欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 试题>数列的测试题

数列的测试题

2024-03-28 07:45:04 收藏本文 下载本文

“winy2006”通过精心收集,向本站投稿了3篇数列的测试题,下面就是小编给大家带来的数列的测试题,希望大家喜欢,可以帮助到有需要的朋友!

数列的测试题

篇1:数列测试题及答案

数列测试题及答案

数列测试题及答案:

一、选择题:本大题共12小题,每小题5分,共60分.

1.在等差数列{an}中,若a1+a2+a12+a13=24,则a7为( )

A.6 B.7 C.8 D.9

解析:∵a1+a2+a12+a13=4a7=24,∴a7=6.

答案:A

2.若等差数列{an}的前n项和为Sn,且满足S33-S22=1,则数列{an}的公差是( )

A.12 B.1 C.2 D.3

解析:由Sn=na1+n(n-1)2d,得S3=3a1+3d,S2=2a1+d,代入S33-S22=1,得d=2,故选C.

答案:C

3.已知数列a1=1,a2=5,an+2=an+1-an(n∈N*),则a2 011等于( )

A.1 B.-4 C.4 D.5

解析:由已知,得a1=1,a2=5,a3=4,a4=-1,a5=-5,a6=-4,a7=1,a8=5,…

故{an}是以6为周期的数列,

∴a2 011=a6×335+1=a1=1.

答案:A

4.设{an}是等差数列,Sn是其前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是( )

A.d<0 B.a7=0

C.S9>S5 D.S6与S7均为Sn的最大值

解析:∵S5<S6,∴a6>0.S6=S7,∴a7=0.

又S7>S8,∴a8<0.

假设S9>S5,则a6+a7+a8+a9>0,即2(a7+a8)>0.

∵a7=0,a8<0,∴a7+a8<0.假设不成立,故S9<S5.∴C错误.

答案:C

5.设数列{an}是等比数列,其前n项和为Sn,若S3=3a3,则公比q的值为( )

A.-12 B.12

C.1或-12 D.-2或12[

解析:设首项为a1,公比为q,

则当q=1时,S3=3a1=3a3,适合题意.

当q≠1时,a1(1-q3)1-q=3a1q2,

∴1-q3=3q2-3q3,即1+q+q2=3q2,2q2-q-1=0,

解得q=1(舍去),或q=-12.

综上,q=1,或q=-12.

答案:C

6.若数列{an}的通项公式an=5 252n-2-425n-1,数列{an}的最大项为第x项,最小项为第y项,则x+y等于( )

A.3 B.4 C.5 D.6

解析:an=5252n-2-425n-1=525n-1-252-45,

∴n=2时,an最小;n=1时,an最大.

此时x=1,y=2,∴x+y=3.

答案:A

7.数列{an}中,a1 =15,3an+1= 3an-2(n∈N *),则该数列中相邻两项的乘积是负数的是( )

A.a21a22 B.a22a23 C.a23a24 D.a24a25

解析:∵3an+1=3an-2,

∴an+1-an=-23,即公差d=-23.

∴an=a1+(n-1)d=15-23(n-1).

令an>0,即15-23(n-1)>0,解得n<23.5.

又n∈N*,∴n≤23,∴a23>0,而a24<0,∴a23a24<0.

答案:C

8.某工厂去年产值为a,计划今后5年内每年比上年产值增加10%,则从今年起到第5年,这个厂的总产值为( )

A.1.14a B.1.15a

C.11×(1.15-1)a D.10×(1.16-1)a

解析:由已知,得每年产值构成等比数列a1=a,w

an=a(1+10%)n-1(1≤n≤6).

∴总产值为S6-a1=11×(1.15-1)a.

答案:C

9.已知正数组成的等差数列{an}的前20项的和为100,那么a7a14的最大值为( )

A.25 B.50 C.1 00 D.不存在

解析:由S20=100,得a1+a20=10. ∴a7+a14=10.

又a7>0,a14>0,∴a7a14≤a7+a1422=25.

