欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>平均数教案设计

平均数教案设计

2023-04-14 08:32:26 收藏本文 下载本文

“哈利啵贤”通过精心收集,向本站投稿了17篇平均数教案设计,以下是小编整理后的平均数教案设计,欢迎阅读分享。

平均数教案设计

篇1:平均数教案设计

一.教学目标

(一)教学知识点

1.会求加权平均数,并体会权的差异对结果的影响.

2.理解算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题.

(二)能力训练要求

1.通过利用平均数解决实际问题,发展学生的'数学应用能力.

2.通过探索算术平均数和加权平均数的联系和区别,发展学生的求同和求异思维.

(三)情感与价值观要求

通过解决实际问题,体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心.

二.教学重点

1.会求加权平均数,并体会权的差异对结果的影响,认识到权的重要性.

2.探索算术平均数和加权平均数的联系和区别.

三.教学难点

探索算术平均数和加权平均数的联系和区别.

四.教学方法

探讨式教学.

五.教具准备

投影片三张:

第一张:补充练习(记作8.1.2 A);

第二张:补充练习(记作8.1.2 B);

第三张:补充练习(记作8.1.2 C).

六.教学过程

Ⅰ.创设问题情境,导入新课

在上节课我们学习了什么叫算术平均数和加权平均数,以及如何求一组数据的算术平均数和加权平均数.本节课我们继续研究生活中的加权平均数,以及算术平均数和加权平均数的联系与区别.

Ⅱ.讲授新课

1.例题讲解

某学校对各个班级的教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面.

篇2:《平均数》教案设计

《平均数》教案设计

教学目标:

1、体会平均数可以反映一组数据的总体情况和区别不同组数据的总体情况这一统计学上的意义。

2、使学生认识统计与生活的联系,发展学生的实践能力。

3、巩固求平均数的计算方法。

教学过程:

一、复习

1、师出示一杯水,告诉学生这一大杯水大约600克,而后把这杯水分别到入4个杯子中(每个杯子的'水不同)提出:你们能求出这4个杯子的水的平均重量吗?

2、学生动手解决,并交流解决的方法。

二、创设问题情景,引导探究。

1、六一节,老师带了许多糖果想送给大家吃,老师给奋飞组6人共分36块,给前进组8人共分了40块,给蓝天组5人共35块,你们认为哪一组的同学分到的糖果多?怎么解决?

(1)组织交流解决的方法。

(2)小结:象这种情况下,每组的人数不一样,不能直接拿总数来比较,而是要求出每组同学的平均数来比较。

2、出示情景图,告诉同学穿兰色衣服的是开心队,穿黄色衣服的是欢乐队,引导学生观察后猜一猜:你认为哪一队的身高高?并说说理由。

3、出示统计表,组织学生收集有关数据,根据统计表估一估,欢乐队和开心队的平均身高分别是多少?并说说估的方法。

4、同桌合作,一人求欢乐队的平均身高,另一个求开心队平均身高,后比较哪一队高?

5、组织交流计算的方法与结果。

6、组织讨论:从刚才的这件事,你有什么发现,并小结:平均数能较好地反映一组数据的总体情况。

三、拓展与应用

说说生活中还有哪些事要通过求平均数来解决一些问题。

四、小结:通过本节课的学习,你有什么收获,有什么问题需要帮助的吗?

五、作业练习十一4、5

教学反思:

篇3:认识平均数的教案设计

认识平均数的教案设计

篇一:认识平均数教案

教学目标:

1. 经历用平均数描述一组数据特征的过程,在具体的问题情境中体会平均数的意义,掌握求简单平均数的方法。

2. 自主探究移多补少及先合后分的求平均数的方法,会估计平均数的范围,能灵活选择合适的方法解决求平均数的实际问题。

3. 体会平均数在生活中的应用价值,在运用平均数知识解决问题的过程中,增强应用意识,发展统计观念。

教学重点:

体会平均数的意义,掌握求平均数的方法.

教学难点:

根据平均数的意义,对一些简单事件做出合理的分析和判断.

教学过程:

一.问题导学,自主学习:

1.创设问题情境:

师: 在光明小学举行的趣味运动会上,二年级第一小组的男女生进行了一场激烈的套圈比赛.让我们一起去看看比赛情况.(课件演示,引导学生观察)

a.问题:观察男女生套圈成绩统计图,从图中你知道些什么?

b.设疑:你认为男生套得准一些还是女生套得准一些?

c.说明:要想判断谁套得准一些,为了体现公平性,就要用到平均数.

2.揭示课题:认识平均数明确学习目标:

a.了解平均数的意义.

b.掌握求平均数的方法.

3.预习交流:

[小组内简单交流对平均数含义的理解和求平均数的方法,提出质疑.]

过渡:

回归课前的疑问,让我们一起去探究有关平均数的问题.

4.自主预学:

a.男生队套圈总数:6+9+7+6=个

b.女生队套圈总数:10+4+7+5+4=()个

思考:

a.比较男女生套圈总数,这样比,你认为公平吗?为什么?

b.怎样比才够公平?

学情分析:

[能否从男女生参赛人数上的不同去衡量.]

二.小组合作探究:

问题:

1.怎样求男生,女生平均每人套中的个数呢?

2.你认为先求什么?再求什么?

