欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 实用文>数列练习题

数列练习题

2022-10-13 08:30:40 收藏本文 下载本文

“gourmet”通过精心收集,向本站投稿了5篇数列练习题,以下是小编为大家整理后的数列练习题,仅供参考,欢迎大家阅读。

数列练习题

篇1:数列

 §3.1.1、的通项公式 目的:要求学生理解的概念及其几何表示,理解什么叫的通项公式,给出一些能够写出其通项公式,已知通项公式能够求的项。重点:1的概念。按一定次序排列的一列数叫做。中的每一个数叫做的项,的第n项an叫做的通项(或一般项)。由定义知:中的数是有序的,中的数可以重复出现,这与数集中的数的无序性、互异性是不同的。2.的通项公式,如果{an}的通项an可以用一个关于n的公式来表示,这个公式就叫做的通项公式。从映射、函数的观点看,可以看成是定义域为正整数集N*(或宽的有限子集)的函数。当自变量顺次从小到大依次取值时对自学成才的一列函数值,而的通项公式则是相应的解析式。由于的项是函数值,序号是自变量,所以以序号为横坐标,相应的项为纵坐标画出的图像是一些孤立的点。难点:根据前几项的特点,以现规律后写出的通项公式。给出的前若干项求的通项公式,一般比较困难,且有的不一定有通项公式,如果有通项公式也不一定唯一。给出的前若干项要确定其一个通项公式,解决这个问题的关键是找出已知的每一项与其序号之间的对应关系,然后抽象成一般形式。过程:一、从实例引入(P110)1.  堆放的钢管    4,5,6,7,8,9,102.  正整数的倒数    3.  4.  -1的正整数次幂:-1,1,-1,1,…5.  无穷多个数排成一列数:1,1,1,1,…二、提出课题:1.  的定义:按一定次序排列的一列数(的有序性)2.  名称:项,序号,一般公式 ,表示法 3.  通项公式: 与 之间的函数关系式如 1:      2:      4: 4.  分类:递增、递减;常;摆动;                  有穷、无穷。5.  实质:从映射、函数的观点看,可以看作是一个定义域为正整数集               N*(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,通项公式即相应的函数解析式。6.  用图象表示:— 是一群孤立的点          例一 (P111 例一   略)三、关于的通项公式1.  不是每一个都能写出其通项公式 (如3)2.  的通项公式不唯一   如: 4可写成      和                                 3.  已知通项公式可写出的任一项,因此通项公式十分重要例二  (P111  例二)略           四、补充例题:写出下面的一个通项公式,使它的前 项分别是下列各数:1.1,0,1,0.                                    2. , , , ,                       3.7,77,777,7777                        4.-1,7,-13,19,-25,31                         5. , , ,          五、小结:1.的有关概念2.观察法求的通项公式六、作业 :  练习P112  习题 3.1(P114)1、2七、练习:1.观察下面的特点,用适当的数填空,关写出每个的一个通项公式;(1) , , ,(   ), , …(2) ,(  ), , , …  2.写出下面的一个通项公式,使它的前4项分别是下列各数:(1)1、 、 、 ;        (2) 、 、 、 ;                         (3) 、 、 、 ;  (4) 、 、 、 。3.求1,2,2,4,3,8,4,16,5,…的一个通项公式4.已知an的前4项为0, ,0, ,则下列各式 ①an=    ②an=  ③an=  其中可作为{an}通项公式的是 A ①         B ①②         C ②③        D ①②③ 5.已知1, , , ,3, …, ,…,则 是这个的(    ) A. 第10项    B.第11项    C.第12项    D.第21项      6.在{an}中a1=2,a17=66,通项公式或序号n的一次函数,求通项公式。7.设函数 ( ),{an}满足 (1)求{an}的通项公式;(2)判断{an}的单调性。8.在{an}中,an=(1)求证:{an}先递增后递减;(2)求{an}的最大项。 答案:1. (1) ,an= (2) ,an=       2.(1)an=                  (2)an=         (3)an=        (4)an=       3.an=    或an=这里借助了1,0,1,0,1,0…的通项公式an=。4.D  5.B   6. an=4n-2

7.(1)an=    (2) <1又an<0, ∴ 是递增

篇2:数列教案

1、若 为等差数列,且 则 ;

