因式分解的教案设计
“Josefa发发”通过精心收集,向本站投稿了18篇因式分解的教案设计,下面是小编为大家整理后的因式分解的教案设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
篇1:因式分解教案设计
因式分解教案设计
§2.2.1 提公因式法(一) 教学目标 (一)知识认知要求 让学生了解多项式公因式的意义,初步会用提公因式法分解因式. (二)能力训练要求 通过找公因式,培养学生的观察能力. (三)情感与价值观要求 在用提公因式法分解因式时,先让学生自己找公因式,然后大家讨论结果的正确性,让学生养成独立思考的习惯,同时培养学生的合作交流意识,还能使学生初步感到因式分解在简化计算中将会起到很大的作用. 教学重点 能观察出多项式的公因式,并根据分配律把公因式提出来. 教学难点 让学生识别多项式的公因式. 教学过程 一、创设问题情境,引入新课 一块场地由三个矩形组成,这些矩形的长分别为 , , ,宽都是 ,求这块场地的面积. 解法一:S= × + × + × = + + =2 解法二:S= × + × + × = ( + + )= ×4=2 从上面的解答过程看,解法一是按运算顺序:先算乘,再算和进行的`,解法二是先逆用分配律算和,再计算一次乘,由此可知解法二要简单一些.这个事实说明,有时我们需要将多项式化为积的形式,而提取公因式就是化积的一种方法. 二、新课讲解 1.公因式与提公因式法分解因式的概念. 将刚才的问题一般化,即三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c),可以用等号来连接. ma+mb+mc=m(a+b+c) 从上面的等式中,大家注意观察等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点? 等式左边的每一项都含有因式m,等式右边是m与多项式(a+b+c)的乘积,从左边到右边是分解因式. 由于m是左边多项式ma+mb+mc的各项ma、mb、mc的一个公共因式,因此m叫做这个多项式的各项的公因式. 由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法. 2.例题讲解 [例1]将下列各式分解因式: (1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x. 分析:首先要找出各项的公因式,然后再提取出来. 解:(1)3x+6=3x+3×2=3(x+2); (2)7x2-21x=7x・x-7x・3=7x(x-3); (3)8a3b2-12ab3c+abc =8a2b・ab-12b2c・ab+ab・c =ab(8a2b-12b2c+c) (4)-24x3-12x2+28x =-4x(6x2+3x-7) 3.议一议 过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤. 首先找各项系数的最大公约数,如8和12的最大公约数是4. 其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最低的. 4.想一想 从例1中能否看出提公因式法分解因式与单项式乘以多项式有什么关系? 提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式. 三、课堂练习(一)随堂练习1.写出下列多项式各项的公因式. (1)ma+mb (m) (2)4kx-8ky (4k) (3)5y3+20y2 (5y2) (4)a2b-2ab2+ab (ab) 2.把下列各式分解因式 (1)8x-72=8(x-9) (2)a2b-5ab=ab(a-5) (3)4m3-6m2=2m2(2m-3) (4)a2b-5ab+9b=b(a2-5a+9) (二)补充练习把3x2-6xy+x分解因式 四.课时小结 1.提公因式法分解因式的一般形式,如: ma+mb+mc=m(a+b+c). 这里的字母a、b、c、m可以是一个系数不为1的、多字母的、幂指数大于1的单项式. 2.提公因式法分解因式,关键在于观察、发现多项式的公因式. 3.找公因式的一般步骤 (1)若各项系数是整系数,取系数的最大公约数; (2)取相同的字母,字母的指数取较低的; (3)取相同的多项式,多项式的指数取较低的. (4)所有这些因式的乘积即为公因式. 4.初学提公因式法分解因式,最好先在各项中将公因式分解出来,如果这项就是公因式,也要将它写成乘1的形式,这样可以防范错误,即漏项的错误发生. 5.公因式相差符号的,如(x-y)与(y-x)要先统一公因式,同时要防止出现符号问题. 五.课后作业习题 六.活动与探究 利用分解因式计算: (1)3-3; (2)(-2)101+(-2)100. 解:(1)32004-32003 =32003×(3-1) =32003×2=2×32003 (2)(-2)101+(-2)100 =(-2)100×(-2+1) =(-2)100×(-1) =-(-2)100 =-2100 七、教学反思: 班中有一位男学生数学成绩是倒数的,平时又特别调皮,经常上课不认真听讲。今天他居然举手上黑板板演,而且做对了!我及时表扬了他,看来他对学习有兴趣了,希望他能继续努力。篇2:因式分解说课稿
因式分解说课稿
一、说教材
1、关于地位与作用。
本说课的内容是数学第二册7.1《因式分解》。因式分解不言而喻,就整个数学而言,它是打开整个代数宝库的一把钥匙。就本节课而言,着重阐述了两个方面,一是因式分解的概念,二是与整式乘法的相互关系。它是继乘法的基础上来讨论因式分解概念,继而,通过探究与整式乘法的关系,来寻求因式分解的原理。这一思想实质贯穿后继学习的各种因式分解方法。通过这节课的学习,不仅使学生掌握因式分解的概念和原理,而且又为后面学习因式分解作好了充分的准备。因此,它起到了承上启下的作用。
2、关于教学目标。
根据因式分解一节课的内容,对于掌握各种因式分解的方法,乃至整个代数教学中的地位和作用,特制定如下教学目标:
(一)知识与技能目标:
① 了解因式分解的必要性;
② 深刻理解因式分解的概念;
③ 掌握从整式乘法得出因式分解的方法。
(二)体验性目标:
①感受整式乘法与因式分解矛盾的对立统一观点;
②体验由和差到积的形成过程,初步获得因式分解的经验。
3、关于教学重点与难点。
重点是因式分解的概念。理由是理解因式分解的概念的本质属性是学习整章因式分解的灵魂,难点是理解因式分解与整式乘法的相互关系,以及它们之间的关系进行因式分解的思想。理由是学生由乘法到因式分解的变形是一个逆向思维。在前一章整式乘法的较长时间的学习,造成思维定势,学生容易产生“倒摄抑制”作用,阻碍学生新概念的形成。
4、关于教法与学法。
教法与学法是互相联系和统一的,不能孤立去研究。什么样的教法必带来相应的'学法。因此,我们应该重点阐述教法。一节课不能是单一的教法,教无定法。但遵循的原则——启发性原则是永恒的。在教师的启发下,让学生成为行为主体。正如新《数学课程标准》所要求的,让学生“动手实践、自主探索、合作交流 ”。在上述思想为出发点,就本节课而言,不妨利用对比教学,让学生体验因式分解的必要性;利用类比教学,以概念的形曾成和同化相结合,促进学生对因式分解概念的理解;利用尝试教学,让学生主动暴露思维过程,及时得到信息的反馈。教师充分依照学生的认知心理,不断创设“最近发展区”,造就认知冲突,促进学生不断发现、不断达到知识的内化。
不管用什么教法,一节课应该不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终对学生充满情感创造和谐的课堂氛围,这是最重要的。二、说过程。
第一环节,导入阶段。教师出示下列各题,让学生练习。
计算:(1)(a + b)^2 ; (2)(5a + 2b)(5a – 2b); (3)m(a + b).
学生完成后,教师引导:把上述等式逆过来看,即
(1)a^2+2ab+b^2=(a + b)^2;(2)25a^2– 4b^2 =(5a + 2b)(5a – 2b);(3)ma+mb= m(a+ b).