学法指导:

a.明确总数份数和每份数三者之间的关系.

b.根据求每份数的方法,引导学生探索求平均数的方法.

三.展示交流,点拨提升:

1.探究展示:

学情预设:

男生:6+9+7+6=28(个)

28÷4=7(个)

女生:10+4+7+5+4=30(个)

30÷5=6(个)

说明:7和6就是男女生套圈个数的平均数,它反映了一组数据的一般水平,并不表示每个人套中的实际个数.

2. 质疑:

分别用套圈的总个数去除以他们的什么?(总人数).

3. 精要点拨:

明确:求平均数,要找准和总数对应的份数.

方法:总数÷份数=平均数

过渡:

师:除了用先合后分的方法求平均数,还有其他求平均数的方法吗?

课件演示:移多补少的方法.

说明:

先合后分和移多补少都是求平均数的方法,在计算时,我们可以选用先合后分的方法求平均数,而移多补少的方法适合于操作时使用.

4.平均数的范围:

观察与思考:

平均数7和6,相比它们所在的一组数据的大小,有什么特点?

重难点突破:

明确::在一组数据中,平均数比最大的数小,比最小的数大.

四.训练检测,总结反思:

小华家1月~5月用水情况统计表

1月2月 3月 4月 5月

13吨 10 吨 11吨 9吨 12吨

(1).小华家平均每月的用水量在( )吨和( )吨之间.

(2).算一算:平均每月的用水量是多少吨?

[学生独立完成,小组内交流]

想一想:

1. 怎样确定平均数的取值范围?

2. 求平均数的方法是什么?你先求的什么?

归纳与总结:

a.最大的数>平均数>最小的.数

b.平均数等于总数除以对应的份数

五.综合实践与应用:

1.想一想,下面的说法是否正确,简单说明理由。

①、小明期中考试语文、数学、英语三门功课的均分是95分,那么他的三门功课一定都是95分.()

②、小马过河:河的平均水深为130厘米,小马身高140厘米,小马过河不会有危险。( ) [学生独立思考后,小组里交流判断依据]

重点明确:

根据平均数的意义,并不表示:1.每门的成绩都是95分,有的高于95分,有的低于95分.

2.处处水深130厘米,有的低于130厘米,而有的地方比130厘米深的多.

2.知识达标:

同学们收集标本,小红收集了14个,小兰收集了12个,小丽收集了11个,小明收集了15个,平均每人收集多少个标本?

[进一步巩固求平均数的方法]

3.智能积累:

三年级的8名同学分两组向灾区捐款,一组捐了220元,二组捐了180元。

①、平均每名同学捐款多少元?

②、平均每组同学捐款多少元?

思考:两道题在解答时,有什么相同点和不同点?

重点明确:

相同点:都是先求捐款的总数.

不同点:各自对应的份数不同.

知识延伸:

小力前5次英语测验的平均分是91分,第6次得了97 分,他6次测验的平均分是多少分?

六.全课总结:

通过学习,你有什么收获?还有哪些疑惑?

当堂检测:

有3条彩带,长度分别是9厘米,17厘米,10厘米,平均每条彩带长多少厘米?

板书设计:

认识平均数

(一)1.移多补少

2.先合后分 男生:6+9+7+6=28(个)

28÷4=7(个)

女生:10+4+7+5+4=30(个)

30÷5=6(个)

方法:总数÷份数=平均数

(二)平均数的特点

最大的数>平均数>最小的数

教学反思:

“平均数”是苏教版小学数学三年级下册《统计》里面的内容,它与我们的现实生活紧密联系,本课教学把重点放在掌握求平均数的方法上,而难点则是运用平均数的意义分析数据,从而体会到平均数的应用价值。

“平均数”的概念比较抽象,如何让学生初步理解它的概念并掌握正确的求平均数方法?我一开始就设计了贴近学生生活的熟悉的活动情境,通过引导学生观察统计图,获得数学信息,提出数学问题,自主预学和小组合作探究来解决数学问题,掌握问题解决的多种有效方法,引导学生在解决问题的过程中,让学生体会到平均数在生活中的应用价值,较好的完成了本节课的教学目标。这节课我为学生提供了充分的从事数学活动的时间和空间,让学生参与到知识的发生,发展,形成过程中去,引导学生利用数学知识解决实际问题,提高了学生的综合学习能力。

篇4:求平均数(五年级)(人教版五年级教案设计)

教学目标

(一)进一步理解求平均数的意义,掌握较复杂的求平均数的方法。

(二)通过题目设计,对学生进行思想品德教育。

(三)培养学生灵活计算的能力和解决实际问题的能力。

教学重点和难点

求平均数的意义及较复杂的求平均数的方法。

较复杂的求平均数的方法。

教学用具

教具:电脑软件、投影片。

学具:判断卡。

教学过程设计

(一)复习准备

1.口算。

①小明有12本书,小军有20本书,小明和小军平均每人有几本书?

②五(3)班做好事28件,五(4)班做好事36件,平均每个班做好事多少件?③五年级一班分成3组投篮球,第一组投中28个,第二组投中33个,第三组投中23个,平均每组投中多少个?

由学生自己解答(列式计算)针对第③题提问:

①说出这道题的问题是什么?

②求平均数必须知道什么条件?

③说一说你是怎样计算的?