2、若 为等差数列, 当为奇数时, , ( 中间项),

当n为偶数时, 。

3、若 为等差数列,则连续 项的和组成的数列 仍为等差数列。

4、等差数列 中,若 ,则 , 是其前 项之和,有如下性质,

一般地: ,由此式可以推出:

(1)若 ,则 ;

(2)若 则 ;

(3)若 则 ;

(4)若 ,则 。

5、有两个等差数列 、 ,若 ,则 。

6、若 为等差数列, 为公差,则 。

7、若 、 都是等差数列,公差分别为 、 ,若这两个数列有公共项,则公共项组成的新数列一般仍为等差数列。

8、等差数列 中, (d为公差)。

若公差非零的等差数列 中的三项 构成等比数列,则其公比为: 。

9、等差数列前项和公式 。

10、在等差数列 中,有关 的最值问题常用邻项变号法来求解,分类如下:

(1)当 时,满足 的项数 ,使得 取最大值;

(2)当 时,满足 的项数 ,使得 取最小值;

说明: 存在最大值,只需 , 存在最小值,只需 。

11、若 为等比数列,则连续 项的和组成的数列 仍为等比数列。( )。

12、若 为等比数列,且 则 ;

,

13、若 为等比数列, 、 、 成等差数列,则 、 、 成等比数列,其中 、 、

14、若 为等比数列,则 。

15、若 为等差数列,则 。

16、 ;

;

17、两个特殊的裂项: , 。

18、由递推公式求数列通项公式类型与方法归类:

类型(ⅰ)方法:累加法

累加公式:

类型(ⅱ) 方法:累乘法

累乘公式:

类型(ⅲ) 方法:不动点法

配成 ,等比数列,其中 ;

类型(ⅳ) 方法有二

方法一:可配成 ,即类型(ⅲ),配成等比数列.

方法二:可变成 ,即类型(ⅰ),累加法.

类型(ⅴ) 方法:取对数法

等价变形为: ,即类型(ⅲ),配成等比数列.

类型(ⅵ) 方法:特征方程法

(1)若 ,原式可变成: ,先求等比,再累加求 .

(2)若 ,考察特征方程, ,设其两根为 ,分类讨论如下:

①若 ,可求

②若 ,可求 (其中a,b的值由 解出)

类型(ⅶ) 方法:不动点法

类型(ⅷ)方法:不动点法 说明:“不动点法”可参考相关文献

特别地:选择或填空题中,若所求数列某项的项数较大,且求通项不容易,则该数列可能为周

期数列,可通过归纳求某项。

19、求数列前 项和类型与方法归类

(1)若 为等差数列, 为等比数列,则数列 前 项的和可用错位相减法求得。

(2)如果一个数列 ,与首末两项等距离的两项之和等于首末两项之和,这样的数列可用倒序相加法求和。

形如下列题型:已知函数 为定值 ,

求 的值,就可用倒序相加法求和。

(3)若通项为 个连续自然数积的倒数,则一般可用裂项法求前 项的和。如 是公差为 的等差数列,则有 ,

(4)当一个数列既不是等差数列又不是等比数列时,如果能将这个数列分解为一个等差数列和一个等比数列对应项相加得到的一个新数列,此时可用分组法求和(有时按奇数项和偶数项分组)。

20、数列 是公差非零的等差数列的充要条件是: 是关于 的一次函数,或 是关于 的不含常数项的二次函数。(有时可设 ,若 ,则 是常数列)

21、等差数列 的前 项的算术平均值 是等差数列,等比数列前 项的几何平均值是等比数列。

22、一般地,若 为等差数列, 是 的前 项和,则 也是等差数列。

23、等差数列 中, , 且 ,则使前 项和 成立的最大自然数 是 。

篇3:第一册数列

教材:数列、数列的通项公式<?xml:namespace prefix =o ns =“urn:schemas-microsoft-com:office:office” />

目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。

过程:

     一、从实例引入(P110)

1.堆放的钢管    4,5,6,7,8,9,10

2.正整数的倒数    <?xml:namespace prefix =v ns =“urn:schemas-microsoft-com:vml” />

3. 