成立吗?
△安排这一过程的意图是:一是复习整式的乘法,激活学生原有整式乘法的认知结构,促使新旧认知结构的联结,满足“温故而知新”的教学原理。二是为本节课目标的达成作好垫铺。在此基础上引出课题——因式分解。
第二环节,新课阶段。
1、对比练习。让学生练习:当a=101,b=99时,求a2-b2的值.教师巡视,并代表性地抽取两名学生板演,给出两种解法。
△教师安排这一过程的意图是:利用对比分析,让学生体会,把a2-b2化为整式积的形式,给计算带来的优越性,顺应了因式分解概念的引出。
2、类比练习。让学生练习:分解下列三个数的质因数 (1)42; (2)56;(3)11.
在此,教师帮助归纳:42与56两个数可以化为几个整数的积,叫做因数分解。本身是质数的数就不能再分解。同时设疑,对于一个多项式能化为几个整式的积的形式吗?在师生互动的基础上,要求学生翻开课本阅读课本因式分解定义。
3、创设问题情景。同学们,我们不能迷信课本,课本的因式分解定义有毛病,请大家逐字研读,找出问题。让学生分四人小组讨论。(事实上正确)提问学生讨论结果,课本定义是正确的。教师板书:
一个多项式→几个整式+积→因式分解
师生归纳要注意的问题:
(1)因式分解是对多项式而言的一种变形;(2)因式分解的结果仍是整式;
(3)因式分解的结果必是一个积;(4)因式分解与整式乘法正好相反。
板书:
4、学生练习课本p152练习第1、2两题。
△教师安排这一过程意图是:通过对比教学,提高学生对因式分解的知觉水平;通过具体数的分解这一类比教学,产生正迁移,认识新概,符合学生概念形成的认知规律;通过故设偏差法,制造认知冲突,让学生咬文嚼字因式分解概念,引导学生主动探求,造求学生自主学习的积极势态,促进学生对概念本质属性的理解;让学生用正反习题的练习,达到知觉水平上的运用,促使对因式分解概念的理解。从而使本节课达到高潮。
第三环节。尝试练习,信息反馈。
让学生尝试练习:课本p152第3题,并引导中下学生看p152例题,教师及时点拨讲评。
△教师安排这一过程,完全放手让学生自主进行,充分暴露学生的思维过程,展现学生生动活泼、主动求知和富有的个性,使学生真正成为学习的主体,使因式分解与整式的乘法的关系得到正强化。
第四环节。小结阶段。
这是最后的一个环节,教师出示“想一想”:下列式子从左边到右边是因式分解吗,为什么?
学生展开讨论,得到下列结论:A.左边是乘法,而右边是差,不是积;
B.左右两边都不是整式;
C.从右边到左边是利用了因式分解的变形方法进行分解。
由此可知,上式不是因式分解。进而,教师呈现因式分解定义。
△教师安排这一过程意图是:学生一般到临近下课,大脑处于疲劳状态,注意力开始分散。教师如果把定义及要注意的问题进行小结后直接抛给学生,只能是是似而非。通过让学生练习,在练习中归纳,再一次点燃学生即将沉睡而去的心理兴奋点,点燃学生主题意识的再度爆发。同时,学生的知识学习得到了自我评价和巩固,成为本节课的最后一个亮点。
篇3:因式分解教案
课型 复习课 教法 讲练结合
教学目标(知识、能力、教育)
1.了解分解因式的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数).
2.通过乘法公式 , 的逆向变形,进一步发展学生观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力
教学重点掌握用提取公因式法、公式法分解因式
教学难点根据题目的形式和特征 恰当选择方法进行分解,以提高综合解题能力。
教学媒体学案
教学过程
一:【 课前预习】
(一):【知识梳理】
1.分解因式:把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式.
2.分解困式的方法:
⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.
⑵运用公式法:平方差公式: ;
完全平方公式: ;
3.分解因式的步骤:
(1)分解 因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法 分解.
(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。
4.分解因式时常见的思维误区:
提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的项 1易漏掉.分解不彻底,如保留中括号形式,还能继续分解等
(二):【课前练习】
1.下列各组多项式中没有公因式的是( )
A.3x-2与 6x2-4x B.3(a-b)2与11(b-a)3
C.mxmy与 nynx D.aba c与 abbc
2. 下列各题中,分解因式错误的是( )
3. 列多项式能用平方差公式分解因式的是
4. 分解因式:x2+2xy+y2-4 =_____
5. 分解因式:(1) ;
(2) ;(3) ;
(4) ;(5)以上三题用了 公式
二:【经典考题剖析】
1. 分解因式:
(1) ;(2) ;(3) ;(4)
分析:①因式分解时,无论有几项,首先考虑提取公因式。提公因式时,不仅注意数,也要 注意字母,字母可能是单项式也可能是多项式,一次提尽。
②当某项完全提出后,该项应为1
③注意 ,
④分解结果(1)不带中括号;(2)数字因数在前,字母因数在后;单项式在前,多项式在后;(3)相同因式写成幂的形式;(4 )分解结果应在指定范围内不能再分解为止;若无指定范围,一般在有理数范围内分解。
2. 分解因式:(1) ;(2) ;(3)
分析:对于二次三项齐次式,将其中一个字母看作末知数,另一个字母视为常数。首先考虑提公因式后,由余下因式的项数为3项,可考虑完全平方式或十字相乘法继续分解;如果项数为2,可考虑平方差、立方差、立方和公式。(3)题无公因式,项数为2项,可考虑平方差公式先分解开,再由项数考虑选择方法继续分解。
3. 计算:(1)
(2)
分析:(1)此题先分解因式后约分,则余下首尾两数。
(2)分解后,便有规可循,再求1到20xx的和。
4. 分解因式:(1) ;(2)
分析:对于四项或四项以上的多项式的因式分解,一般采用分组分解法,
5. (1)在实数范围内分解因式: ;
(2)已知 、、是△ABC的三边,且满足 ,
求证:△ABC为等边三角形。
分析:此题给出的是三边之间的关系,而要证等边三角形,则须考虑证 ,
从已知给出的等式结构看出,应构造出三个完全平方式 ,
即可得证,将原式两边同乘以2即可。略证:
即△ABC为等边三角形。
三:【课后训练】
1. 若 是一个完全平方式,那么 的值是( )
A.24 B.12 C.12 D.24
2. 把多项式 因式分解的结果是( )
A. B. C. D.
3. 如果二次三项式 可分解为 ,则 的 值为( )
A .-1 B.1 C. -2 D.2
4. 已知 可以被在60~70之间的两个整数整除,则这两个数是( )
A.61、63 B.61、65 C.61、67 D.63、65
5. 计算:= , = 。
6. 若 ,那么 = 。
7. 、满足 ,分解因式 = 。
8. 因式分解:
(1) ;(2)
(3) ;(4)
9. 观察下列等式:
想一想,等式左边各项幂的底数与右边幂的底数有何关 系?猜一猜可引出什么规律?用等式将其规律表示出来: 。
10. 已知 是△ABC的三边,且满足 ,试判断△ABC的形状。阅读下面解题过程:
解:由 得:
①
②
即 ③
△ABC为Rt△。 ④
试问:以上解题过程是否正确: ;若不正确,请指出错在哪一步?(填代号) ;错误原因是 ;本题结论应为 。
四:【课后小结】
布置作业 地纲
篇4: 因式分解教案
第十五章 整式的乘除与因式分解
根据定义,我们不难得出a+b+c、t-5、3x+5+2z、ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.
