出了质疑,“这个观点不对,比如2和4,2是质数,但它俩的.最大公因数不是1。”又有学生提出3和6,5和10等。我接着又让学生观察,这几组数又有什么特点。通过通论观察,完成了本节课的另一个教学任务,发现了两个数的最大公因数的另一种特殊情况,即两个数是倍数关系,那么它们的最大公因数就是较小的数,学生发现了两个数的最大公因数的几种情况,当两个数都是质数时,它们的最大公因数是1;当两个数是连续的自然数时,它们的最大公因数是1;两个数的最大公因数是1,这两个数可以是质数,也可以是合数,还可以一个是质数,一个是合数,等等。

篇13:《用除法解决问题》教学设计

教学内容:人教版数学第四册54~55页例2、例3,练习十二的第1、2题。

教材分析:

《一个数是另一个数的几倍》是人教版义务教育课程标准实验教材小学数学第四册第四单元《用除法解决问题》中的内容。本课教学之前,学生已经初步理解“倍”的含义和除法含义,并且学习过求一个数的几倍是多少,这些都为本课内容的学习作了知识铺垫。本课时,用除法解决“求一个数是另一个数的几倍是多少”的实际问题,安排在教学用7~9的乘法口诀求商之后,其匠心在于加深学生对除法含义的理解,让学生领会“一个数是另一个数的几倍”的含义,并学会解决求一个数是另一个数的几倍实际问题。同时,使学生了解除法计算与实际生活的联系,培养学生应用数学的意识,发展解决问题的能力。

这个传统的教学内容,新教材由浅入深安排了两个例题,例2,通过摆飞机模型的主题活动,在操作观察中让学生建立“一个数是另一个数的几倍”的概念;例3,通过观察情境图,从图中获取相关数学信息,引导分析推理,探究出“求一个数是另一个数的几倍”的一般解法。学习这部分内容,不仅有助于学生体会两个数量之间的倍数关系,学会解决求一个数是另一个的几倍的实际问题,也为今后进一步学习有关“倍”的实际问题作好了思路孕状。教学时应引导学生应用已掌握的“倍”的概念和“求一个数的几倍是多少”的先前经验学习“求一个数是另一个数的几倍是多少”的实际问题。教学中精心组织操作活动,让学生通过自身活动理解一个数是另一个数的几倍是多少的数量关系,初步体会数量之间的内在关系;通过解决实际问题,有意识地让他们经历将一个具体问题抽象为数学问题的过程,经历运用除法的含义确定算法的过程,使学生初步懂得应如何数学地思考问题,如何用数学的方法来处理有关的信息,如何合理地计算出结果。

解决问题是本单元教学的重要内容。教学时,一方面要用学具进行操作,为学生的有条理的思考提供感性材料的支持,另一方面要用现实生活中的实际问题引导学生理解问题的含义。最后通过一组有层次的`练习帮助学生巩固加深。

教学设计思路:课前准备,做好铺垫创设情境,激趣引入学习“一个数是另一个数的几倍”的含义(学生动手操作中感知)自主探索出“求一个数是另一个数的几倍是多少”的计算方法(小组合作交流)引导学生自己提出“求一个数是另一个数的几倍是多少”的问题组内交流,解决问题巩固练习课堂小结(小结学习内容,课堂表现)

教学目标:

1、通过实践活动,使学生理解“一个数是另一个数的几倍”的含义,体会数量之间的相互关系。

2、使学生经历将“求一个数是另一个数的几倍是多少”的实际问题转化为“求一个数里含有几个另一个数”的数学问题的过程,初步学会用转化的方法来解决简单的实际问题。

3、使学生会用自己的语言表达解决问题的大致过程和结果。

4、通过动手实际操作,培养学生动手操作的能力和合作意识。

教学重点:使学生经历从实际问题中抽象出一个数是另一个数的几倍的过程,会用乘法口诀求商的技能解决实际问题。

教学难点:应用分析推理将一个数是另一个数的几倍是多少的数量关系转化为一个数里面有几个另一个数的除法含义。

教学准备:

教具:多媒体课件。

学具:每人准备(10根或15根)小棒。

课前准备:

1、教师和学生谈话,让学生说说自己的理想是什么。

2、做伸手指的游戏:

(1)教师伸几根手指,请学生伸出是老师的几倍的手指数。

(2)伸出8根手指,每2根分一份,看看能分成几份。

〔设计意图:融洽师生关系,在课前活动中复习有关求一个数的几倍是多少和除法的含义,为新内容的学习作铺垫。〕

教学过程:

一、创设情境,激趣引入

师:首先请同学们来收看一段视频。(课件播放有关国庆60周年阅兵仪式中空中梯队的视频)

师介绍飞行员刘欣:刚才大家看到的是国庆60周年阅兵式上空中梯队的精彩表演,在这些飞行员中有一名女飞行员,她的名字叫刘欣(出示刘欣的照片)。刘欣姐姐小时候就是青山区的一名学生。我们要像她一样从小树立自己的理想,并且要努力去实现它。小红的理想就是长大后能当一名飞行员。你们看,她用小棒摆了一架飞机。(将小红的图片和用小棒摆成的飞机的图片贴在黑板上)

〔设计意图:收看视频,既可以对学生进行爱国教育和理想教育,又可以很自然的引出主题,调动学生的积极性〕

二、教学例2

1、学习“一个数是另一个数的几倍”的含义。

(1)师:老师也给你们准备了一些小棒,你们想用小棒摆飞机吗?先让我们一起来看看怎么用小棒摆飞机。请你一边看一边数:几根小棒能摆一架飞机?(动画演示用5根小棒摆飞机的过程)

〔设计意图:动画演示用5根小棒摆飞机的过程,既让学生知道怎样用小棒摆飞机,避免操作过程中出现不会摆的现象,同时又能强化一倍数。〕

(2)提问:几根小棒能摆一架飞机?(指名回答;根据学生回答,教师板书:5根)

(3)师出示小丽的图片和一捆小棒(将小丽的图片贴在黑板上),问:小丽有10根小棒(板书:10根),猜一猜她能摆几架这样的飞机?(指名答)

师出示小强的图片和一捆小棒(将小强的图片贴在黑板上),问:小强有15根小棒(板书:15根),猜猜他能摆几架这样的飞机?(指名答)

〔设计意图:让学生猜小丽、小强各能摆几架这样的飞机,引导学生向几里面有几个几靠,不让学生说理由,等到学生动手操作,充感知后再来探讨。〕

师:谁想来帮小丽摆一摆?教师将小丽的10根小棒给1名学生,摆在小丽旁边画好的方框中。

篇14:《用除法解决问题》教学设计

教学内容

人教版《义务教育课程标准实验教科书·数学》三年级上册“有余数除法”,教学例4,练习十三的第2、6题。

教学目标

(一)知识与技能

初步培养学生在具体的生活情境中收集信息,提出问题并解决问题的能力。

(二)、过程与方法

通过学生的观察、探索等学习活动,使学生经历从生活数学到数学问题的抽象过程,感受知识的现实性。

(三)、情感态度与价值观

在学习过程中,通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。

教学重点

引导学生结合商和余数在实际情境中的含义正确写出相应的单位名称。

教学难点

运用恰当的方法和策略解决实际问题。

教学准备

教师:课件。

学生:表格。

教学过程

一、激趣导入,引出课题。

教师:同学们,我们先来猜做个游戏好不好?

出示课件:想一想,第十六个图形是什么样的?第35个呢?第98个呢?