4.-1的正整数次幂:-1,1,-1,1,…

5.无穷多个数排成一列数:1,1,1,1,…

二、提出课题:数列

1.数列的定义:按一定次序排列的一列数(数列的有序性)

2.名称:项,序号,一般公式 ,表示法

3.通项公式: 与 之间的函数关系式

如 数列1:      数列2:      数列4:

4.分类:递增数列、递减数列;常数列;摆动数列;

有穷数列、无穷数列。

5.实质:从映射、函数的观点看,数列可以看作是一个定义域为正整数集  

N*(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依

            次取值时对应的一列函数值,通项公式即相应的函数解析式。

6.用图象表示:— 是一群孤立的点

例一 (P111 例一   略)

三、关于数列的通项公式

1.不是每一个数列都能写出其通项公式 (如数列3)

2.数列的通项公式不唯一   如 数列4可写成      和                 

3.已知通项公式可写出数列的任一项,因此通项公式十分重要

例二  (P111  例二)略

四、补充例题:写出下面数列的一个通项公式,使它的前 项分别是下列

各数:

1.1,0,1,0                     

2. , , , ,        

3.7,77,777,7777          

4.-1,7,-13,19,-25,31           

5. , , ,          

五、小结:

1.数列的有关概念

2.观察法求数列的通项公式

六、作业 :  练习P112  习题 3.1(P114)1、2

《课课练》中例题推荐2   练习7、8

篇4:数学教案-数列

数学教案-数列

3.1.1数列

  教学目标

1.理解数列概念,了解数列和函数之间的关系

2.了解数列的通项公式,并会用通项公式写出数列的任意一项

3.对于比较简单的数列,会根据其前几项写出它的个通项公式

4.提高观察、抽象的能力.

  教学重点

1.理解数列概念;

2.用通项公式写出数列的任意一项.

  教学难点

根据一些数列的前几项抽象、归纳数列的通项公式.

教学方法

发现式教学法

教具准备

投影片l张(内容见下页)

教学过程()

(1)复习回顾

师:在前面第二章中我们一起学习了有关映射与函数的知识,现在我们再来回顾一

下函数的定义.

生:(齐声回答函数定义).

师:函数定义(板书)

如果A、B都是非空擞 集,那么A到B的映射

就叫做A到B的函数,记作: ,其中

(Ⅱ)讲授新课

师:在学习第二章的基础上,今天我们一起来学习第三章数列有关知识,首先我们来看一些例子。(放投影片)

4,5,6,7,8,9,10.                                                         ①

                      ②

1,0.1,0.01,0.001,0.0001….         ③

1,1.4,1.41,1.41,4,….          ④

-1,1,-1,1,-1,1,….              ⑤

2,2,2,2,2,

师:观察这些例子,看它们有何共同特点?

(启发学生发现数列定义)

生:归纳、总结上述例子共同特点:

1.  均是一列数;

2.  有一定次序

师:引出数列及有关定义

一、定义

1.  数列:按一定次序排列的一列数叫做数列;

2.  项:数列中的每一个数都叫做这个数列的项。

各项依次叫做这个数列的第1项(或首项)。第2项,…,第n项…。

如:上述例子均是数列,其中例①:“4”是这个数列的第1项(或首项)“9”是这个数列的第6项。

3.  数列的一般形式: ,或简记为 ,其中 是数列的第n项

生:综合上述例子,理解数列及项定义

如:例②中,这是一个数列,它的首项是“1”,“ ”是这个数列的第“3”项,等等。

师:下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?(引导学生进一步理解数列与项的定义,从而发现数列的通项公式)对于上面的数列②,第一项与这一项的序号有这样的对应关系:

项        

↓   ↓    ↓    ↓    ↓

序号  1    2     3     4     5

师:看来,这个数的第一项与这一项的序号可用一个公式: 来表示其对应关系

即:只要依次用1,2,3…代替公式中的n,就可以求出该数列相应的各项

生:结合上述其他例子,练习找其对应关系

如:数列①: =n+3(1≤n≤7)

数列③: ≥1)

数列⑤: n≥1)

4.通项公式:如果数列 的第n项 与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。

师:从映射、函数的观点来看,数列也可以看作是一个定义域为正整数集N+(或它的有限子集 的函数,当自变量从小到大依次取值时对应的一列函数值,数列的通项公式就是相应函数的解析式。