15.1.2 整式的加减
(3)x-(1-2x+x2)+(-1-x2) (4)(8x-3x2)-5x-2(3x-2x2)
四、提高练习:
1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,问C是什么样的多项式?
2、设A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。
3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图:
试化简:│a│-│a+b│+│c-a│+│b+c│
小 结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。
作 业:课本P14习题1.3:1(2)、(3)、(6),2。
《课堂感悟与探究》
篇5:因式分解教案
15.1.1 整式
教学目标
1.单项式、单项式的定义.
2.多项式、多项式的次数.
3、理解整式概念.
教学重点
单项式及多项式的有关概念.
教学难点
单项式及多项式的有关概念.
教学过程
Ⅰ.提出问题,创设情境
在七年级,我们已经学习了用字母可以表示数,思考下列问题
1.要表示△ABC的周长需要什么条件?要表示它的面积呢?
2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少?
结论:
1、要表示△ABC的周长,需要知道它的各边边长.要表示△ABC的面积需要知道一条边长和这条边上的高.如果设BC=a,AC=b,AB=c.AB边上的高为h,那么△ABC的周长可以表示为a+b+c;△ABC的面积可以表示为 ?c?h.
2.小王的平均速度是 .
问题:这些式子有什么特征呢?
(1)有数字、有表示数字的字母.
(2)数字与字母、字母与字母之间还有运算符号连接.
归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.
判断上面得到的三个式子:a+b+c、ch、是不是代数式?(是)
代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.
Ⅱ.明确和巩固整式有关概念
(出示投影)
结论:(1)正方形的周长:4x.
(2)汽车走过的路程:vt.
(3)正方体有六个面,每个面都是正方形,这六个正方形全等,所以它的表面积为6a2;正方体的体积为长×宽×高,即a3.
(4)n的相反数是-n.
分析这四个数的特征.
它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、ch、中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.
请同学们阅读课本P160~P161单项式有关概念.
根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、ch、这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.
结论:4x、vt、6a2、a3、-n、ch是单项式.它们的系数分别是4、1、6、1、-1、.它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、ch都是二次单项式;a3是三次单项式.
问题:vt中v和t的指数都是1,它不是一次单项式吗?
结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式.
生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢?
写出下列式子(出示投影)
结论:(1)t-5.(2)3x+5y+2z.
(3)三角尺的面积应是直角三角形的面积减去圆的面积,即 ab-3.12r2.
(4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为3×2、4×3,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18.
我们可以观察下列代数式:
a+b+c、t-5、3x+5y+2z、ab-3.12r2、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?
这样推理合情合理.请看投影,熟悉下列概念.
根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.
a+b+c的项分别是a、b、c.
t-5的项分别是t、-5,其中-5是常数项.
3x+5y+2z的项分别是3x、5y、2z.
ab-3.12r2的项分别是 ab、-3.12r2.
x2+2x+18的项分别是x2、2x、18. 找多项式的次数应抓住两条,一是找准每个项的次数,二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.
这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也到符号的魅力所在.我们把单项式与多项式统称为整式.
Ⅲ.随堂练习
1.课本P162练习
Ⅳ.课时小结
通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,发展符号感.
Ⅴ.课后作业
1.课本P165~P166习题15.1─1、5、8、9题.
2.预习“整式的加减”.
课后作业:《课堂感悟与探究》
15.1.2 整式的加减(1)
教学目的:
1、解字母表示数量关系的过程,发展符号感。
2、会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力。
教学重点:
会进行整式加减的运算,并能说明其中的算理。
教学难点:
正确地去括号、合并同类项,及符号的正确处理。
教学过程:
一、课前练习:
1、填空:整式包括 和
2、单项式 的系数是 、次数是
3、多项式 是 次 项式,其中二次项
系数是 一次项是 ,常数项是
4、下列各式,是同类项的一组是( )
(A) 与 (B) 与 (C) 与
5、去括号后合并同类项:
二、探索练习:
1、如果用a 、b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为 交换这个两位数的.十位数字和个位数字后得到的两位数为
这两个两位数的和为
2、如果用a 、b、c分别表示一个三位数的百位数字、十位数字和个位数字,那么这个三位数可以表示为 交换这个三位数的百位数字和个位数字后得到的三位数为
这两个三位数的差为
●议一议:在上面的两个问题中,分别涉及到了整式的什么运算?
说说你是如何运算的?
▲整式的加减运算实质就是
运算的结果是一个多项式或单项式。
三、巩固练习:
1、填空:(1) 与 的差是
(2)、单项式 、、、的和为
(3)如图所示,下面为由棋子所组成的三角形,
一个三角形需六个棋子,三个三角形需
( )个棋子,n个三角形需 个棋子
2、计算:
(1)
(2)
(3)
3、(1)求 与 的和
(2)求 与 的差
4、先化简,再求值: 其中
四、提高练习:
1、若A是五次多项式,B是三次多项式,则A+B一定是
(A)五次整式 (B)八次多项式
(C)三次多项式 (D)次数不能确定
2、足球比赛中,如果胜一场记3a分,平一场记a分,负一场
记0分,那么某队在比赛胜5场,平3场,负2场,共积多
少分?
3、一个两位数与把它的数字对调所成的数的和,一定能被14
整除,请证明这个结论。
4、如果关于字母x的二次多项式 的值与x的取值无关,
试求m、n的值。
五、小结:整式的加减运算实质就是去括号和合并同类项。
六、作业:第8页习题1、2、3
15.1.2整式的加减(2)
教学目标:1.会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及其语言表达能力。
2.通过探索规律的问题,进一步符号表示的意义,发展符号感,发展推理能力。
教学重点:整式加减的运算。
教学难点:探索规律的猜想。
教学方法:尝试练习法,讨论法,归纳法。
教学用具:投影仪
教学过程:
I探索练习:
摆第1个“小屋子”需要5枚棋子,摆第2个需要 枚棋子,摆第3个需要 枚棋子。按照这样的方式继续摆下去。
(1)摆第10个这样的“小屋子”需要 枚棋子
(2)摆第n个这样的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问题吗?小组讨论。
二、例题讲解:
三、巩固练习:
1、计算:
(1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)
(3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2)
2、已知:A=x3-x2-1,B=x2-2,计算:(1)B-A (2)A-3B
3、列方程解应用题:三角形三个内角的和等于180°,如果三角形中第一个角等于第二个角的3倍,而第三个角比第二个角大15°,那么
(1)第一个角是多少度?
(2)其他两个角各是多少度?
四、提高练习:
1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,问C是什么样的多项式?
2、设A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+
(y+3)2=0,且B-2A=a,求A的值。
3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图:
试化简:│a│-│a+b│+│c-a│+│b+c│
小 结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。
作 业:课本P14习题1.3:1(2)、(3)、(6),2。
【精选因式分解教案三篇】
篇6:因式分解教案
第1课时
1.使学生了解因式分解的意义,了解因式分解和整式乘法是整式的两种相反方向的变形.
2.让学生会确定多项式中各项的公因式,会用提公因式法进行因式分解.
自主探索,合作交流.
1.通过与因数分解的类比,让学生感悟数学中数与式的共同点,体验数学的类比思想.
2.通过对因式分解的教学,培养学生“换元”的意识.
【重点】 因式分解的概念及提公因式法的应用.
【难点】 正确找出多项式中各项的公因式.