教师:咱们运用有余数的除法就可以解决这个问题。

教师:同学们真厉害,猜得非常准确,其实这就是用有余数的除法解决实际问题。

教师:这节课要学习的内容就是“用有余数的除法解决问题”。

板书课题。

二、尝试问题,自主学习。

(1)显示例4的主题图,让学生观察。

教师:在同学们的体育活动当中也会出现有余数的除法的实际问题,大家请看!

提问:从这幅图中你看到了什么?

你能根据图中的有效信息提出数学问题吗?

生1:有32个同学

生2:老师要求每6人一组

生3:可以分几组,还多几人?

(课件同步出现:可以分几组,还多几人?)

师: 你能帮老师解决这个数学问题吗?

师:请同学们用自己的方法算一算,开始吧。

(2)自主学习,尝试解决问题。

教师:小帮手们动作可真快!请两位小帮手给大伙儿说说你的计算方法。

师:哪位同学给大家说说自己的算法?

教师根据学生的口述板书,

如果有的学生没有写出单位,这时提问:

师:这里的商5表示什么意思呢?余数2呢?那单位各是什么呢?(根据商和余数的单位提问:

教师:你们知道这里的商5表示什么意思吗?余数2呢?

生:商表示可以分5组,余数表示还多2人。)

(3)出示练习十三的第2题。

师:下面这道有关跳强绳的问题怎么解决呢?看谁做得又对又快!

19-8=11(米) 11÷2=5(根)……1(米)

答:可以做5根短跳绳,还剩1米。

三、探究合作,解决问题。

教师:同学们,当你的练习本用完后,你一般会怎么处理它呢?

生1:把它扔了。

生2:卖给废品回收站。师:你可真会节约再利用资源。

教师:这些纸是可以重复利用的。

播放课件。

看完后出示:

据调查统计,在一所有一千名小学生的学校里,一个月可回收废纸约2万张。按1000张纸重约1千克计算,卖给废品回收站可得人民币20元。如果同学们平时收集牛奶盒、矿泉水瓶、饮料瓶等可利用资源,可换得人民币35元。今年我省不少地区遭受到了洪灾,我们可以拿这些钱为灾区小朋友做些什么呢?

生1:把这些钱捐给他们。

生2:用这些钱购买学习用品送给他们。

教师:同学们可真有爱心!

出示课件。

教师:这里出现了什么问题?你能解决吗?

教师:第二个问题你能想出不同的方法吗?各小组可以先讨论,再写下各位购买方案。

教师:请同学们拿出表格,将自己认为最好的购买方案进行整理,填写在表格内。开始吧!

学生一边讨论教师一边巡视,学生讨论完填写好表格后,老师提问。

教师:谁愿意来展示自己的解决方法?

教师:同学们觉得这个同学的方案好吗?好在哪里?你认为不足之处在哪?你有什么好的设计方案?

学生说完后老师小结,进行思想教育。

教师:废物再利用可以给我们带来这么好的效益,平时的学习生活中大家可得注意回收,这样既可以保护环境,还可以节约能源,让我们来争当环保节能的小公民吧!

四、课外延伸,拓展思维。

师:三年级一班的同学们也利用废物回收,换来了一些班费,组织大家进行了一次旅行,在旅行中他们遇到了一些问题,请看!

出示第6题的情景图。

先让学生观察“丛林探险”情景图。让学生从两名同学的对话以及图中的指示牌,获得数字信息,解决“坐车”和“租船”问题。

师:从图中同学们可以获得哪些信息?

生:丛林探险活动每辆小车坐6人。

生:我们班有44人。

生:激流勇进游戏每条船坐5人。

师:小男孩小女孩提出了什么问题?

生:如果全班都玩“丛林探险”,最多可以坐满几辆车?会有剩余的人吗?

生2:如果都玩“激流勇进”,应该租几条船呢?

师:请同学们自己先自个儿想想,然后在小组内说说自己的方法,并列出算式,说明理由。

(1)坐车问题:44÷6=7(辆)……2(人)

答:最多可以坐满7辆车,还剩余2人。

提问:剩余这2人怎么安排呢?