板书:投中总个数÷组数。

(二)学习新课

1.出示例 1:

五年级一班分成3组投篮球,第一组10人,共投中28个;第二组11人,共投中33个;第三组9人,共投中23个。全班平均每人投中多少个?

读题后,学生分组讨论思考题。(投影片)

①例1和准备题③比较,题目有什么异同?(从条件和问题两方面考虑。)②要求全班平均每人投中多少个,必须先知道什么条件?

在学生回答基础上,板书:投中总个数÷全班总人数。

教师:投中总个数和全班总人数题目中给了吗?怎么办?

②投中总个数和全班总人数知道之后,怎样求全班平均每人投中多少个?

尝试自己列式,然后讨论订正。

板书:

(1)全班一共投中多少个?

28+33+23=84(个)

(2)全班一共有多少人?

10+11+9=30(人)

(3)全班平均每人投中多少个?

84÷30=2.8(个)

教师:综合算式怎样列?(学生试列式,再讨论订正。)

板书:(28+33+23)÷(10+11+9)=2.8(个)

答:全班平均每人投中2.8个。

教师:对比例1和准备题③你能发现解答方法有什么异同吗?为什么会出现这种不同的情况?

2.出示例2:(投影片)

下表是五年级二班3个组投中篮球情况统计表。全班平均每人投中多少个?(得数保留一位小数)

教师:例2和例1比较,有什么异同?

明确:例1和例2的问题一样,但已知条件不同。

教师:要求全班平均每人投中多少个,要知道什么条件?(学生试做,然后说出自己的列式和思路,充分讨论,如果有不同意见互相交换,最后弄清怎样是对的。)

板书:

(1)全班一共投中多少个?

2.5×12+3×11+3.2×10=95(个)

由学生完成。

(2)全班一共有多少人?

________________________

(3)全班平均每人投中多少个?

________________________

答:全班平均每人投中________个。

教师:你能列出综合算式吗?

板书:(2.5×12+3×11+3.2×10)÷(12+11+10)。

讨论:对比例2和例1有什么不同?解答时应该注意什么问题?

教师:求平均数时,有时不能除尽,这时需要根据具体情况取近似值。

(三)巩固反馈

1.做一做:

小亮读一本书,前4天平均每天看6.25页,后3天平均每天看8页。小亮这一星期平均每天看多少页?(先说思路,再列式计算。)

2.判断正误并说明理由。

①小李加工一批零件,前2时加工28个,后3时加工36个,平均每时加工多少个?

[  ]

A.(28+36)÷(3+2);

B.(28 × 2+36 × 3)÷(3+2);

C.(28+36)÷2。

②一辆汽车从甲地开往乙地,前5时平均每时行60千米,后3时平均每时行56千米,这辆汽车从甲地开往乙地,平均每时行驶多少千米?

[  ]

A.(60+56)÷(5+3);

B.(60+56)÷2;

C.(60×5+56×3)÷(5+3)。

(四)课堂总结(学生总结)

教师:解答求平均数应用题应注意哪些问题?

①明确问题求的是什么平均数;

②总数量÷总份数=平均数。

(五)布置作业  课本P15:1,2,3,4,5。

课堂教学设计说明

本节课是在较简单的求平均数应用题的基础上进行的。重点是让学生理解并巩固平均数的意义以及求平均数应用题的解题思路和方法,其中加权算术平均数的计算方法是难点。通过准备题与例1的对比突出重点,学生掌握求平均数的方法,同时培养学生分析、比较的能力。让学生充分讨论、尝试例2,培养学生独立解答问题的能力,从而突破了难点。

本节新课教学分为三部分。

第一部分,教学例1,加深对平均数应用题的解题方法的理解,共分3层。

第一层:由准备题与例1对比,找出异同点;

第二层:由问题出发找出解决问题的方法;

第三层:列出分步和综合算式。

第二部分:教学例2,强调根据题意确定算法,可分3层。

第一层:出示例2,审题找出与例1的异同点;

第二层:分组讨论解题方法;

第三层:列出分步、综合算式。

第三部分:对比例1、例2,找出异同点,从而加深对平均数应用题解题方法的理解。

板书设计(略)

篇5:求平均数(四年级)(人教版四年级教案设计)

教学目标

(一)使学生理解平均数的概念.

(二)掌握简单的求平均数的方法.

(三)培养学生分析、概括的能力.

教学重点和难点

平均数是个比较抽象的概念,它和平均分的意义不完全一样,平均数实际上每一份不一定一样多,而平均分是指实际上每份都一样多.因此理解平均数的概念是难点,让学生理解并掌握求平均数的方法是教学重点.

教学过程设计

(一)复习准备

口答:

1.小华4天读完60页书,平均每天读几页?

2.五一班有42人,平均分成6个组,每个组有多少人?

3.小明期中测验语文和数学两科成绩共得180分,平均每科成绩多少分?

师:上述1,2两题都是把一个数平均分成几份,求1份是多少.实际上它们每一份都一样多,而第3题是把两个数的和平均分成两份,每一份是它们的平均数,而不是原来每份实际的数,所以“求几个数的平均数”与“把一个数平均分成几份,求1份是多少”,既有联系又有区别.

(二)学习新课

1.新课引入.

