欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 实用文>行程问题复习的应用题

行程问题复习的应用题

2023-09-12 09:23:21 收藏本文 下载本文

“更换一个ID”通过精心收集,向本站投稿了5篇行程问题复习的应用题,下面是小编整理后的行程问题复习的应用题,希望能帮助到大家!

行程问题复习的应用题

篇1:行程问题复习的应用题

行程问题复习的应用题

准备题:

1、小明和小红家相距600米,两人同时从家出发,小明每分钟走60米,小红每分钟走40米,几分钟后两人相遇?

2、甲、乙两人从相距36千米的两地相向而行。甲速度为每小时3千米,乙速度为每小时4千米,若乙先出发2小时,甲才出发,则甲经过几小时后与乙相遇?

3、两辆汽车同时从相距190千米的甲乙两地相对开出,甲车每小时行45千米,乙车每小时行50千米。两车开出几小时后,还相距95千米?

用4辆载重量相同的汽车,7次共运货物168吨,现有同样的汽车8辆,10次可以运货物多少吨?

【练习巩固】

1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?

2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。两地相距多少千米?

3、甲乙两艘轮船从相距654千米的两地相对开出,8小时两船还相距22千米。已知乙船每小时行42千米,甲船每小时行多少千米?

4、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?

5、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。乙车每小时行多少千米?

6、甲、乙两地相距280千米,一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇。已知汽车的速度是拖拉机速度的4倍,相遇时,汽车比拖拉机多行多少千米?

针对练习:

1. 甲、乙两车同时从相距960千米的A、B两地相向开出,8小时后相遇。已知甲车每小时比乙车快4千米,求甲车的`速度是多少?相遇时乙车行驶了多少千米?

2. 某零件加工厂要加工零件1200个。第一车间每天能加工190个,比二车间每天少加工20个。现在两个车间共同加工这批零件,要加工多少天?完成时每个车间各加工了多少个?

3. 自行车商店要装配2380辆自行车,甲组每天装配120辆,乙组每天装配140辆。两个组共同装配7天后,由乙组单独装配。乙组还要多少天才能完成任务?

4. 甲乙两列火车同时从A、B两地相对开出,甲车每小时行90千米,乙车每小时行84千米,相遇时甲车比乙车多行了78千米,A、B两地相距多少千米?

5. 两个水管同时向游泳池中注水,大管3小时注水48吨,小管每小时注水12吨。放满224吨水要多少小时?

6. 车站上有120吨货物,用甲车10小时可以运完,用乙车15小时可以运完,如果两车同时运,几小时可以运完?

提高题:

1、一辆面包车和一辆小轿车同时从相距300千米的两地相向而行,面包车每小时行45千米,小轿车每小时行55千米,几小时后两车第一次相距100千米?再过多少时间两车再次相距100千米?

2、东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲车每小时行的路程是乙的2倍,经过3小时后两车还相距56千米,两人速度各是多少千米?

篇2:行程问题应用题及答案

1、羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它。问:羊再跑多远,马可以追上它?

2、甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?

3、在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?

4、慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?

5、在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?

6、一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)

7、猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。

8、AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?

9、甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米?

10、一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?

11、快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。

12、小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?

1、解:

根据“马跑4步的距离羊跑7步”,可以设马每步长为7x米,则羊每步长为4x米。

根据“羊跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则羊跑5*4x=20米。

可以得出马与羊的速度比是21x:20x=21:20

根据“现在羊已跑出30米”,可以知道羊与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米

2、答案720千米。

由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。

3、答案为:两人跑一圈各要6分钟和12分钟。

解:

600÷12=50,表示哥哥、弟弟的速度差

600÷4=150,表示哥哥、弟弟的速度和

(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数

(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数

600÷100=6分钟,表示跑的快者用的时间

600/50=12分钟,表示跑得慢者用的时间

4、答案为:53秒

算式是(140+125)÷(22-17)=53秒

可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。

5、答案为:100米

300÷(5-4.4)=500秒,表示追及时间

5×500=2500米,表示甲追到乙时所行的路程

2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。

6、答案为:22米/秒

算式:1360÷(1360÷340+57)≈22米/秒

关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。

7、正确的答案是猎犬至少跑60米才能追上。

解:

由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完

8、答案:18分钟

解:设全程为1,甲的速度为x乙的速度为y

列式40x+40y=1

x:y=5:4

得x=1/72 y=1/90

走完全程甲需72分钟,乙需90分钟

故得解

9、答案是300千米。

解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的`路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。

因此360÷(1+1/5)=300千米

从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。如果二人分别至B地,A地后都立即折回。第二次相遇点第一次相遇点之间有千米

10、解:(1/6-1/8)÷2=1/48表示水速的分率

2÷1/48=96千米表示总路程

11、解:

相遇是已行了全程的七分之四表示甲乙的速度比是4:3

时间比为3:4

所以快车行全程的时间为8/4*3=6小时

6*33=198千米

12、解:

把路程看成1,得到时间系数

去时时间系数:1/3÷12+2/3÷30

返回时间系数:3/5÷12+2/5÷30

两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时

去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75

路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)

篇3:行程问题应用题及答案

1、在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?