【教师准备】 多媒体.
【学生准备】 复习有关乘法分配律的知识.
导入一:
【问题】 一块场地由三个长方形组成,这些长方形的长分别为,,,宽都是,求这块场地的面积.
解法1:这块场地的面积=×+×+×=++==2.
解法2:这块场地的面积=×+×+×=×=×4=2.
从上面的解答过程看,解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是将多项式化为几个整式的积的形式的一种方法.
[设计意图] 让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础.
导入二:
【问题】 计算×15-×9+×2采用什么方法?依据是什么?
解法1:原式=-+==5.
解法2:原式=×(15-9+2)=×8=5.
解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是把多项式化为几个整式的积的形式的一种方法.
[设计意图] 让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础.
一、提公因式法分解因式的概念
思路一
[过渡语] 上一节我们学习了什么是因式分解,那么怎样进行因式分解呢?我们来看下面的问题.
如果一块场地由三个长方形组成,这三个长方形的长分别为a,b,c,宽都是,那么这块场地的面积为a+b+c或(a+b+c),可以用等号来连接,即:a+b+c=(a+b+c).
大家注意观察这个等式,等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?
分析:等式左边的每一项都含有因式,等式右边是与多项式a+b+c的乘积,从左边到右边的过程是因式分解.
由于是左边多项式a+b+c中的各项a,b,c都含有的一个相同因式,因此叫做这个多项式各项的公因式.
由上式可知,把多项式a+b+c写成与多项式a+b+c的乘积的形式,相当于把公因式从各项中提出来,作为多项式a+b+c的一个因式,把从多项式a+b+c的各项中提出后形成的多项式a+b+c,作为多项式a+b+c的另一个因式.
总结:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.
[设计意图] 通过实例的教学,使学生明白什么是公因式和用提公因式法分解因式.
思路二
[过渡语] 同学们,我们来看下面的问题,看看同学们谁先做出来.
多项式 ab+ac中,各项都含有相同的因式吗?多项式 3x2+x呢?多项式b2+nb-b呢?
结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式.
多项式2x2+6x3中各项的公因式是什么?你能尝试将多项式2x2+6x3因式分解吗?
结论:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.
[设计意图] 从让学生找出几个简单多项式的公因式,再到让学生尝试将多项式分解因式,使学生理解公因式以及提公因式法分解因式的概念.
二、例题讲解
[过渡语] 刚刚我们学习了因式分解的一种方法,现在我们尝试下利用这种方法进行因式分解吧.
(教材例1)把下列各式因式分解:
(1)3x+x3;
(2)7x3-21x2;
(3)8a3b2-12ab3c+ab;
(4)-24x3+12x2-28x.
〔解析〕 首先要找出各项的公因式,然后再提取出来.要避免提取公因式后,各项中还有公因式,即“没提彻底”的现象.
解:(1)3x+x3=x3+xx2=x(3+x2).
(2)7x3-21x2=7x2x-7x23=7x2(x-3).
(3)8a3b2-12ab3c+ab
=ab8a2b-ab12b2c+ab1
=ab(8a2b-12b2c+1).
(4)-24x3+12x2-28x
=-(24x3-12x2+28x)
=-(4x6x2-4x3x+4x7)
=-4x(6x2-3x+7).
【学生活动】 通过刚才的练习,大家互相交流,总结出提取公因式的一般步骤和容易出现的问题.
总结:提取公因式的步骤:(1)找公因式;(2)提公因式.
容易出现的问题(以本题为例):(1)第(2)题中只提出7x作为公因式;(2)第(3)题中最后一项提出ab后,漏掉了“+1”;(3)第(4)题提出“-”号时,没有把后面的因式中的每一项都变号.
教师提醒:
(1)各项都含有的字母的最低次幂的积是公因式的字母部分;
(2)因式分解后括号内的多项式的项数与原多项式的项数相同;
(3)若多项式的首项为“-”,则先提取“-”号,然后再提取其他公因式;
(4)将分解因式后的式子再进行整式的乘法运算,其积应与原式相等.
[设计意图] 经历用提公因式法进行因式分解的过程,在教师的启发与指导下,学生自己归纳出提公因式的步骤及提取公因式时容易出现的类似问题,为提取公因式积累经验.
1.提公因式法分解因式的一般形式,如:
a+b+c=(a+b+c).
这里的字母a,b,c,可以是一个系数不为1的、多字母的、幂指数大于1的单项式.
2.提公因式法分解因式的关键在于发现多项式的公因式.
3.找公因式的一般步骤:
(1)若各项系数是整系数,则取系数的最大公约数;
(2)取各项中相同的字母,字母的指数取最低的;
(3)所有这些因式的乘积即为公因式.
1.多项式-6ab2+18a2b2-12a3b2c的公因式是( )
A.-6ab2cB.-ab2
C.-6ab2D.-6a3b2c
解析:根据确定多项式各项的公因式的方法,可知公因式为-6ab2.故选C.
2.下列用提公因式法分解因式正确的是( )
A.12abc-9a2b2=3abc(4-3ab)
B.3x2-3x+6=3(x2-x+2)
C.-a2+ab-ac=-a(a-b+c)
D.x2+5x-=(x2+5x)
解析:A.12abc-9a2b2=3ab(4c-3ab),错误;B.3x2-3x+6=3(x2-x+2),错误;D.x2+5x-=(x2+5x-1),错误.故选C.
3.下列多项式中应提取的公因式为5a2b的是( )
A.15a2b-20a2b2
B.30a2b3-15ab4-10a3b2
C.10a2b-20a2b3+50a4b
D.5a2b4-10a3b3+15a4b2
解析:B.应提取公因式5ab2,错误;C.应提取公因式10a2b,错误;D.应提取公因式5a2b2,错误.故选A.
4.填空.
(1)5a3+4a2b-12abc=a( );
(2)多项式32p2q3-8pq4的公因式是 ;
(3)3a2-6ab+a= (3a-6b+1);
(4)因式分解:+n= ;
(5)-15a2+5a= (3a-1);
(6)计算:21×3.14-31×3.14= .
答案:(1)5a2+4ab-12bc (2)8pq3 (3)a (4)(+n) (5)-5a (6)-31.4
5.用提公因式法分解因式.
(1)8ab2-16a3b3;
(2)-15x-5x2;
(3)a3b3+a2b2-ab;
(4)-3a3-6a2+12a.
解:(1)8ab2(1-2a2b).
(2)-5x(3+x).
(3)ab(a2b2+ab-1).
(4)-3a(a2+2a-4).
第1课时
一、教材作业
【必做题】
教材第96页随堂练习.
【选做题】
教材第96页习题4.2.
二、课后作业
【基础巩固】
1.把多项式4a2b+10ab2分解因式时,应提取的公因式是 .
2.(20xx淮安中考)因式分解:x2-3x= .
3.分解因式:12x3-18x22+24x3=6x .
【能力提升】
4.把下列各式因式分解.
(1)3x2-6x;
(2)5x23-25x32;
(3)-43+162-26;
(4)15x32+5x2-20x23.
【拓展探究】
5.分解因式:an+an+2+a2n.
6.观察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….这列式子有什么规律?请你将猜想到的规律用含有字母n(n为自然数)的式子表示出来.
【答案与解析】
1.2ab
2.x(x-3)
3.(2x2-3x+42)
4.解:(1)3x(x-2). (2)5x22(-5x). (3)-2(22-8+13). (4)5x2(3x+1-42).