在日常生活、工农业生产中,经常用到平均数的概念,如平均速度、平均成绩、平均产量等.怎样理解平均数的概念,如何求出几个数的平均数呢?这就是我们今天要研究的课题.(板书:平均数)

2.出示例2.

用4个同样的杯子装水,水面的高度分别是6厘米、3厘米、5厘米、2厘米.这4个杯子水面的平均高度是多少?

3.分析,教师演示,学生观察、思考.

教师拿出盛水的4个同样的杯子,标明刻度.

师:这4个杯子水面高度相等吗?

生:这4个杯子水面高度不相等.

师:求4个杯子水面的平均高度是什么意思?

生:平均高度就是4个杯子里的水面一样高.

师:怎样才能找出4杯水的平均高度呢?

出示挂图(即课本中的下图)放在4个杯子后面,指出红线标明的地方(4厘米)就是平均高度.

教师演示,把水多的杯子倒一些到水少的杯子,使4杯水同样多,得到平均高度.

师:这平均高度是每杯水的实际高度吗?它是怎样得到的呢?

通过演示使学生明确,它不是每杯水的实际高度,而是把4个杯子里的水平均分的结果.

师:如果我们不倒水,能算出这个平均高度吗?

小组讨论.从而明确:要求4个杯子水的平均高度,要先把4个杯子的水面高度加起来,再除以4,相当于把4个杯子里的水合在一起,再平均倒在4个杯子里,看每个杯子水面的高度是多少.用算式表示就是(6+3+5+2)÷4.

教师板书:(6+3+5+2)÷4

=16÷4

=4(厘米)

答:4个杯子水面平均高度是4厘米.

说说括号里求什么?为什么除以4?得到的结果表示什么.

要强调4厘米是平均数.

4.做29页上的“做一做”中的第1,2,3题.

订正时让学生讲出思考过程.

5.总结规律.

师:从刚才做的几道题中,你能说一说求平均数的一般方法吗?

通过学生的回答概括为:求几个数的平均数,先要求出这几个数的总数,然后再找出要把它平均分成的份数,最后用总数除以总份数就可以得到平均数.

6.出示例3.学生默读例3,理解题意,明确条件和问题.

师:如何比较哪一组平均身高高一些?怎样计算出高多少?

启发学生想:如一个一个地比,非常麻烦,而且不容易比清楚.先算出各组的平均身高,就容易比较了.

让学生运用从例2中学到的方法,自己求出两组各自的平均身高,再求出哪一个组的平均身高高一些,高多少.

师:如果不求平均身高,直接用各组所有人数的和进行比较行不行?为什么?

使学生明确,由于两组人数和每人身高不一样,不能直接比较,只能用平均身高进行比较.

(三)巩固反馈

1.选择正确列式,并说明理由.

一辆汽车第一天行53千米,第二天行58千米,第三天上午行30千米,下午行27千米.平均每天行多少千米?

A.(53+58+30+27)÷3

B.(53+58+30+27)÷4

2.光明小学五年级3个班为灾区人民捐款750元,六年级4个班为灾区人民捐款1210元.平均每个年级捐款多少元?这两个年级平均每班捐款多少元?

小组讨论后得出:

平均每个年级捐款多少元?

(750+1210)÷2

两个年级平均每班捐款多少元?

(750+1210)÷(3+4)

强调是把哪几个数平均分、分成多少份,要认真审题,找出所需要的总数及总份数,再求出它们的平均数.

(四)作业

练习七第1,2题.

课堂教学设计说明

平均数是统计中的一个重要概念.小学里所讲的平均数一般是指算术平均数,也就是一组数量的和除以这组数量的个数所得的商.因为这个平均数不是实际的数,与过去学的平均分的意义不完全一样,因而平均数的概念比较抽象.在日常工作、生活中要经常用到如平均产量、平均速度等等,因此首先要建立平均数的概念,再分析求平均数的方法.本节课设计既要体现学生的主体作用,又重视学习方法的指导.

首先通过简单的口答题,初步认识平均数的意义,分清平均数与平均分的联系与区别.为学新课做好铺垫.

新课分为四个层次.

第一个层次学习例2.求4个杯子水面的平均高度.通过教师的演示,提问,学生在观察、讨论的基础上,理解平均高度的意义,建立平均数的概念.

第二个层次是指导列式计算.在实际中,求几个数的平均数,都不可能像杯子倒水那样操作,因此引导学生要通过计算来解决.

第三个层次,让学生做书上的“做一做”几个题,启发学生总结出求几个数的平均数的一般算法.

第四个层次,通过例3让学生运用学过的方法类推、自己计算,从而加深对平均数的理解,熟练地掌握计算方法.

练习的设计有所提高和变化,要让学生分清把哪几个数平均分,分成多少份,为以后学习复杂的求平均数问题打下基础.

板书设计

求平均数

例2  用同样的4个杯子装水,水面的高度分别是6厘米、3厘米、5厘米、2厘米.这4个杯子水面的平均高度是多少?

(6+3+5+2)÷4

=16÷4

=4(厘米)

答:这4个杯子水面的平均高度是4厘米.

例3  四年级一班第一小组有6个同学,第二组有7个同学,下面是两组同学身高的统计表.(单位是厘米)

eq x(统计表)

(1)第一组平均身高是多少?