生:再坐一辆车。

(2) 租船问题:44÷5=8(条)……4(人)

教师:你对这种租船方法有什么看法吗?

教师:你可真会发现问题。

教师:剩下的4个人不去了吗?怎么办呢?

师:应该租几条船呢?为什么?

教师:你为什么要把8加1呢?

8+1=9(条)

答:应该租9条船。

教师:你考虑得可真周到!

教师:同学们在外游玩的时候可得注意安全哦!

五、结束课题。

教师:这节课你学会了什么?你有什么感今天受?对自己和他人有何评价?你还有什么疑问吗?

篇15:《用除法解决问题》教学设计

教学内容:人教版《义务教育课程标准实验教科书》二年级下册第54—55页例2—例3。

教学目标:

1、通过实践活动,使学生理解一个数是另一个数的几倍的含义,体会数量之间的相互关系。

2、使学生经历将“求一个数是另一个数的几倍是多少”的实际问题转化为“求一个数里含有几个另一个数”的数学问题的过程,初步学会用转化的方法来解决简单的实际问题。

3、培养学生的合作意识,提高学生的探究能力。

教学重点:

使学生经历从实际问题中抽象出“一个数是另一个数的几倍”的数量关系的过程,会用乘法口诀求商的技能解决实际问题。

教学难点:

应用分析推理将“求一个数是另一个数的几倍是多少”的数量关系转化为“一个数里含有几个另一个数的除法含义”。

教具准备:

教师准备课件、小棒、学生每人准备20根小棒、20个圆片。

教学过程:

一、复习导入新课

1、师生做拍手游戏。

[设计意图]活跃课堂气氛,拉近师生关系,激发学生学习数学的热情。

2、摆一摆:

(1)第一行摆2根小棒,第二行是第一行的3倍,第二行是多少?

(2)第一行摆2根小棒,第二行是第一行的4倍,第二行是多少?

3、小结:我们刚才一起复习了有关“倍”的知识,今天我们继续学习有关“倍”的数学问题。

[设计意图]:从学生以有的知识出发为学习求“一个数是另一个数的几倍”做好知识上的铺垫。

二:合作探究新知

1、要求学生用4根小棒摆一个正方形,再在第二行摆2个正方形,说一说第二行摆2个正方形用的根数里有几个一个正方形的根数。

2、(1)摆飞机,数一数用几个小棒摆出一架飞机?

(2)指导学生摆飞机。

(3)引导学生仔细观察思考(针对学生回报摆的结果),谁能根据你摆的飞机,提出一个问题让大家猜一猜,引出一个数里含有几个另一个数的除法含义,也就是他们摆的根数是老师摆的几倍。

(4)如果再摆一架飞机,这时飞机根数是老师摆的几倍?

(5)回报结果,让学生在探究中找到“求一个数是另一个数的几倍是多少”的解题思路。即:求一个数是另一个数的几倍的含义就是“求一个数里含有几个另一个数”用除法计算。像刚才摆飞机就是求15里面有几个5,15里面有3个5,也就是15是5的3倍。说明“倍”是一种关系,不是单位总称,所以3后面什么也不用写。

3、看一看,比一比(出示课件)

(1)萝卜3个,茄子6个,茄子的个数是萝卜个数的几倍(6里面有几个3)。

(2)萝卜2个,茄子6个,茄子的个数是萝卜的个数的几倍(6里面有几个2)。

[设计意图]:让学生由生活中的食物联系到倍数关系,因为数学本来就来源于生活。

(3)摆圆片(动手操作)

a、第一行摆4个○,第二行摆8个○。

b、第一行摆3个○,第二行摆9个○。

4、考考你

8里面有个48是4的()倍

12里面有()个312是3的()倍

24里面有()个624是6的()倍

42里面有()个742是7的()倍

三:运用知识解决问题

1、教学例3

(1)仔细看图,从图中你获得了哪些信息?