5.解:原式=an1+ana2+anan=an(1+a2+an).
6.解:由题中给出的几个式子可得出规律:n2+n=n(n+1).
本节运用类比的思想方法,在新概念的提出、新知识点的讲授过程中,使学生易于理解和掌握.如学生在接受提公因式法时,由提公因数到提公因式,由整式乘法的逆运算到提公因式法的概念,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解.
在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.
由于因式分解的主要目的是对多项式进行恒等变形,它的作用更多的是应用于多项式的计算和化简,比如在以后将要学习的分式运算、解分式方程等中都要用到因式分解的知识,因此应该注重因式分解的概念和方法的教学.
随堂练习(教材第96页)
解:(1)(a+b). (2)52(+4). (3)3x(2-3). (4)ab(a-5). (5)22(2-3). (6)b(a2-5a+9). (7)-a(a-b+c). (8)-2x(x2-2x+3).
习题4.2(教材第96页)
1.解:(1)2x2-4x=2x(x-2). (2)82n+2n=2n4+2n1=2n(4+1). (3)a2x2-ax2=axax-ax=ax(ax-). (4)3x3-3x2+9x=3x(x2-x+3). (5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72). (6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1). (7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43). (8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4).
2.解:(1)++=(++)=3.14×(202+162+122)=2512. (2)∵xz-z=z(x-),∴原式=×(17.8-28.8)=×(-11)=-7. (3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.
3.解:(1)不正确,因为提取的公因式不对,应为n(2n--1). (2)不正确,因为提取公因式-b后,第三项没有变号,应为-b(ab-2a+3). (3)正确. (4)不正确,因为最后的结果不是乘积的形式,应为(a-2)(a+1).
提公因式法是本章的第2小节,占两个课时,这是第一课时,它主要让学生经历从乘法分配律的逆运算到提公因式的过程,让学生体会数学中的一种主要思想――类比思想.运用类比的思想方法,在新概念的提出、新知识点的讲授过程中,可以使学生易于理解和掌握.如学生在接受提公因式法时,由整式乘法的逆运算到提公因式法的概念,就利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解,进而使学生进一步理解因式分解与整式乘法运算之间的互逆关系.
已知方程组求7(x-3)2-2(3-x)3的值.
〔解析〕 将代数式分解因式,产生x-3与2x+两个因式,再根据方程组整体代入,使计算简便.
解:7(x-3)2-2(3-x)3
=(x-3)2[7+2(x-3)]
=(x-3)2(7+2x-6)
=(x-3)2(2x+).
由方程组可得原式=12×6=6.
篇7:因式分解教案
【教学目标】
1、了解因式分解的概念和意义;
2、认识因式分解与整式乘法的相互关系――相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
【教学重点、难点】
重点是因式分解的概念,难点是理解因式分解与整式乘法的.相互关系,并运用它们之间的相互关系寻求因式分解的方法。
【教学过程】
㈠、情境导入
看谁算得快:(抢答)
(1)若a=101,b=99,则a2-b2=___________;
(2)若a=99,b=-1,则a2-2ab+b2=____________;
(3)若x=-3,则20x2+60x=____________。
㈡、探究新知
1、请每题答得最快的同学谈思路,得出最佳解题方法。(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
2、观察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它们的特点。(等式的左边是一个什么式子,右边又是什么形式?)
3、类比小学学过的因数分解概念,得出因式分解概念。(学生概括,老师补充。)
板书课题:§6.1 因式分解
因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。
㈢、前进一步
1、让学生继续观察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?
2、因式分解与整式乘法的关系:
因式分解
结合:a2-b2 (a+b)(a-b)
整式乘法
说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。
结论:因式分解与整式乘法的相互关系――相反变形。
㈣、巩固新知
1、下列代数式变形中,哪些是因式分解?哪些不是?为什么?
(1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b・6ac。
2、你能写出整式相乘(其中至少一个是多项式)的两个例子,并由此得到相应的两个多项式的因式分解吗?把结果与你的同伴交流。
㈤、应用解释
例 检验下列因式分解是否正确:
(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).
分析:检验因式分解是否正确,只要看等式右边几个整式相乘的积与右边的多项式是否相等。
练习计算下列各题,并说明你的算法:(请学生板演)
(1)872+87×13
(2)1012-992
㈥、思维拓展
1.若 x2+mx-n能分解成(x-2)(x-5),则m= ,n=
2.机动题:(填空)x2-8x+m=(x-4)( ),且m=
㈦、课堂回顾
今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。
㈧、布置作业
作业本(1) ,一课一练
(九)教学反思:
篇8:因式分解教案
一、教材分析
1、教材的地位与作用
“整式的乘法”是整式的加减的后续学习从幂的运算到各种整式的乘法,整章教材都突出了学生的自主探索过程,依据原有的知识基础,或运用乘法的各种运算规律,或借助直观而又形象的图形面积,得到各种运算的基本法则、两个主要的乘法公式及因式分解的基本方法学生自己对知识内容的探索、认识与体验,完全有利于学生形成合理的知识结构,提高数学思维能力.利用公式法进行因式分解时,注意把握多项式的特点,对比乘法公式乘积结果的形式,选择正确的分解方法。
因式分解是一种常用的代数式的恒等变形,因式分解是多项式乘法公式的逆向变形,它是将一个多项式变形为多项式与多项式的乘积。
2、教学目标
(1)会推导乘法公式
(2)在应用乘法公式进行计算的基础上,感受乘法公式的作用和价值。
(3)会用提公因式法、公式法进行因式分解。
(4)了解因式分解的一般步骤。
(5)在因式分解中,经历观察、探索和做出推断的过程,提高分析问题和解决问题的能力。
3、重点、难点和关键
重点:乘法公式的意义、分式的由来和正确运用;用提公因式法和公式法进行因式分解。
难点:正确运用乘法公式;正确分解因式。
关键:正确理解乘法公式和因式分解的意义。
二、本单元教学的方法和策略:
1.注重知识形成的探索过程,让学生在探索过程中领悟知识,在领悟过程中建构体系,从而更好地实现知识体系的更新和知识的正向迁移.
2.知识内容的呈现方式力求与学生已有的知识结构相联系,同时兼顾学生的思维水平和心理特征.
3.让学生掌握基本的数学事实与数学活动经验,减轻不必要的记忆负担.
4.注意从生活中选取素材,给学生提供一些交流、讨论的空间,让学生从中体会数学的应用价值,逐步养成谈数学、想数学、做数学的良好习惯.
三、课时安排:
2.1平方差公式 1课时
2.2完全平方公式 2课时
2.3用提公因式法进行因式分解 1课时
2.4用公式法进行因式分解 2课时
篇9:因式分解教案
学习目标
1、学会用公式法因式法分解
2、综合运用提取公式法、公式法分解因式
学习重难点 重点:
完全平方公式分解因式.
难点:综合运用两种公式法因式分解
自学过程设计
完全平方公式:
完全平方公式的逆运用:
做一做:
1.(1)16x2-8x+_______=(4x-1)2;
(2)_______+6x+9=(x+3)2;
(3)16x2+_______+9y2=(4x+3y)2;
(4)(a-b)2-2(a-b)+1=(______-1)2.
2.在代数式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序号)
3.下列因式分解正确的是( )
A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2
C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2
4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1
5.计算:2-40102006+2=___________________.
6.若x+y=1,则 x2+xy+ y2的值是_________________.