(136+142+140+135+137+144)÷6

=834÷6

=139(厘米)

(2)第二组平均身高是多少?

(132+141+133+138+145+135+142)÷7

=966÷7

=138(厘米)

(3)第一组平均身高比第二组高多少?

139-138=1(厘米)

答:第一小组平均身高高一些,高1厘米.

篇6:平均数

教学目标:

1、使学生理解的含义,初步学会简单的求平均数的方法。

2、理解平均数在统计学上的意义,感受数学与生活的联系。

3、发展学生解决问题的能力。

重点难点:使学生理解平均数的含义,初步学会简单的求平均数的方法。

教学过程:

一、理解平均数

1、周末,妈妈买了许多糖果,分给哥哥6颗,妹妹4颗,你对妈妈的做法有什么看法?你有什么办法让哥哥和妹妹分到的糖果一样多?是多少?

2、老师(出示两个笔筒分别装了27枝送给23个女同学,23枝送给23男同学,学生动手分:让女同学和男同学分的一样多。

3、引入“平均数”象哥哥和妹妹分得一样多的5颗就是哥哥和妹妹分到的糖果的平均数。25枝就是男同学和女同学分的笔的平均数。

4、学生讨论:你们喜欢刚才谁的方法?

二、学习计算平均数

1、出示情景图:说说老师和同学们在干什么?

2、出示统计图:引导学生收集信息。

3、引导学生运用“移多补少”的方法求平均每人收集了多少个:利用这个统计图,你们有什么办法,可以解决这个问题?学生独立思考后交流方法。

4、提出问题:生活中,大家分头收集了许多矿泉水瓶,大家是怎样集中过来的?如果没有这个统计图,只是每个人汇报自己收集了几个?你们有什么办法可以知道这个小组平均每个人收集了多少个?

5、小组讨论解决的方法并派代表交流,并说说13个就是平均数,那是不是说他们每个人都是收集13个呢?理解平均数是个虚的数。

6、小结求平均数的方法。

三、巩固训练

1、另外一个环保小组也收集了许多矿泉水瓶,小军收集15个,小伟收集16个,小朋收集12个,小新收集了13个,这个小组平均每个人收集了几个?

2、根据统计表算一算,三年段平均每班踢几下?

班级三(1)三(2)三(3)三(4)

踢的次数632654668646

四、小结:通过这节课的学习,你们有什么收获,还有什么问题?

五、布置作业:练习十一1、2、3

篇7:平均数

第一课时

素质教育目标

(一)知识教学点

1.使学生初步了解统计知识是应用广泛的数学内容 .

2.了解的意义,会计算一组数据的 .

3.当一组数据的数值较大时,会用简算公式计算一组数据的 .

(二)能力训练点

培养学生的观察能力、计算能力 .

(三)德育渗透点

1.培养学生认真、耐心、细致的学习态度和学习习惯 .

2.渗透数学来源于实践,反地来又作用于实践的观点 .

(四)美育渗透点

通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美 .

重点·难点·疑点及解决办法

1.教学重点:的概念及其计算 .

2.教学难点:的简化计算 .

3.教学疑点:简化公式的应用,a如何选择 .

4.解决办法:分清两个公式,公式②的运用要选择一个适当的a.

教学步骤

(一)明确目标

在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)

为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:

甲 7 8 6 8 6 5 9 10 7 4

乙 9 5 7 8 7 6 8 6 7 7

1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?

教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.

对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.

(二)整体感知

解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.

(三)教学过程

这节课我们首先来学习.

1.(出示幻灯片)请同学看下面问题:

某班第一小组一次数学测验的成绩如下:

86 91 100 72 93 89 90 85 75 95

这个小组的平均成绩是多少?

教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求方法,这样做使学生对的计算公式能有深刻的认识 .

2.的概念及计算公式

一般地,如果有n个数 .

那么 ①

叫做这n个数的, 读作“x拨” .

这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法 .学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性 .教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义 .

3.计算公式①的应用

例1  一个地区某年1月上旬各天的最低气温依次是(单位:℃):

-6,-5,-7,-6,-4,-5,-7,-8,-7

求它们的平均气温 .

让学生动手计算,以巩固计算公式(一名学生板演)

教师应强调:①解题格式 .②在统计学里处理的数据包括负数 .③在本章中,如无特殊说明,计算结果保留的位数与原数据相同 .

例2  从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):

210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215

计算它们的平均质量 .(用投影仪打出)

引导学生两人一组完成计算,然后一起对答案 .由于数据较大,计算较繁,可能会出现不同的答案 .正好为下面提出简化计算公式作好铺垫 .

教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法 .

学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样 .

讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同 .

通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受 .

3.推导公式②

一般地,当一组数据 的各个数值较大时,可将各数据同时减去一个适当的常数a,得到

那么  ,

因此,

即 ②

为了加深学生对公式②的认识,再让学生指出例2的 、、各是什么?(学生回答)

课堂练习:

教材P148中~P149中1,2,3

(四)总结、扩展

知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛 .本章将要学习的是统计学的初步知识 .

2.求n个数据的的公式① .

3.的简化计算公式② .这个公式很重要,要学会运用 .

方法小结:通过本节课我们学到了示一组数据的方法 .当数据比较小时,可用公式①直接计算 .当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算 .

八、布置作业

教材P153中1、2、3、4 .