(2)引导学生思考,想一想,怎样解决“唱歌人数是跳舞人数的几倍。

(3)引导学生独立解决问题。

(4)让学生说出自己的想法,并组织学生集体订正。

(5)还能提出什么问题。(根据学生的思路解决)

2、引导学生做一做

[设计意图]:重点突出学生的自主参与,独立思考。教师在这一过程中扮演着引导者的角色,要把充分的学习时间还给学生。

3、归纳小结:求一个数是另一个数的几倍,就是求一个数里有几个另一个数,只是说法不同,用除法计算。

四、巩固深化

1、练习十二(第1题)要求学生认真看图(1)图中有些什么动物?(2)分别是多少只?(3)独立分析解决,小鹿的只数是小猴的几倍?(4)为什么这样列式?(5)还能提出其他问题吗?

2、独立完成第2题

3、观看课件拓展

(1)观察各种书籍的本数。

(2)完成题中的问题。

(3)还能提出问题吗?

五:课堂小结

教学反思:

本课时,我在教学中充分让学生动手操作,在实践中体会“求一个数是另一个数的几倍”就是“求一个数里有几个另一个数”的除法含义,采取摆一摆、比一比、考考你等学习形式。学生在快乐,轻松的探究中学习掌握了本课时的知识,达到预计的目的。不足之处,是教师的巡视不够,导致学困生没有落到实处,在今后的教学中要不断的学习、探索先进的教学经验、制作学生喜欢的课件。尽可能让每一个学生都学到有用的数学知识。

篇16:《用除法解决问题》教学设计

教学内容:

二年级下册29页的例3及练习六的1、2题。

教学目标:

1、使学生初步学会解答“把一个数平均分成几份,求每份是多少”和“把一个数按照每几个一份来分,看能分成份”的除法应用题,会写单位名称。

2、通过提供丰富的、现实的、具有探索性的学习活动,感知生活与数学的紧密联系,激发学生对数学的兴趣,逐步发展学生的数学思维能力和创新意识。

3、使学生逐步养成爱动脑筋分析、解决问题的习惯。使学生在解决问题的过程中,体会两个问题的内在联系,受到辩证唯物主义观点的启蒙教育。

教学重点:

使学生初步学会解答“把一个数平均分成几份,求每份是多少”和“把一个数按照每几个一份来分,看能分成份”的除法应用题,会写单位名称。

教学难点:

使学生逐步养成爱动脑筋分析、解决问题的习惯。使学生在解决问题的过程中,体会两个问题的内在联系,受到辩证唯物主义观点的启蒙教育。

教具准备:

课件、作业纸、小棒。

教学过程:

一、创设情景,导入新课:

1、同学们,你们最喜欢玩什么游戏?

2、丰富多彩的游戏可以锻炼身体,开发智力,所以吸引了很多同学参加。老师昨天就看到一些同学在高高兴兴的做游戏,我们一起来看看!

二、学习新知:

1、认真观察,根据图上的信息可以提什么数学问题?怎样解决,学生独立思考后,小组内交流。

2、汇报:(有15个同学做游戏,平均分成了3组,每组有几人?)(有15个同学做游戏,每组有5人,可以分成几组?)将提前写好的例题贴在黑板上。如果学生提出了“有3组同学在做游戏,每组5人,求一共有多少人?”时,直接让学生解答。

3、会用学过的知识解决这两个问题吗?