想一想
你还有哪些地方不是很懂?请写出来。
____________________________________________________________________________________ 预习展示一:
1.判别下列各式是不是完全平方式.
2、把下列各式因式分解:
(1)-x2+4xy-4y2
(2)3ax2+6axy+3ay2
(3)(2x+y)2-6(2x+y)+9
应用探究:
1、用简便方法计算
49.92+9.98 +0.12
拓展提高:
(1)( a2+b2)( a2+b2 10)+25=0 求a2+b2
(2)4x2+y2-4xy-12x+6y+9=0
求x、y关系
(3)分解因式:m4+4
教后反思考察利用公式法因式分解的题目不会很难,但是需要学生记住公式的形式,之后利用公式把式子进行变形,从而达到进行因式分解的目的,但是这里有用到实际中去的例子,对学生来说会难一些。
篇10:因式分解教案
教学目标:
1、进一步巩固因式分解的概念;
2、巩固因式分解常用的三种方法
3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题
5、体验应用知识解决问题的乐趣
教学重点:灵活运用因式分解解决问题
教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3
教学过程:
一、创设情景:若a=101,b=99,求a2—b2的值
利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾
1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式。
判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)
(1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法
(3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解
(5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解
(7)、2πR+2πr=2π(R+r)因式分解
2、规律总结(教师讲解):分解因式与整式乘法是互逆过程。
分解因式要注意以下几点:
(1)。分解的对象必须是多项式。
(2)。分解的结果一定是几个整式的乘积的形式。
(3)。要分解到不能分解为止。
3、因式分解的方法
提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法
公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2
4、强化训练
教学引入
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[学生活动:各自测量。]
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课
找一两个学生表述其结论,表述是要注意纠正其语言的规范性。
动画演示:
场景二:正方形的性质
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]
动画演示:
场景三:矩形的性质
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]
动画演示:
场景四:菱形的性质
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]
师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
试一试把下列各式因式分解:
(1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2
(3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)
三、例题讲解
例1、分解因式
(1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)
(3)(4)y2+y+
例2、分解因式
1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=
4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=
例3、分解因式
1、72—2(13x—7)22、8a2b2—2a4b—8b3
四、知识应用
1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)
3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2
4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除吗?还能被哪些整数整除?
五、拓展应用
1。计算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)
2、2+20xx被20xx整除吗?
3、若n是整数,证明(2n+1)2—(2n—1)2是8的倍数。
五、课堂小结
今天你对因式分解又有哪些新的认识?
篇11:因式分解教案
整式乘除与因式分解
一.回顾知识点
1、主要知识回顾:
幂的运算性质:
aman=am+n(m、n为正整数)
同底数幂相乘,底数不变,指数相加.
=amn(m、n为正整数)
幂的乘方,底数不变,指数相乘.
(n为正整数)
积的乘方等于各因式乘方的积.
=am-n(a≠0,m、n都是正整数,且m>n)
同底数幂相除,底数不变,指数相减.
零指数幂的概念:
a0=1(a≠0)
任何一个不等于零的数的零指数幂都等于l.
负指数幂的概念:
a-p=(a≠0,p是正整数)
任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.
也可表示为:(m≠0,n≠0,p为正整数)
单项式的乘法法则:
单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
单项式与多项式的乘法法则:
单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.
多项式与多项式的乘法法则:
多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.
单项式的除法法则:
单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
多项式除以单项式的法则:
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
2、乘法公式:
①平方差公式:(a+b)(a-b)=a2-b2
文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.
②完全平方公式:(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.
3、因式分解:
因式分解的定义.
把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.
掌握其定义应注意以下几点:
(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;
(2)因式分解必须是恒等变形;
(3)因式分解必须分解到每个因式都不能分解为止.
弄清因式分解与整式乘法的内在的关系.
因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.
二、熟练掌握因式分解的常用方法.
1、提公因式法
(1)掌握提公因式法的概念;
(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;
(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.
(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
2、公式法
运用公式法分解因式的实质是把整式中的乘法公式反过来使用;
常用的公式:
①平方差公式:a2-b2=(a+b)(a-b)
②完全平方公式:a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
篇12:因式分解教案
教学设计思想:
本小节依次介绍了平方差公式和完全平方公式,并结合公式讲授如何运用公式进行多项式的因式分解。第一课时的内容是用平方差公式对多项式进行因式分解,首先提出新问题:x2-4与y2-25怎样进行因式分解,让学生自主探索,通过整式乘法的平方差公式,逆向得出用公式法分解因式的方法,发展学生的逆向思维和推理能力,然后让学生独立去做例题、练习中的题目,并对结果通过展示、解释、相互点评,达到能较好的运用平方差公式进行因式分解的目的。第二课时利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。
教学目标
知识与技能:
会用平方差公式对多项式进行因式分解;
会用完全平方公式对多项式进行因式分解;
能够综合运用提公因式法、平方差公式、完全平方公式对多项式进行因式分解;
提高全面地观察问题、分析问题和逆向思维的能力。
过程与方法:
经历用公式法分解因式的探索过程,进一步体会这两个公式在因式分解和整式乘法中的不同方向,加深对整式乘法和因式分解这两个相反变形的认识,体会从正逆两方面认识和研究事物的方法。
情感态度价值观:
通过学习进一步理解数学知识间有着密切的联系。
教学重点和难点
重点:①运用平方差公式分解因式;②运用完全平方式分解因式。
难点:①灵活运用平方差公式分解因式,正确判断因式分解的彻底性;②灵活运用完全平方公式分解因式
关键:把握住因式分解的基本思路,观察多项式的特征,灵活地运用换元和划归思想。
篇13:因式分解教案
学习目标
1、学会用平方差公式进行因式法分解
2、学会因式分解的而基本步骤.
学习重难点重点:
用平方差公式进行因式法分解.
难点:
因式分解化简的`过程
自学过程设计教学过程设计
看一看
平方差公式:
平方差公式的逆运用:
做一做:
1.填空题.
(1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).
(3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).
2.把下列各式分解因式结果为-(x-2y)(x+2y)的多项式是
A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2
3.多项式-1+0.04a2分解因式的结果是()
A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)
C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)
4.把下列各式分解因式:
(1)4x2-25y2;(2)0.81m2-n2;
(3)a3-9a;(4)8x3y3-2xy.
5.把下列各式分解因式:
(1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.
6.用简便方法计算:3492-2512.
想一想
你还有哪些地方不是很懂?请写出来。
____________________________________________________________________________________
Xkb1.com预习展示一:
1、下列多项式能否用平方差公式分解因式?
说说你的理由。
4x2+y2
4x2-(-y)2
-4x2-y2-4x2+y2
a2-4a2+3
2.把下列各式分解因式:
(1)16-a2
(2)0.01s2-t2
(4)-1+9x2
(5)(a-b)2-(c-b)2
(6)-(x+y)2+(x-2y)2
应用探究:
1、分解因式
4x3y-9xy3
变式:把下列各式分解因式
①x4-81y4
②2a-8a
2、从前有一位张老汉向地主租了一块“十字型”土地(尺寸如图)。为便于种植,他想换一块相同面积的长方形土地。同学们,你能帮助张老汉算出这块长方形土地的长和宽吗?w
3、在日常生活中如上网等都需要密码.有一种因式分解法产生的密码方便记忆又不易破译.
例如用多项式x4-y4因式分解的结果来设置密码,当取x=9,y=9时,可得一个六位数的密码“018162”.你想知道这是怎么来的吗?