答案为:两人跑一圈各要6分钟和12分钟。600÷12=50,表示哥哥、弟弟的速度差600÷4=150,表示哥哥、弟弟的速度和(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数600÷100=6分钟,表示跑的快者用的时间600/50=12分钟,表示跑得慢者用的时间

2、慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?

答案为:53秒算式是(140+125)÷(22-17)=53秒可以这样理“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。

3、在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?

答案为:100米300÷(5-4.4)=500秒,表示追及时间5×500=2500米,表示甲追到乙时所行的路程2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。

4、狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?

根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。可以得出马与狗的速度比是21x:20x=21:20根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米

5、甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?

答案720千米。由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。

6、一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)

答案为:22米/秒算式:1360÷(1360÷340+57)≈22米/秒关键理人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。

7、猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。

正确的答案是猎犬至少跑60米才能追上。由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完

8、AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?

答案:18分钟设全程为1,甲的速度为x乙的速度为y列式40x+40y=1x:y=5:4得x=1/72 y=1/90走完全程甲需72分钟,乙需90分钟故得解

9、甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米?

答案是300千米。通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。因此360÷(1+1/5)=300千米

10、一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?

(1/6-1/8)÷2=1/48表示水速的分率

2÷1/48=96千米表示总路程

篇4:行程问题应用题教案设计参考

行程问题应用题教案设计参考

教学目标:

1、让学生利用路程、时间、速度三者之间的关系,借助画示意图解以现实为背景的应用题。

2、让学生利用画图直观分析、探究发现、充分发挥学生的主体作用,学生在轻松愉快的气氛中掌握知识。

3、在教师引导下结合实际创造有趣的情景,提高学生的学习兴趣,让他们在活动中获得成功的体验,培养学生的探索精神,树立学习的信心。

4、在《小组竞赛学习法》督促下,逐步引导学生自学 , 使学生的被动学习变为主动学习。

教学重难点

重点:通过学案引导学生分析例题 , 寻找等量关系列方程。

难点:

1、通过学案引导学生从不同角度来寻找等量关系,列方程。

2、通过小组竞赛做题的竞争 , 慢慢地培养学生学习的积极性 , 逐步加强学生的自学能力。

教学方法:《小组竞赛学习法》

教学设计

课前准备

创设悬念 提出问题。

(上课的提前一天或周五下午,给学生每人一份学案,让学生充分讨论准备迎接小组比赛,后面备有学案内容)

课堂教学过程

一、老师出示学案的答案(选做题暂不给答案 , 下课后,学生可用 U 盘烤走当参考),宣布评卷规则。要求:学案每做一题(不包括选做题),不管对错得 1 分,能作对的加一分,并会讲的再加一分,选做题做了并对且会讲的应加倍给分。 ( 选做题让教师讲解后再让学生讲的不加倍给分。

小组组员之间先互帮互学对改答案,准备迎接其它组的检查。(大约用 20 分 -30 分钟,小组准备的越充分越好,若多数学生没准备好,可以再多给点时间让其准备,千万不能打无准备之仗,准备不好的话,先不小组比赛,下节课才小组比赛也行),此时老师巡回抽查每组中学生的自学情况,根据情况调整互帮互学时间,对于都不会的问题,教师可以演讲让优生先学会,再帮助差生学会。

二、小组推磨检查,一般每小组的前四名检查下组的后四名,( 8 人一个组)。

三、各组长统计分数并让被检组认可,教师统计各组分数, 对全班小组排列顺序,分数最低的小组起立向大家敬礼表示失败,(也可以对第一名小组奖励)教师把比赛结果记录在专用本子上,准备一周的`总分评比。一周的总分数少的小组要替第一名小组打扫卫生一次。每周比赛结果也记录在专用本子上,准备一学期的总分评比。

四、布置下节自学任务而结束本节上课。

以下是备用内容

学生自学内容 (就是学案)

先给大家讲一个当代数学家苏步青教授故事,苏步青教授在法国遇到一个很有名气的数学家,这位数学家在电车里给苏教授出了个题目:

问题 1“ 甲乙两人,同时出发,相对而行,距离是 50 千米,甲每小时走 3km, 乙每小时走 2km ,问他俩几小时可以碰面?