自己做在作业纸上,找学生板书。

4、由板书的同学介绍自己是怎样写的。并通过生生交流的形式解决以下问题:

①、为什么这样列式?(有15个同学做游戏,平均分成了3组,每组有几人?就是把15平均分成了3分,求每份是多少?所以用除法。)

②、15÷3=5表示什么?(15÷3=5表示把15平均分成3份,每份是5。)

③、为什么单位名称是人?(因为最后求得是每组有几人?所以单位名称是人。)

④、第二题为什么用除法?(有15个同学做游戏,每组有5人,可以分成几组?就是求15里面有几个5?所以用除法。)

⑤、15÷5=3表示什么?(15÷5=3表示15里面有3个5。)

⑥、为什么单位名称是组?(因为最后求的是可以分成几组?所以单位名称是组。)

5、通过观察、思考我们解决了三个问题,你能发现它们之间有什么关系吗?小组里讨论讨论。汇报。

小结:由于这两个问题讲的是一件事,所以都用除法;而且第一个已知条件相同,都是有15个同学在做游戏,所以算式中被除数都是15;第二个已知条件和问题交换了位置,所以算式中除数和商交换了位置,造成了算式的意义不同,一个表示把15平均分成3份,每份是5;

另一个表示15里面有3个5。

6、同学们总结得很好,找出了三者之间的关系。由于喜欢做游戏的人比较多,所以人数发生了变化,我们来看看!

7、出示主题图:学生读题。你们会解决吗?谁来说说?

根据汇报板书,说说想法。(15+3=18(人)18÷3=6(人)

3÷3=1(人)1+5=6(人))

怎样列综合算式?(15+3÷3 3÷3+5)

你发现了什么?为什么要加括号?

小结:所以当我们列综合算式的时候一定要看看需不需要加括号。

指综合算式,让学生说一说每一步求得是什么?

8、由于有的同学有事,所以人数又发生了新的变化。出示主题图:如果来得不是3人,而是1人,平均分成三组行不行?(不行,因为来的只有1人,将这个人分在哪一组,都会造成有多有少的现象,不是平均分。所以不行。)

9、既然平均分成3组不行,那你认为平均分成几组比较合适?小组为单位,借助小棒先摆一摆,再交流并列出算式。

汇报:我们组是把16人平均分成了4份,每组有4人。算式是16÷4=4(人)。

我们组是把16人平均分成了2份,每组有8人。算式是16÷2=8(人)

我们组是把16人平均分成了8份,每组有2人。算式是16÷8=2(人)

我们组是把16人平均分成了16份,每组有1人。算式是16÷8=2(人)

10、同学们利用所学的知识很好地解决了这个问题,这就是我们今天学习的“用除法解决问题”。

三、巩固练习:

1、你们掌握了吗?那老师考考你们!出示练习六的第1题和第2题。 学生读题,口答。

2、为了激励同学们养成爱动脑筋的好习惯,小刺猬准备运苹果奖励给大家。

3、大家一起来看小刺猬给我们带来的第一个问题?怎样解答?你帮小刺猬解决了第一个问题,奖励你一个大苹果。第二个问题谁会解决?

4、同学们得到了小刺猬的奖励,高兴吗?老师还有一个想法,刚才我们都是口头解决的问题,你能讲问题写在纸上吗?出示主题图,要求将问题写在作业纸上,再解答。

四、课堂总结:

今天学习了什么?你有什么收获?什么样的题用除法计算?

五、板书设计:

用除法解决问题

有15个同学做游 有15个同学做游戏,

戏,平均分成了3 每组有5人,

组,每组有几人? 可以分成几组?

15÷3=5(人) 15÷5=3(人)

答:每组有5人。 答:可以分成3组。

篇17:两个数的最小公倍数 教案教学设计(人教新课标五年级下册)

课题一:

教学要求  ①使学生理解公倍数、最小公倍数的概念。②使学生初步掌握求两个数的最小公倍数的方法。③培养学生抽象概括的能力和实际操作的能力。

教学重点  理解公倍数、最小公倍数的概念。

教学难点  求两个数的最小公倍数的方法。

教学用具  投影仪

教学过程

一、创设情境

1、口答:求下面每组数的最大公约数。

3和8    6和11   13和26   17和51

2、求30和42的最大公约数。

二、揭示课题。

前面我们已学过两个数的约数和最大公约数,现在我们来研究两个数的倍数。

三、探索研究

1.教学例1。

投影出示例1 及画好的数轴。

(1)学生口述4和6的倍数,投影显示在数轴上。

(2)观察并回答。

①4和6公有的倍数是哪几个?