九、板书设计

第 1 2 页

篇8:平均数

平均数 - 初中数学第三册教案

平均数

平均数

教学目标 :

1.算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.

2.体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题,发展学生数学应用能力.

教学重点:会求一组数据的算术平均数和加权平均数.

教学难点 :体会平均数在不同情境中的应用.

教学方法:引导-讨论-交流.

教学手段:多媒体

教学过程 :

创设情景,引入新课(出示篮球比赛的一些画面)

在篮球比赛中,队员的身高是反映球队实力的一个重要因素,如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”?能因为甲队队员的最高身高高于乙队队员的最高身高,就说甲队队员比乙队队员更为高大吗?

上面两支球队中,哪支球队队员的身材更为高大?哪支球队队员更为年轻?你是怎样判断的?

活动1:前后桌四人交流.

找同学回答后,给出算术平均数的定义.

一般地,对于n个数x1,x2,…,xn我们把

叫做这个n数的算术平均数,简称平均数,记为 .读作“x拔”.

活动2:请同学们结合图表,自己用计算器算出各球队的平均身高,和平均年龄,看哪一个球队的平均身高高?哪一个球队的平均年龄小?

想一想:

小明是这样计算东方大鲨鱼队的平均年龄的:

年龄/岁 16 18 21 23 24 26 29 34

相应队员数 1 2 4 1 3 1 2 1

平均年龄=(16×1+18×2+21×4+23×1+24×3+26×1+29×2+34×1)÷(1+2+4+1+3+1+2+1)≈23.3(岁)

你能说说小明这样做的道理吗?找同学回答.

巩固练习一:

1. 某班10名学生为支援“希望工程”,将平时积攒的零花钱捐献给贫困地区的失学儿童.每人捐款金额如下:(单位:元)

10,12,13.5,21,40.8,19.5,20.8,25,16,30.

这10名同学平均捐款 元.(课本P216随堂练习1)

2.一名射手连续射靶20次,其中2次射中10环,7次射中9环,8次射中8环,3次射中7环,平均每次射中 环(精确到0.1)

3.小明上学期期末语文、数学、英语三科平均分为92分,她记得语文得了88分,英语得了95分,但她把数学成绩忘记了,你能告诉她应是以下哪个分数吗?

A 93分 B 95分 C 92.5分 D 94分

例1某广告公司欲聘广告策划人员一名,对A,B,C三名候选人进行了三项素质测试.他们的各项测试成绩如下表所示:

测试项目 测试成绩

A B C

创新 72; 85; 67

综合知识 50; 74; 70

语言 88; 45; 67

(1)如果根据三项测试的平均成绩确定录用人选,那么l将被录用?

(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时l将被录用?

解:(1)A的平均成绩为 (分).

B的平均成绩为 (分).

C的平均成绩为 (分).

因此候选人A将被录用.

(2)根据题意,3人的测试成绩如下:

A的测试成绩为 (分)

B的测试成绩为 (分)

C的测试成绩为 (分)

因此候选人B将被录用.

思考:(1)(2)的结果不一样说明了什么?

实际问题中,一组数据里的各个数据的“重要程度”未必相同.因此,在计算这组数据的平均数时,往往给每个数据一个“权”.如例1中4,3,1分别是创新、综合知识、语言三项测试成绩的权,而称

为A的三项测试成绩的加权平均数.

巩固练习二:

1. 某校规定学生的体育成绩由三部分组成:早锻炼及课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%.小颖的上述成绩依次是92分、80分、84分,则小颖这学期的.体育成绩是多少?

变形训练:(小组交流)

1.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,乙种10千克,丙种3千克混要一起,则售价应定为每千克 元;

2.某班环保小组的六名同学记录了自己家10月分的用水量,结果如下:(单位:吨):17,18,20,16.5,18,18.5.如果该班有45名同学,那么根据提供的数据估计10月份全班同学各家总共用水的数量约为 .

小结:先由学生总结,教师再补充.通过本节的学习,我们掌握了:1.算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.2.体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题.

布置书面作业 :课本P216习题8.1 1、2

课外作业 :(两题任选一题)

1. 到校医那里收集本班同学左眼视力检查结果,计算本班同学左眼视力的平均数.

2. 请设计一个利用“加权平均数”方法来求平均数的应用题,再将其“权”作适当改变,观察平均值的变化.观察“权”的变化对结果的影响.

板书设计

1.平均数

算术平均数:

对于n个数x1,x2,…xn我们把

叫做这个n数的算术平均数,简称平均数,记为 .

读作“x拔”

例1解:(1)A的平均成绩为

B的平均成绩为 .

C的平均成绩为 .

因此候选人A将被录用 (2)根据题意,3人的测试成绩如下:

A的测试成绩为 (分)

B的测试成绩为 (分)

C的测试成绩为 (分)

因此候选人B将被录用.

加权平均数:称

为A的三项测试成绩的加权平均数.

平均数

平均数

教学目标 :

1.算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.

2.体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题,发展学生数学应用能力.

教学重点:会求一组数据的算术平均数和加权平均数.

教学难点 :体会平均数在不同情境中的应用.

教学方法:引导-讨论-交流.