答案:A

10.设数列{an}是首项为m,公比为q(q≠0)的.等比数列,Sn是它的前n项和,对任意的n∈N*,点an,S2nSn( )

A.在直线mx+qy-q=0上

B.在直线qx-my+m=0上

C.在直线qx+my-q=0上

D.不一定在一条直线上

解析:an=mqn-1=x, ①S2nSn=m(1-q2n)1-qm(1-qn)1-q=1+qn=y, ②

由②得qn=y-1,代入①得x=mq(y-1), 即qx-my+m=0.

答案:B

11.将以2为首项的偶数数列,按下列方法分组:(2),(4,6),(8,10,12),…,第n组有n个数,则第n组的首项为( )

A.n2-n B.n2+n+2

C.n2+n D.n2-n+2

解析:因为前n-1组占用了数列2,4,6,…的前1+2+3+…+(n-1)=(n-1)n2项,所以第n组的首项为数列2,4,6,…的第(n-1)n2+1项,等于2+(n-1)n2+1-12=n2-n+2.

答案:D

12.设m∈N*,log2m的整数部分用F(m)表示,则F(1)+F(2)+…+F(1 024)的值是( )

A.8 204 B.8 192

C.9 218 D.以上都不对

解析:依题意,F(1)=0,

F(2)=F(3)=1,有2 个

F(4)=F(5)=F(6)=F(7)=2,有22个.

F(8)=…=F(15)=3,有23个.

F(16)=…=F(31)=4,有24个.

F(512)=…=F(1 023)=9,有29个.

F(1 024)=10,有1个.

故F(1)+F(2)+…+F(1 024)=0+1×2+2×22+3×23+…+9×29+10.

令T=1×2+2×22+3×23+…+9×29,①

则2T=1×22+2×23+…+8×29+9×210.②

①-②,得-T=2+22+23+…+29-9×210 =

2(1-29)1-2-9×210=210-2-9×210=-8×210-2,

∴T=8×210+2=8 194, m]

∴F(1)+F(2)+…+F(1 024)=8 194+10=8 204.

答案:A

第Ⅱ卷 (非选择 共90分)

二、填空题:本大题共4个小题,每小题5分 ,共20分.

13.若数列{an} 满足关系a1=2,an+1=3an+2,该数 列的通项公式为__________.

解析:∵an+1=3an+2两边加上1得,an+1+1=3(an+1),

∴{an+1}是以a1+1=3为首项,以3为公比的等比数列,

∴an+1=33n-1=3n,∴an=3n-1.

答案:an=3n-1

14.已知公差不为零的等差数列{an}中,M=anan+3,N=an+1an+2,则M与N的大小关系是__________.

解析:设{an}的公差为d,则d≠0.

M-N=an(an+3d)-[(an+d)(an+2d)]

=an2+3dan-an2-3dan-2d2=-2d2<0,∴M<N.

答案:M<N

15.在数列{an}中,a1=6,且对任意大于1的正整数n,点(an,an-1)在直线x-y=6上,则数列{ann3(n+1)}的前n项和Sn=__________.

解析:∵点(an,an-1)在直线x-y=6上,

∴an-an-1=6,即数列{an}为等差数列.

∴an=a1+6(n-1)=6+6(n-1)=6n,

∴an=6n2.

∴ann3(n+1)=6n2n3(n+1)=6n(n+1)=61n-1n+1

∴Sn=61-12+12-13+…+1n-1n+1.=61-1n+1=6nn+1.

答案:6nn+1

16.观察下表:

1

2 3 4

3 4 5 6 7

4 5 6 7 8 9 10

则第__________行的各数之和等于2 0092.

解析:设第n行的各数之和等于2 0092,

则此行是一个首项a1=n,项数为2n-1,公差为1的等差数列.

故S=n×(2n-1)+(2n-1)(2n-2)2=2 0092, 解得n=1 005.

答案:1 005

三、解答题:本大题共6小题,共70分.

17.(10分)已知数列{an}中,a1=12,an+1=12an+1(n∈N*),令bn=an-2.

(1)求证:{bn}是等比数列,并求bn;

(2)求通项an并求{an}的前n项和Sn.

解析:(1)∵bn+1bn=an+1-2an-2=12an+1-2an-2=12an-1an-2=12,

∴{bn}是等比数列.