师:对于函数,我们可以根据其函数解析式画出其对应图象。看来,数列也可根据其通项公式来函出其对应图象,下面同学们练习画数列①②的图象。

生:根据扭注通项公式画出数列①,②的图象,并总结其特点。

图3―1

特点:它们都是一群弧立的点

5.有穷数列:项数有限的数列

6.无穷数列:项数无限的数列

二、例题讲解

例1:根据下面数列 的通项公式,写出前5项:

(1)

师:由通项公式定义可知,只要将通项公式中n依次取1,2,3,4,5,即可得到数列的前5项。

解:(1)

(2)

例2:写出下面数列的一个通项公式,使它的前4项分别是下列各数:

(1)1,3,5,7;  (2)

(3)

分析:

(1)项1=2×1-1  3=2×2-1  5=2×3-1  7=2×4-1

↓        ↓        ↓        ↓

序号   1          2        3         4

(2)序号:1      2      3      4

↓     ↓     ↓     ↓

项分母:2=1+1   3=2+1   4=3+1  5=4+1

↓      ↓      ↓     ↓

项分子: 22-1     32-1    42-1    52-1

(3)序号                                 

‖            ‖                 ‖                 ‖

           

(Ⅲ)课堂练习

生:思考课本P112练习1,2,3,4

师:[提问]练习3,4,并根据学生回答评析

生:板演练习1,2

(Ⅳ)课时小结

师:对于本节内容应着重掌握数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n项求一些简单数列的通项公式。

(V)课后作业

一、课本P114习题3.1    1,2

二、1.预习内容:课本P112~P13

预习提纲:①什么叫数列的递推公式?

②递推公式与通项公式有什么异同点?

板书设计

课题

一、定义

1.  数列

2.  项

3.  一般形式

4.  通项公式

5.  有穷数列

6.  无穷数列

二、例题讲解

例1

例2

函数定义

教学后记

§3.1.2数列

教学目标

1.了解数列的递推公式,明确递推公式与通项公式的异同

2.会根据数列的递推公式写出数列的前几项

3.培养学生推理能力.

教学重点

根据数列的.递推公式写出数列的前几项

 教学难点

理解递推公式与通项公式的关系

教学方法

启发引导法

教具准备

投影片1张(内容见下页)

教学过程()

(I)复习回顾

师:上节课我们学习了数列及有关定义,下面先来回顾一下上节课所学的主要内容.

师:[提问]上节课我们学习了哪些主要内容?

生:[回答]数列、项、表示形式、通项公式、数列分类等等.

(Ⅱ)讲授新课

师:我们所学知识都来源于实践,最后还要应用于生活。用其来解决一些实际问题.

下面同学们来看此图:钢管堆放示意图(投影片).

生:观察图片,寻其规律,建立数学模型.

模型一:自上而下:

第1层钢管数为4;即:1 4=1+3

第2层钢管数为5;即:2 5=2+3

第3层钢管数为6;即:3 6=3+3

第4层钢管数为7;即:4 7=4+3

第5层钢管数为8;即:5 8=5+3

第6层钢管数为9;即:6 9=6+3

第7层钢管数为10;即:7 10=7+3

若用 表示钢管数,n表示层数,则可得出每一层的钢管数为一数列,且 ≤n≤7)

师:同学们运用每一层的钢筋数与其层数之间的对应规律建立了数列模型,这完全正确,运用这一关系,会很快捷地求出每一层的钢管数。这会给我们的统计与计算带来很多方便。

师:同学们再来看此图片,是否还有其他规律可循?(启发学生寻找规律2,建立模型二)

生:自上而下每一层的钢管数都比上一层钢管数多1。

依此类推: (2≤n≤7)

师:对于上述所求关系,若知其第1项,即可求出其他项,看来,这一关系也较为重要。

一、定义:

递推公式:如果已知数列 的第1项(或前几项),且任一项 与它的前一项 (或前n项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。

说明:递推公式也是给出数列的一种方法。

二、例题讲解

例1:已知数列 的第1项是1,以后的各项由公式 给出,写出这个数列的前5项。

分析:题中已给出 的第1项即

递推公式:

解:据题意可知:

例2:已知数列 中, ≥3)

试写出数列的前4项

解:由已知得

(Ⅲ)课堂练习

生:课本P113练习  1,2,3(书面练习)

(板演练习1.写出下面各数列的前4项,根据前4项写出该数列的一个通项公式。

(1) ≥2)

(2) ≥3)

师:给出答案,结合学生所做进行评析。

(Ⅳ)课时小结

师:这节课我们主要学习了数列的另一种给出方法,即递推公式及其用法,课后注意理解。注意它与通项公式的区别在于:

1.  通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或n项)之间的关系。

2.  对于通项公式,只要将公式中的n依次取胜,2,3…即可得到相应的项。而递推公式则要已知首项(或前n项),才可求得其他的项。

(V)                  课后作业

一、课本P114习题3.1    3,4

二、1.预习内容:课本P114―P116

3.  预习提纲:①什么是等差数列?②等差数列通项公式的求法?