教学手段:多媒体

教学过程 :

创设情景,引入新课(出示篮球比赛的一些画面)

在篮球比赛中,队员的身高是反映球队实力的一个重要因素,如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”?能因为甲队队员的最高身高高于乙队队员的最高身高,就说甲队队员比乙队队员更为高大吗?

上面两支球队中,哪支球队队员的身材更为高大?哪支球队队员更为年轻?你是怎样判断的?

活动1:前后桌四人交流.

找同学回答后,给出算术平均数的定义.

一般地,对于n个数x1,x2,…,xn我们把

叫做这个n数的算术平均数,简称平均数,记为 .读作“x拔”.

活动2:请同学们结合图表,自己用计算器算出各球队的平均身高,和平均年龄,看哪一个球队的平均身高高?哪一个球队的平均年龄小?

想一想:

小明是这样计算东方大鲨鱼队的平均年龄的:

年龄/岁 16 18 21 23 24 26 29 34

相应队员数 1 2 4 1 3 1 2 1

平均年龄=(16×1+18×2+21×4+23×1+24×3+26×1+29×2+34×1)÷(1+2+4+1+3+1+2+1)≈23.3(岁)

你能说说小明这样做的道理吗?找同学回答.

巩固练习一:

1. 某班10名学生为支援“希望工程”,将平时积攒的零花钱捐献给贫困地区的失学儿童.每人捐款金额如下:(单位:元)

10,12,13.5,21,40.8,19.5,20.8,25,16,30.

这10名同学平均捐款 元.(课本P216随堂练习1)

2.一名射手连续射靶20次,其中2次射中10环,7

篇9:平均数

第一课时

素质教育目标

(一)知识教学点

1.使学生初步了解统计知识是应用广泛的数学内容 .

2.了解平均数的意义,会计算一组数据的平均数 .

3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数 .

(二)能力训练点

培养学生的观察能力、计算能力 .

(三)德育渗透点

1.培养学生认真、耐心、细致的学习态度和学习习惯 .

2.渗透数学来源于实践,反地来又作用于实践的观点 .

(四)美育渗透点

通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美 .

重点・难点・疑点及解决办法

1.教学重点:平均数的概念及其计算 .

2.教学难点 :平均数的简化计算 .

3.教学疑点:平均数简化公式的应用,a如何选择 .

4.解决办法:分清两个公式,公式②的运用要选择一个适当的a .

教学步骤

(一)明确目标

在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)

为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:

甲 7 8 6 8 6 5 9 10 7 4

乙 9 5 7 8 7 6 8 6 7 7

1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?

教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.

对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.

(二)整体感知

解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.

(三)教学过程

这节课我们首先来学习习近平均数.

1.(出示幻灯片)请同学看下面问题:

某班第一小组一次数学测验的成绩如下:

86 91 100 72 93 89 90 85 75 95

这个小组的平均成绩是多少?

教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识 .

2.平均数的概念及计算公式

一般地,如果有n个数 .

那么 ①

叫做这n个数的平均数, 读作“x拨” .

这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法 .学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性 .教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义 .

3.平均数计算公式①的应用

例1  一个地区某年1月上旬各天的最低气温依次是(单位:℃):

-6,-5,-7,-6,-4,-5,-7,-8,-7

求它们的平均气温 .

让学生动手计算,以巩固平均数计算公式(一名学生板演)

教师应强调:①解题格式 .②在统计学里处理的数据包括负数 .③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同 .

例2  从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):

210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215

计算它们的平均质量 .(用投影仪打出)

引导学生两人一组完成计算,然后一起对答案 .由于数据较大,计算较繁,可能会出现不同的答案 .正好为下面提出简化计算公式作好铺垫 .

教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法 .

学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样 .

讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x――撇――拨”;;简化计算的结果与前面毛算的结果相同 .

通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受 .

3.推导公式②

一般地,当一组数据 的各个数值较大时,可将各数据同时减去一个适当的常数a,得到

那么  ,

因此,

即 ②

为了加深学生对公式②的认识,再让学生指出例2的 、、各是什么?(学生回答)

课堂练习:

教材P148中~P149中1,2,3

(四)总结、扩展

知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛 .本章将要学习的是统计学的初步知识 .

2.求n个数据的平均数的公式① .

3.平均数的简化计算公式② .这个公式很重要,要学会运用 .

方法小结:通过本节课我们学到了示一组数据平均数的方法 .当数据比较小时,可用公式①直接计算 .当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算 .

八、布置作业

教材P153中1、2、3、4 .

九、板书设计

教学设计示例2

教学目标

(一)使学生了解平均数的意义,会计算一组数据的平均数.了解加权平均数的意义,并会求加权平均数;

(二)会运用平均数的简化运算方法.

教学重点和难点

重点:会计算平均数及运用平均数的简化方法,会运用加权平均数公式.

教学过程 设计

(一)引入新课

在初中一年级代数课本P106的“读一读”那一节,讲的是求平均数.有这样一例题:

女子排球队共有10名队员,身高(单位:米)分别为:

1.73,1.74,1.70,1.76,1.80,1.75,1.77,1.79,1.74,1.72.

求这个队的队员平均身高是多少?

解:求这个平均数的计算方法有两个.

方法1:直接计算

方法2:简化计算

观察一下这些数都在1.75的上、下,这时,可以这样考虑:先计算各数与1.75的差,也就是先都减去1.75(为了不出现小数,不妨把单位换成厘米)得到-2厘米,-1厘米,-5厘米,1厘米,5厘米,0厘米,2厘米,4厘米,-1厘米,-3厘米.