②其中最小的一个是多少?有无最大的?为什么?

(3)归纳并板书。

①4 和6公有的倍数有:12、24、36……

其中最小的一个是12。

②也可以用图来表示。

4的倍数    6的倍数

4 8 16 20 12  24 6  8  30

……   ……   ……

4 和6 的公倍数

(4)抽象、概括。

①什么是公倍数、最小公倍数?(让学生说)

②指导学生看教材第71页有关公倍数、最小公倍数的概念。

(5)尝试练习。

做教材第73页的“做一做”,先让学生分别填写出6和8的倍数,再让学生说:两个圈交叉部分应该填什么数?为什么不打省略号?填好后集体订正。

2.教学例2。

(1)出示例2并说明:我们通常用分解质因数的方法来求几个数的最小公倍数。

(2)把18和30分解质因数,写出短除的竖式并指出它们公有的质因数是哪些?

2  18        2    30

3  9          3  15

3              5

18=2×3×3

30=2×3×5

(3)观察、分析。

①18(或30)的倍数必须包含哪些质因数?

②如果2×3×3(或2×3×5)再乘以2或3或5得到36、54、90(或60、90、150)都是18(或30)的什么?

③18和30的公倍数必须包含哪些质因数?(2×3×3×5)

(4)归纳:18 和30 的最小公倍数里,必须包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了,所以18 和30 的最小公倍数是:

2×3×3×5=90

(5)教学求最小公倍数的一般方法。

为了简便,我们通常用短除分解质因数的方法,写成下面的形式,求最小公倍数,如:  18  30  并让学生分组讨论写成这种形式后该怎样做。

①每次用什么作除数去除?

②一直除到什么时候为止?

③再怎样做就可以求出最小公倍数了?

(6)尝试练习。

做教材第74页上面的“做一做”,学生解答后,点几名学生说说是怎样做的,然后集体订正。

(7)抽象、概括求最小公倍数的方法。

①谁能说说求最小公倍数的方法。

②指导学生看第74页求两个数的最小公倍数的方法。

四、课堂实践

1.做练习十五的第1题,让学生讲讲为什么?

2.做练习十五的第4题,先让学生也按要求去做,再回答谁做得对,谁做错了,错在什么地方?

五、课堂小结

学生小结今天学习的内容及方法。

六、课堂作业

做练习十五的第2、3题。

篇18:《求两个数的最大公因数的练习一》优秀教学设计

《求两个数的最大公因数的练习一》优秀教学设计

教学内容:

完成练习五的第6~11题。

教学要求:

1、通过练习,使学生发现求两个数的最大公因数的一些简捷的方法,并能根据两个数的关系选择用合理的方法求两个数的最大公因数。

2、让学生感受数学与生活的联系,体会解决问题策略的多样性。

教学重点:学生掌握求两个数的最大公因数的一些简捷的方法。

教学难点:学生回选择用合理的方法求两个数的最大公因数。

教学过程:

一、基础练习

找出下面每组数的最大公因数。

14和16 30和10 15和9 21和28

二、完成第29页的第6~11题。

1、第6题

⑴①让学生观察左边4题,说说这几组数有什么共同的特点。

②找出每组两个数的.最大公因数。

③比较和交流:有什么发现?

(有些情况下,两个数的最大公因数是它们中较小的那个数。)

⑵独立完成右边4题,再比较交流发现了什么?