∵b1=a1-2=-32,

∴bn=b1qn-1=-32×12n-1=-32n.

(2)an=bn+2=-32n+2,

Sn=a1+a2+…+an

=-32+2+-322+2+-323+2+…+-32n+2

=-3×12+122+…+12n+2n=-3×12×1-12n1-12+2n=32n+2n-3.

18.(12分)若数列{an}的前n项和Sn=2n.

(1)求{an}的通项公式;

(2)若数列{bn}满足b1=-1,bn+1=bn+(2n-1),且cn=anbnn,求数列{cn}的通项公式及其前n项和Tn.

解析:(1)由题意Sn=2n,

得Sn-1=2n-1(n≥2),

两式相减,得an=2n-2n-1=2n-1(n≥2).

当n=1时,21-1=1≠S1=a1=2.

∴an=2 (n=1),2n-1 (n≥2).

(2)∵bn+1=bn+(2n-1),

∴b2-b1=1,

b3-b2=3,

b4-b3=5,

bn-bn-1=2n-3.

以上各式相加,得

bn-b1=1+3+5+…+(2n-3)

=(n-1)(1+2n-3)2=(n-1)2.

∵b1=-1,∴bn=n2-2n,

∴cn=-2 (n=1),(n-2)×2n-1 (n≥2),

∴Tn=-2+0×21+1×22+2×23+…+(n-2)×2n-1,

∴2Tn=-4+0×22+1×23+2×24+…+(n-2)×2n.

∴-Tn=2+22+23+…+2n-1-(n-2)×2n

=2(1-2n-1)1-2-(n-2)×2n

=2n-2-(n-2)×2n

=-2-(n-3)×2n.

∴Tn=2+(n-3)×2n.

19.(12分)已知等差数列{an}的前n项和为Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比数列.

(1)求数列{an}的通项公式;

(2)若从数列{an}中依次取出第2项,第4项,第8项,…,第2n项,…,按原来顺序组成一个新数列{bn},记该数列的前n项和为Tn,求Tn的表达式.

解析:(1)依题意,得

3a1+3×22d+5a1+5×42d=50,(a1+3d)2=a1(a1+12d),解得a1=3,d=2.

∴an=a1+(n-1)d=3+2(n-1)=2n+1,

即an=2n+1.

(2)由已知,得bn=a2n=2×2n+1=2n+1+1,

∴Tn=b1+b2+…+bn

=(22+1)+(23+1)+…+(2n+1+1)

=4(1-2n)1-2+n=2n+2-4+n.

20.(12分)设数列{an}的前n项和为Sn,且ban-2n=(b-1)Sn.

(1)证明:当b=2时,{an-n2n-1}是等比数列;

(2)求通项an. 新 课 标 第 一 网

解析:由题意知,a1=2,且ban-2n=(b-1)Sn,

ban+1-2n+1=(b-1)Sn+1,

两式相减,得b(an+1-an)-2n=(b-1)an+1,

即an+1=ban+2n.①

(1)当b=2时,由①知,an+1=2an+2n.

于是an+1-(n+1)2n=2an+2n-(n+1)2n

=2an-n2n-1.

又a1- 120=1≠0,

∴{an-n2n-1}是首项为1,公比为2的等比数列.

(2)当b=2时,

由(1)知,an-n2n-1=2n-1,即an=(n+1)2n-1

当b≠2时,由①得

an +1-12-b2n+1=ban+2n-12-b2n+1=ban-b2-b2n

=ban-12-b2n,

因此an+1-12-b2n+1=ban-12-b2n=2(1-b)2-bbn.

得an=2, n=1,12-b[2n+(2-2b)bn-1], n≥2.

21.(12分)某地在抗洪抢险中接到预报,24小时后又一个超历史最高水位的洪峰到达,为保证万无一失,抗洪指挥部决定在24小时内另筑起一道堤作为第二道防线.经计算,如果有 20辆大型翻斗车同时作业25小时,可以筑起第二道防线,但是除了现有的一辆车可以立即投入作业外,其余车辆需从各处紧急抽调,每隔20分钟就有一辆车到达并投入工作.问指挥部至少还需组织多少辆车这样陆续工作,才能保证24小时内完成第二道防线,请说明理由.