小明选用多项式4x3-xy2,取x=10,y=10时。用上述方法产生的密码是什么?(写出一个即可)
拓展提高:
若n为整数,则(2n+1)2-(2n-1)2能被8整除吗?请说明理由.
教后反思考察利用公式法因式分解的题目不会很难,但是需要学生记住公式的形式,之后利用公式把式子进行变形,从而达到进行因式分解的目的。
篇14:《因式分解》说课稿
《因式分解》说课稿
各位评委老师:
上午好!我是最后一号,非常不好意思,因为我让大家痛苦而充实的等到现在。我今天说课的课题是因式分解(板书课题4.1因式分解)。我将主要从教材分析,教法分析,学法指导,教学过程及补充说明等五个方面来具体阐述这节课。下面开始我的说课。
一、教材分析
(一)教材的地位与作用
本节课是初中数学人教北师大版八年级下册第四章第一节的内容。在此之前,学生已经学习了整式乘法的相关知识,这为过渡到本节的学习起了铺垫作用。同时本节课也为后续知识一元二次方程求解方法的学习奠定一定的作用,因此在教材中本节课起着承上启下的过渡作用,而且本节课镶嵌着深刻的数形结合思想、类比思想,有利于学生思维的深化。
(二)教学目标
根据以上对教材的认识分析和学生的实际情况,结合数学新课标,我制定如下教学目标:
1、知识与技能
(1)了解因式分解的意义,理解因式分解的概念。
(2)认识因式分解与整式乘法的相互关系——互逆关系。
(3)培养和提高学生分析、解决问题的能力
2、过程与方法
通过因式分解的学习,让学生经历因式分解概念的探索过程,感知、了解数学概念形成的方法,培养学生发现问题,分析问题,解决问题的能力。
3、情感态度与价值观
鼓励学生积极主动的参与教学的整个过程,激发其求知的欲望;让学生体会数形结合的数学思想;领会数学的应用价值,培养学生善于观察、勇于质疑的优良品质。
(三)教学重点、难点
根据新课程标准,在吃透教材的基础上,我将本节课的重难点确立为因式分解的概念,通过多层次展示,多角度分析,多方面练习,以达到突出重点,突破难点的目的。
二、教法分析
数学是思维的.体操,是一门以培养人的思维,发展人的思维为目的的重要学科,因此,在教学中,教师不仅要使学生“知其然”,更要使学生“知其所以然”。
我们在师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点和学生的实际情况,主要采用启发诱导、自主学习、合作探疑相结合等教学方法。
三、学法指导
现代的文盲不再是不识字的人,而是不会学习的人。数学课重在让学生逐渐学会自主学习,养成良好的学习习惯和规范的数学思维方式、方法。基于此,在学生的学习过程中,教师要对学生顺势启发、恰当点拨,以达到优化学生学习结构的目的。
结合教材、教法和学情,本节课借助多媒体、活页学案等辅助手段进行,以达到增加课堂直观效果,打造高效课堂的目的。
四、教学过程
结合《数学新课标》和学生已有的知识及生活经验,根据新课改的理念,本节课我主要设计以下几个教学环节:①温故知新(3分钟)②探究新知(25分钟)③基础过关(7分钟)④课堂小结(3分钟)⑤课堂自测(5分钟)⑥课堂质疑(2分钟)
接着,我再细说一下这几个环节
(一)温故知新
给出以下两个抢答题
这一环节的目的既达到温习乘法分配律,又起到预热学生思维的目的,以保证学生尽快进入课堂学习的角色。
(二)探究新知
1、因式分解的概念
(1)想一想
能被 整除吗?还能被哪些数整除?你是怎么得出来的?
(2)议一议
你能尝试把a3-a化成几个整式的乘积的形式吗?与同伴交流.
(3)拼一拼
分别写出箭头两边的面积
_____________________________=___________________
篇15:《因式分解》说课稿
我说课的题目是选自华东师大版,八年级上册,第十四章第四节,因式分解,这是初中数学传统的经典,在新课标的理念下,重新理解它深刻的内涵。
为此,我设定说课程序是:
一、重新审视因式分解的教育价值
二、教材处理的设想
三、教学总体设计
四、教学过程概述
(一)重新审视因式分解的教育价值
传统的因式分解,是数学的工具使学生熟练掌握一些因式分解技能技巧,本来十分简单的问题演绎得十分复杂(如填数法,拆项法,凑和法,十字相乘法)
新课程把因式分解作为培养学生逆向思维,全面思考,灵活解决矛盾的载体。为此,淡化理论。简化难题,紧紧掌握最基本的教学方法(提取公因式法和公式法)即可。这是新课程体现教育价值最明显的变化。为此,在学生思维方法和对世上的事,要正,反两方面认识上下功夫,是这节课的重要所在。
通过整式乘法与因式分解互为逆向变换,使学生澄清这种逆是反过来的变换,不是逆运算―是教学的难点(逆运算,是在一个算式中,以两种形式不同实质不变的两种运算,而因式分解是一种恒等变换的两种说法)
为实现本节课的教育价值,在教学目标的确定上,重点考虑我的学生理解能力弱,善于模仿,满足于一知半解,我确定:
1、知识的能力目标:理解因式分解的意义,掌握提取公因式法和公式法,激发学生学习兴趣,培养学生创编因式分解题目的能力
2、方法与过程目标:采用自学自练的方法,逐见打开学生思维的大门,学会两分法看问题,体验知识发生过程就是学生思维发展的全过程
3、情感态度与价值观:通过情境教学,使学生在参与中激发学习情感,关注每一个学生的思维变化,鼓励成功全面体现学生的价值观,使学生满腔热忱,科学积极的态度,投入本节课的学习
(二)教材处理设想
我以我是教学资源的开发者的身份,重新组织教学内容,增加教学情境的创设,明确目的与动机,用实际问题是学生体验到这节内容的价值(见教学过程)
(三)教学总体设计
教学总体框架:教师设计生活中的实际问题,使学生在问题情境中展开思考→通过揭示因式分解的概念学习因式分解的意义→学生实践探索,发现提取公因式和公式法→熟练运用这种方法解题,发展学生的理性思维→通过学生的编题活动,培养学生思维创造性。
教学的主体是概念与方法20分钟训练上主题部分由学生自主探索,合作学习。
(四)教学过程概述
教学环节一:创设情境:“去过本溪吗?”“本溪的著名矿产是什么?”〈铁矿〉本溪歪头山的铁矿石,每吨含铁75%,采矿工人第一天采矿石203吨,那么,第一天矿石含铁多少?(75%×203)第二天采矿石198吨含铁(75%×198)第三天采矿216吨,含铁(75%×216)现将这三天采矿石的含铁量总数用代数式表示:75%×203+75%×198+75%×216,还可表示:75%(203+198+216),若果用a表示75%,用x、y、z表示三天的采矿数就有ax+ay+az=a(x+y+z)
通过此例,揭示因式分解的概念:把一个多项式化成几个整式积的形式,就是因式分解,结合ax+ay+az=a(x+y+z)揭示,这种方法叫提取公因式法“正好相反”通过讨论,认识到整式乘法与因式分解不是逆运算,而是互逆变换,从而突破了教学难点,实现了教学的第一目标
教学环节二:思维在探索中展开:教学中,抓住“反过来”让学生从思维的逆向考虑,如何分解因式,这里在学生完成
a(x+y+z)=ax+ay+az的基础上,再完成
ax+ay+az=a(x+y+z)
a2―b2=(a+b)(a―b)
a2+2ab+b2=(a+b)(a+b)
(制课件)
整式乘法因式分解
原型单项式与多项式、多项式与多项式相乘单项式与单项式、单项式与多项式、多项式与多项式相加
结果多项式因式乘积
范围都能完成不能完成:3ab+5ac+7mn
在学生的实践过程中,认识到多项式的因式分解是有条件限制的,不是所有的多项式都能因式分解。因此,会观察,判断,十分重要。
教学环节三:思维在展开教学中定势:本节课重点,掌握1、提取公因式法2、公式法对于这一新知识点,学生感到陌生,必须先使他们头脑中牢记,这就是先形成的思维定式
例如,公式法中,平方差公式a2―b2=(a+b)(a―b)
如―a2+25b216x2―4/9y2
特点:1两项式2平方3异号
教学环节四:思维在编题中创新:学生在认识整式乘法与因式分解的关系后,就不难编出很多因式分解的题目来(要求编题中,简单,明了,易解)
总之,教学的着眼点,不是熟练技能,而是发展思维,使学生在学习情感,态度的价值观上发生深刻的变化。
篇16: 因式分解教案
学习目标:经历探索同底数幂的乘法运算性质的.过程,能用代数式和文字正确地表述,并会熟练地进行计算。通过由特殊到一般的猜想与说理、验证,发展推理能力和有条理的表达能力.