(有些情况下,两个数的最大公因数就是1。)

2、第7题

先由学生独立完成,然后说说分别是什么方法求出每组数的最大公因数的?体会方法的多样性。

3、第8题

如果有困难,可让学生用自己熟悉的方法具体地找一找。

4、第9题

先让学生填表,并说说其中的规律;然后小组合作找出2、4、5分别与1、2、3、4、5……20等各数的最大公因数,并说说其中的规律。

5、第10题

先帮助学生弄清题意,知道裁出的正方形的边长应该是12和20的最大公因数,再让学生在图中画一画,并回答提出的问题。

6、第11题

三、小结:

通过今天这一节课的学习,你有什么收获?

篇19:求三个数的最小公倍数 教案教学设计(人教新课标五年级下册)

课题三:

教学要求  使学生在理解的基础上学会求三个数的最小公倍数。

教学重点  求三个数的最小公倍数与求两个数的最小公倍数的区别。

教学难点  会求三个数的最小公倍数。

教学过程

一、创设情境

求下面各组数的最小公倍数。(学生做完后,集体订正时,点几名学生说怎样求两个数的最小公倍数)

5和8      7和28       12和16

二、揭示课题

我们已经学会求两个数的最小公倍数,怎样求三个数的最小公倍数呢?现在我们一起来学习。(板书课题:求三个数的最小公倍数)

三、探索研究

1.教学例4。

(1)请同学们把8、12、和30分解质因数,并指出公有质因数是哪些?(教师根据学生的回答板书如下)

8=2×2×2

12=2×2×3

30=2   ×3×5

(2)分组讨论。

①8、12、30的最小公倍数必须包含哪些质因数?

②如果先取这三个数公有质因数1个2,再取每两个数公有质因数1个2和1个3,最后取各自独有的质因数2和5 ,(2×2×2×3×5)这些质因数是否包含了8、12和30所有的质因数?

③8、12和30的最小公倍数是多少?

(3)归纳:8、12和30的最小公倍数,必须包含这三个数全部公有的质因数(1个2)和每两个数公有的质因数(1个2和1个3)以及各自独有的(2和5),这些质因数积(2×2×2×3×5=120)就是8、12和30的最小公倍数。

(4)求三个数的最小公倍数的方法。

求三个数的最小公倍数与求两个数的最小公倍数的方法大同小异。(板书短除式)

8  12  30

①先用什么数作除数去除?

②再用什么数作除数去除?(重点指导:另一个数要移下来)

③一直除到什么时候为止?

④最后怎样做就可以求出三个数的最小公倍数?

(5)比较求三个数的最小公倍数与求两个数的最小公倍数有什么不同?(先可让学生说,然后老师归纳)

相同点:都是用短除的形式分解质因数,都是把所有的除数和商连乘起来。

不同点:求两个数的最小公倍数时,除到两个商是互质数这止;而求三个数的最小公倍数时,要先用三个数公有的质因数去除,再用两个数的公有的质因数去除,一直除到三个商中每两个数都是互质数(两两互质)为止。

四、课堂实践

1.做教材第75页的“做一做”。

2.做练习十五的第12题,先让学生看,再指出它的错误,使学生明确:错在三个数公有的质因数还没有找完。在用6除时把8移下来,就等于在最小公倍数里多取了一个质因数2。

3.做练习十五的第13题,学生口答。

五、课堂小结

学生小结今天学习的内容、方法。

六、课堂作业

1.做练习十五的第10、11、14题。

2.有兴趣、有余力的学生可做练习十五的第21*~23*题。

【“用短除法求两个数的最小公倍数”教学设计】相关文章:

1.短除法教学设计

2.求两个数的最大公因数教学反思

3.最小公倍数教学设计

4.分数的最小公倍数怎么求

5.分数除法教学设计

6.小数除法教学设计

7.笔算除法教学设计

8.人教版最小公倍数的应用教学设计

9.最小公倍数的应用教学设计人教版

10.《短新闻》教学设计

下载word文档
《“用短除法求两个数的最小公倍数”教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部