解析:设从现有这辆车投入工作算起,各车的工作时间依次组成数列{an},则an-an-1=-13.

所以各车的工作时间构成首项为24,公差为-13的等差数列,由题知,24小时内最多可抽调72辆车.

设还需组织(n-1)辆车,则

a1+a2+…+an=24n+n(n-1)2×-13≥20×25.

所以n2-145n+3 000≤0,

解得25≤n≤120,且n≤73.

所以nmin=25,n-1=24.

故至少还需组织24辆车陆续工作,才能保证在24小时内完成第二道防线.

22.(12分)已知点集L={(x,y)|y=mn},其中m=(2x-2b,1),n=(1,1+2b),点列Pn(an,bn)在点集L中,P1为L的轨迹与y轴的交点,已知数列{an}为等差数列,且公差为1,n∈N*.

(1)求数列{an},{bn}的通项公式;

(3)设cn=5nan|PnPn+1|(n≥2),求c2+c3+c4+…+cn的值.

解析:(1)由y=mn,m=(2x-2b,1),n=(1,1+2b),

得y=2x+1,即L:y=2x+1.

∵P1为L的轨迹与y轴的交点,

∴P1(0,1),则a1=0,b1=1.

∵数列{an}为等差数列,且公差为1,

∴an=n-1(n∈N*) .

代入y=2x+1,得bn=2n-1(n∈N*).

(2)∵Pn(n-1,2n-1),∴Pn+1(n,2n+1).

=5n2-n-1=5n-1102-2120.

∵n∈N*,

(3)当n≥2时,Pn(n-1,2n-1),

∴c2+c3+…+cn

=1-12+12-13+…+1n-1-1n=1-1n.

篇2:数列的测试题

关于数列的测试题

1.数列1,12,14,…,12n,…是

A.递增数列B.递减数列

C.常数列D.摆动数列

答案:B

2.已知数列{an}的通项公式an=12[1+(-1)n+1],则该数列的前4项依次是()

A.1,0,1,0B.0,1,0,1

C.12,0,12,0D.2,0,2,0

答案:A

3.数列{an}的通项公式an=cn+dn,又知a2=32,a4=154,则a10=__________.

答案:9910

4.已知数列{an}的通项公式an=2n2+n.

(1)求a8、a10.

(2)问:110是不是它的项?若是,为第几项?

解:(1)a8=282+8=136,a10=2102+10=155.

(2)令an=2n2+n=110,∴n2+n=20.

解得n=4.∴110是数列的第4项.

一、选择题

1.已知数列{an}中,an=n2+n,则a3等于()

A.3B.9

C.12D.20

答案:C

2.下列数列中,既是递增数列又是无穷数列的是()

A.1,12,13,14,…

B.-1,-2,-3,-4,…

C.-1,-12,-14,-18,…

D.1,2,3,…,n

解析:选C.对于A,an=1n,n∈N*,它是无穷递减数列;对于B,an=-n,n∈N*,它也是无穷递减数列;D是有穷数列;对于C,an=-(12)n-1,它是无穷递增数列.

3.下列说法不正确的是()

A.根据通项公式可以求出数列的任何一项

B.任何数列都有通项公式

C.一个数列可能有几个不同形式的通项公式

D.有些数列可能不存在最大项

解析:选B.不是所有的数列都有通项公式,如0,1,2,1,0,….

4.数列23,45,67,89,…的第10项是()

A.1617B.1819

C.D.2223

解析:选C.由题意知数列的通项公式是an=2n2n+1,

∴a10=2×102×10+1=2021.故选C.

5.已知非零数列{an}的递推公式为an=nn-1an-1(n>1),则a4=()

A.3a1B.2a1

C.4a1D.1

解析:选C.依次对递推公式中的n赋值,当n=2时,a2=2a1;当n=3时,a3=32a2=3a1;当n=4时,a4=43a3=4a1.

6.(浙江乐嘉调研)已知数列{an}满足a1>0,且an+1=12an,则数列{an}是()

A.递增数列B.递减数列

C.常数列D.摆动数列

解析:选B.由a1>0,且an+1=12an,则an>0.