学习重点:同底数幂乘法运算性质的推导和应用.
学习过程:
一、创设情境引入新课
复习乘方an的意义:an表示个相乘,即an=.
乘方的结果叫a叫做,n是
问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?
列式为,你能利用乘方的意义进行计算吗?
二、探究新知:
探一探:
1根据乘方的意义填空
(1)23×24=(2×2×2)×(2×2×2×2)=2;
(2)55×54=_________=5();
(3)(-3)3×(-3)2=_________________=(-3)();
(4)a6a7=________________=a().
(5)5m5n
猜一猜:aman=(m、n都是正整数)你能证明你的猜想吗?
说一说:你能用语言叙述同底数幂的乘法法则吗?
同理可得:amanap=(m、n、p都是正整数)
三、范例学习:
【例1】计算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x
1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.
2.计算:
(1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.
【例2】:把下列各式化成(x+y)n或(x-y)n的形式.
(1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)
(3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1
四、学以致用:
1.计算:⑴10n10m+1=⑵x7x5=⑶mm7m9=
⑷-4444=⑸22n22n+1=⑹y5y2y4y=
2.判断题:判断下列计算是否正确?并说明理由
⑴a2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();
⑷aa7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。
3.计算:
(1)xx2+x2x(2)x2xn+1+xn-2x4-xn-1x4
(3)-(-a)3(-a)2a5;(4)(a-b)3(b-a)2
(5)(x+y)(x+y)(x+y)2+(x+y)2(x+y)2
4.解答题:
(1)已知xm+nxm-n=x9,求m的值.
(2)据不完全统计,每个人每年最少要用去106立方米的水,1立方米的水中约含有3.34×1019个水分子,那么,每个人每年要用去多少个水分子?
篇17: 因式分解教案
学习目标
1、了解因式分解的意义以及它与正式乘法的关系。
2、能确定多项式各项的公因式,会用提公因式法分解因式。
学习重点:能用提公因式法分解因式。
学习难点:确定因式的公因式。
学习关键,在确定多项式各项公因式时,应抓住各项的公因式来提公因式。
学习过程
一.知识回顾
1、计算
(1)、n(n+1)(n-1)(2)、(a+1)(a-2)
(3)、m(a+b)(4)、2ab(x-2y+1)
二、自主学习
1、阅读课文P72-73的内容,并回答问题:
(1)知识点一:把一个多项式化为几个整式的__________的形式叫做____________,也叫做把这个多项式__________。
(2)、知识点二:由m(a+b+c)=ma+mb+mc可得
ma+mb+mc=m(a+b+c)
我们来分析一下多项式ma+mb+mc的特点;它的每一项都含有一个相同的因式m,m叫做各项的_________。如果把这个_________提到括号外面,这样
ma+mb+mc就分解成两个因式的积m(a+b+c),即ma+mb+mc=m(a+b+c)。这种________的方法叫做________。
2、练一练。P73练习第1题。
三、合作探究
1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一种变形,左边是几个整式乘积形式,右边是一个多项式。、
2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一种变形,左边是_____________,右边是_____________。
3、下列是由左到右的变形,哪些属于整式乘法,哪些属于因式分解?
(1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)
(3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1
4、准确地确定公因式时提公因式法分解因式的关键,确定公因式可分两步进行:
(1)确定公因式的数字因数,当各项系数都是整数时,他们的最大公约数就是公因式的数字因数。
例如:8a2b-72abc公因式的数字因数为8。
(2)确定公因式的字母及其指数,公因式的字母应是多项式各项都含有的字母,其指数取最低的。故8a2b-72abc的公因式是8ab
四、展示提升
1、填空(1)a2b-ab2=ab(________)
(2)-4a2b+8ab-4b分解因式为__________________
(3)分解因式4x2+12x3+4x=__________________
(4)__________________=-2a(a-2b+3c)
2、P73练习第2题和第3题
五、达标测试。
1、下列各式从左到右的变形中,哪些是整式乘法?哪些是因式分解?哪些两者都不是?
(1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)
(3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)
(5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4
2.课本P77习题8.5第1题
学习反思
一、知识点
二、易错题
三、你的困惑
篇18: 因式分解教案
教学目标
1、会运用因式分解进行简单的多项式除法。
2、会运用因式分解解简单的方程。
二、教学重点与难点教学重点:
教学重点
因式分解在多项式除法和解方程两方面的应用。
教学难点:
应用因式分解解方程涉及较多的推理过程。
三、教学过程
(一)引入新课
1、知识回顾(1) 因式分解的几种方法: ①提取公因式法: ma+mb=m(a+b) ②应用平方差公式: = (a+b) (a—b)③应用完全平方公式:a 2ab+b =(ab) (2) 课前热身: ①分解因式:(x +4) y — 16x y
(二)师生互动,讲授新课
1、运用因式分解进行多项式除法例1 计算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3
一个小问题 :这里的x能等于3/2吗 ?为什么?
想一想:那么(4x —9) (3—2x) 呢?练习:课本P162课内练习
合作学习
想一想:如果已知 ( )( )=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢? (让学生自己思考、相互之间讨论!)事实上,若AB=0 ,则有下面的结论:(1)A和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0
试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0 吗?3、运用因式分解解简单的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0则x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 则3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2
等练习:课本P162课内练习2
做一做!对于方程:x+2=(x+2) ,你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?
教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4) —16x =0解:将原方程左边分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接着继续解方程,5、练一练 ①已知 a、b、c为三角形的三边,试判断 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c为三角形的三边 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、挑战极限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx
(三)梳理知识,总结收获因式分解的两种应用:
(1)运用因式分解进行多项式除法
(2)运用因式分解解简单的方程
(四)布置课后作业
作业本6、42、课本P163作业题(选做)
【因式分解的教案设计】相关文章:
1.因式分解教案
2.因式分解练习题
3.因式分解教学反思
8.教案设计
10.《庖丁解牛》教案设计






文档为doc格式