板书设计

课题

一、定义

1.  递推公式:

三、例题讲解

例1

例2

小结:

通项公式与

递推公式区别

教学后记

篇5:怎么学好数列

怎么学好数列

高中数列,有规律可循的类型无非就是两者,等差数列和等比数列,这两者的题目还是比较简单的,要把公式牢记住,求和,求项也都是比较简单的,公式的运用要熟悉。

题目常常不会如此简单容易,稍微加难一点的题目就是等差和等比数列的一些组合题,这里要采用的一些方法有错位相消法。

题目变化多端,往往出现的压轴题都是一些从来没有接触过的一些通项,有些甚至连通项也不给。针对这两类,我认为应该积累以下的一些方法。

对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为函数等方法等方法

对于求通项一类的题目,可以采用先代入求值找规律,再数学归纳法验证,或是用累加法,累乘法都可以。

总之,每次碰到一道陌生的数列题,要进行总结,得出该类的解题方法,或者从中学会一种放缩方法,这对于以后很有帮

助。

学习数学的方法

1、调动兴趣是关键:因为我喜欢数学,所以我愿意去学它,所以我在学习过程中遇到任何艰难险阻也愿意去克服;克服困难所得来的成功体验又增强了我学习的兴趣和信心,所以我更喜欢学数学了。

2、化抽象为生动:比如在讲例题的时候,结合题目给学生讲一些顺口溜、数学故事、数学发展史、生活中的数学等。让学生感到数学就在身边。比如华罗庚的数形结合顺口溜“数与形,本相依,焉能分作两边飞。数缺形时,难直觉;形缺数时,难入微。代数几何本一体,永远联系莫分离。”生活中的数学包括身边的事、新闻时事等,比如:让学生适度参与现在很多父母都热衷的股票问题;自己家里每月消费多少米,多少油,多少盐等,人均消费多少;今年淮河流域出现洪灾,泄洪时就需要考虑上游水位和下游河道宽的关系等等。

3、化抽象为形象:现在的学生大都对电脑感兴趣,如果从这一点入手引导学生学数学,是个很好的办法。郑州一所重点中学的刘老师用几何画板让学生形象直观的体会数学知识,学生在学几何画板的同时,学数学的积极性也被调动起来了。

4、成功体验的积累:兴趣与成就感往往有很大关系。每个孩子都有想成为研究者、发现者的内在愿望,都有被认同和赏识的需要,都希望取得成就和进步。教育者应该善于发现学生的一点点进步,给不同学生提不同的要求,让他们有机会成功,体会成功时的成就感。

5、营造学数学的环境:比如家里的书架上可以放一些数学相关的书籍如《速算秘诀》《中学生数理化》《好玩的数学系列》《训练思考能力的数学书》《故事中的数学》等,并推荐孩子阅读。学校里也可以营造这样的氛围。有位老师说:“我每天课间时间都会坐在教室门口,拿起一本书来看。总会有几个学生来问我看的是什么书,一问一答之间他们就对我手里的书感兴趣了。几天后我就会发现,有一两个学生带头借了这本书。再过一阵子,这本书就风靡全班了。”

6、打牢基础也可以通过做题来实现,这跟题海战术不同,有的学生可能做两道题就弄懂了,那他就不需要再做,有的学生可能需要做20道题,总之,为了达到最好的理解和记忆效果,让学生自己理解知识点之后,再多做1-2道题,达到150%的理解和记忆效果。

【数列练习题】相关文章:

1.数列教案

2.数列的测试题

3.数列极限的计算

4.高中数列知识点总结

5.数列的整除性

6.斐波那契数列

7.数列求和的教学反思

8.数学必修五数列知识点提纲

9.一类函数列一致收敛性的研究

10.六年级奥数之数列求和测试题

下载word文档
《数列练习题.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部