又an+1an=12<1,∴an+1

因此数列{an}为递减数列.

二、填空题

7.已知数列{an}的`通项公式an=19-2n,则使an>0成立的最大正整数n的值为__________.

解析:由an=19-2n>0,得n<192,∵n∈N*,∴n≤9.

答案:9

8.已知数列{an}满足a1=2,a2=5,a3=23,且an+1=αan+β,则α、β的值分别为________、________.

解析:由题意an+1=αan+β,

得a2=αa1+βa3=αa2+β5=2α+β23=5α+βα=6,β=-7.

答案:6-7

9.已知{an}满足an=-1nan-1+1(n≥2),a7=47,则a5=________.

解析:a7=-1a6+1,a6=1a5+1,∴a5=34.

答案:34

三、解答题

10.写出数列1,23,35,47,…的一个通项公式,并判断它的增减性.

解:数列的一个通项公式an=n2n-1.

又∵an+1-an=n+12n+1-n2n-1=-12n+12n-1<0,

∴an+1<an.

∴{an}是递减数列.

11.在数列{an}中,a1=3,a17=67,通项公式是关于n的一次函数.

(1)求数列{an}的通项公式;

(2)求a;

(3)2011是否为数列{an}中的项?若是,为第几项?

解:(1)设an=kn+b(k≠0),则有k+b=3,17k+b=67,

解得k=4,b=-1.∴an=4n-1.

(2)a2011=4×2011-1=8043.

(3)令2011=4n-1,解得n=503∈N*,

∴2011是数列{an}的第503项.

12.数列{an}的通项公式为an=30+n-n2.

(1)问-60是否是{an}中的一项?

(2)当n分别取何值时,an=0,an>0,an<0?

解:(1)假设-60是{an}中的一项,则-60=30+n-n2.

解得n=10或n=-9(舍去).

∴-60是{an}的第10项.

(2)分别令30+n-n2=0;>0;<0,

解得n=6;0<n<6;n>6,

即n=6时,an=0;

0<n<6时,an>0;

n>6时,an<0.

篇3:六年级奥数之数列求和测试题

六年级奥数专题之数列求和测试题

1.求首项是5,末项是93,公差是4的等差数列的和。

2.求首项是13,公差是5的等差数列的前30项的和。

3.某剧院有20排座位,后一排都比前一排多2个座位,最后一排有70个座位,这个剧院一共有多少个座位?

4.某建筑工地堆放着一些钢管,最上面一层有3根,最下面一层有29根,而且下面的每一层比上面的一层多2根,这些钢管一共多少根?

5.巧算下题:5000-2-4-6-…-98-100

6.已知:a=1+3+5+……+99+101,b=2+4+6+……+98+100,则a、b两个数中,较大的数比较小的数大 .

1.求首项是13,公差是5的`等差数列的前30项的和。

2.某剧院有20排座位,后一排都比前一排多2个座位,最后一排有70个座位,这个剧院一共有多少个座位?

3.巧算下题:5000-2-4-6-…-98-100

4.时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟敲一下。问:时钟一昼夜打多少?

5.已知:a=1+3+5+……+99+101,b=2+4+6+……+98+100,则a、b两个数中,较大的数比较小的数大 .

6.将自然数如下排列,

1 2 6 7 15 16 …

3 5 8 14 17 …

4 9 13 18 …

10 12 …

11 …

在这样的排列下,数字3排在第2行第1列,13排在第3行第3列,问:1993排在第几行第几列?

7.(第三届“兴趣杯”少年数学邀请赛初赛)在11-45这35个数中,所有不被3整除的数的和是多少?

8.(第三届“兴趣杯”少年数学邀请赛预赛B卷)下面的数的总和是 ____ .

0 1 2 …49

1 2 3 … 50

48 49 50 …98

49 50 51 …98

【数列的测试题】相关文章:

1.六年级奥数之数列求和测试题

2.数列练习题

3.数列教案

4.数列极限的计算

5.高中数列知识点总结

6.数列的整除性

7.斐波那契数列

8.数列求和的教学反思

9.测试题

10.数学必修五数列知识点提纲

下载word文档
《数列的测试题.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部