苏教授一下子便回答出来了,你能回答上述问题吗?你能把解决的方法步骤写出来并给大家讲一下吗? ”

请 同学们先画出示意图:

再由图填空:甲乙相遇时,他们共行的路程为( )

从路程的角度分析:甲走的路程 + 乙走的路程为( )

从时间角度分析:甲走的时间 = 乙走的时间。

如果 设甲、乙相遇时他们所用时间为 x 小时,此时相等关系:

甲走的路程 + 乙走的路程) = ( )

即甲行走的速度×甲行走的( ) + 乙行走的( )×乙行走的时间 = ( )

篇5:的行程问题应用题及答案

最新的行程问题应用题及答案

例1、甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?

[分析]出发时甲、乙二人相距30千米,以后两人的距离每小时都缩短6+4=10(千米),即两人的速度的和(简称速度和),所以30千米里有几个10千米就是几小时相遇。

解:30÷(6+4)

=30÷10

=3(小时)

答:3小时后两人相遇。

例2、甲、乙二人从相距100千米的A、B两地同时出发相向而行,甲骑车,乙步行,在行走过程中,甲的车发生故障,修车用了1小时。在出发4小时后,甲、乙二人相遇,又已知甲的`速度为乙的2倍,且相遇时甲的车已修好,那么,甲、乙二人的速度各是多少?

〔分析〕甲的速度为乙的2倍,因此,乙走了4小时的路,甲只要2小时就可以了,这样就可以求出甲的速度。

解:甲的速度为:100÷(4-1+4÷2)

=100÷5=20(千米/小时)

乙的速度为:20÷2=10(千米/小时)

答:甲的速度为20千米/小时,乙的速度为10千米/小时。

延伸阅读:

基本数量关系应用题:

【练习巩固】

1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?

2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。两地相距多少千米?

3、甲乙两艘轮船从相距654千米的两地相对开出,8小时两船还相距22千米。已知乙船每小时行42千米,甲船每小时行多少千米?

4、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?

5、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。乙车每小时行多少千米?

6、甲、乙两地相距280千米,一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇。已知汽车的速度是拖拉机速度的4倍,相遇时,汽车比拖拉机多行多少千米?

针对练习:

1. 甲、乙两车同时从相距960千米的A、B两地相向开出,8小时后相遇。已知甲车每小时比乙车快4千米,求甲车的速度是多少?相遇时乙车行驶了多少千米?

2. 某零件加工厂要加工零件1200个。第一车间每天能加工190个,比二车间每天少加工20个。现在两个车间共同加工这批零件,要加工多少天?完成时每个车间各加工了多少个?

3. 自行车商店要装配2380辆自行车,甲组每天装配120辆,乙组每天装配140辆。两个组共同装配7天后,由乙组单独装配。乙组还要多少天才能完成任务?

4. 甲乙两列火车同时从A、B两地相对开出,甲车每小时行90千米,乙车每小时行84千米,相遇时甲车比乙车多行了78千米,A、B两地相距多少千米?

5. 两个水管同时向游泳池中注水,大管3小时注水48吨,小管每小时注水12吨。放满224吨水要多少小时?

6. 车站上有120吨货物,用甲车10小时可以运完,用乙车15小时可以运完,如果两车同时运,几小时可以运完?

提高题:

1、一辆面包车和一辆小轿车同时从相距300千米的两地相向而行,面包车每小时行45千米,小轿车每小时行55千米,几小时后两车第一次相距100千米?再过多少时间两车再次相距100千米?

2、东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲车每小时行的路程是乙的2倍,经过3小时后两车还相距56千米,两人速度各是多少千米?

【行程问题复习的应用题】相关文章:

1.五年级数学《行程问题(一)》教学设计

2.五年级奥数行程问题试题及解析

3.六年级数学应用题练习题复习知识点

4.六年级工程问题应用题教学反思

5.工程问题应用题教学设计人教版

6.《方程解应用题复习课》的教学反思

7.小学奥数应用题过桥问题试题

8.应用题教学

9.数学教案-应用题

10.一滴水的行程五年级作文

下载word文档
《行程问题复习的应用题.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部