计算这组数的平均数,得:

因为前面计算时,每个数都减去了175厘米,所以把这里的得数0加上175,就得出这个排球队全体队员的平均身高是175厘米

在求一组数的平均数时,只要这组数都接近某一个数,就可以采用这种简化的计算方法.

以上例子告诉我们什么是平均数,怎样求平均数.如果这组数存在着大致在某一个数的上、下波动的情况,可以用简便方法计算.

(二)新课

1.平均数

在统计里,平均数是重要概念之一,它是显示出一组数据的集中趋势的特征数字,也就是说这组数据都“接近”哪个数.

上面的公式①,就是我们在求女排队员身高平均数的“直接算法”.

当一组数据x1,x2,…,xn的各个数值较大时,可将各数据同时减去一个适当

公式②就是我们在求女排队员身高平均数的“简便方法”

例1 某食品厂为了加强质量管理,对某天生产的罐头抽查了10个,样本净重如下(单位:克)

342,348,346,340,344,341,343,350,340,342.

篇10:平均数

解法2:把已知数据都减去342,得0,6,4,-2,2,-1,1,8,-2,0,

例2 从一批货物中取出20件,称得它们的重量如下(单位:千克):

310,308,300,305,302,318,306,314,315,307,

295,307,318,292,302,316,285,327,287,315.

求样本的平均数(结果保留到个位)

即样本平均数为306千克.

解法2:

由于题中数据都较大,而且都在常数300上、下波动,把原数据都减去300,得:

10,8,0,5,2,18,6,14,15,7,-5,7,18,-8,2,16,-15,27,-13,15.

2.加权平均数

设有甲、乙、丙三种可混合包装的食品,它们的单价分别是1.8元,2.5元,3.2元,现取甲种食品50公斤,乙种食品40公斤,丙种食品10公斤,把这三种食品混合后每公斤的单价是多少?

答:混合后的单价为2.50元.这个答案是不对的,因为混合后的售价不仅与每种食品的单价有关,而且还与每种食品的重量(公斤数)有关.这些食品混合后的售价应该等于

这种平均数叫做加权平均数.

一般说来,如果在n个数中,x1出现f1次,x2出现f2次,……,xk出现fk次(这里f1+f2+……+fk=n),那么根据平均数公式①,这n个数的平均数可以表示为

计算加权平均数的公式③,与计算平均数的公式①,实际上是一回事.当一组数据中有不少数据多次重复出现时,用加权平均数公式计算简便些.在公式③中,相同数据xi的个数fi叫做权.这个“权”,含有所占分量轻重的意思.fi越大,表示xi的个数越多,于是xi的.“权”就越重.

例3 某班有50名学生,数学期中考试成绩90分的有9人,84分的有12人,73分的有10人,65分的有13人,56分的有2人,45分的有4人,计算这个班学生的数学期中考试平均成绩(结果保留到小数点后第一位).

在例1~例3的求平均数问题中可以看到,平均数能够反映出数据的集中趋势.

(三)课堂练习

若4,x,5的平均数是7,则3,4,5,x,6五个数的平均数是______.

(四)小结

1.用样本平均数去估计总体平均数,这是学习习近平均数的目的.

2.平均数计算公式,平均数简化计算公式,加权平均数计算公式都很重要,应根据具体情况,恰当选取哪个公式

(五)作业

1.数据15,23,17,18,22的平均数是________.

2.5个数据的和为405,其中一个数据为85,那么另4个数据的平均数是______.

(1)105,103,101,100,114,108,110,106,98,102;(共10个)

(2)4203,4204,4200,4194,4204,4210,4195,4199.(共8个)

4.在一个班的40名学生中,14岁的有5人,15岁的有30人,16岁的有4人,17岁的有1人.求这个班学生的平均年龄.

5.抽查了一个商店某月里5天的日营业额,结果如下(单位:元):

14845,25306,18954,11672,16330

(1)求样本平均数;

(2)根据样本平均数估计,这个商店在该月里平均日营业额约是多少?

6.在一段时间里,一个学生记录了其中8天他每天完成家庭作业 所需要的时间,结果如下(单位:分):

80,70,90,70,60,50,80,60.

在这段时间里,该学生平均每天完成家庭作业 所需要的时间约是多少?

作业 答案与提示:

1.19.

5.(1)样本平均数是17421元;

(2)根据上面计算结果,可估计在该月里平均日营业额约为17421.

根据样本平均数,可估计该学生平均每天完成家庭作业 所需时间约为70分.

课堂教学设计说明

1.平均数是统计中的重要概念之一,通过样本平均数来估计总体平均数.样本容量取得越大,则用样本平均数估计的总体平均数越精确,也就是所表示的总体平均的变化趋势越集中于准确值.作业 中的第5,6两题就是为体现这种思想而设计的.

2.这一节课的目标是要弄清两个概念(平均数、加权平均数),三个公式(求平均值公式,求平均值的简化公式和求加权平均数公式).

教学设计中,先从初中一年级代数课本的内容引出平均数概念、计算公式及简化公式.所以很自然地转入新课,在介绍了平均数概念后,紧接着对计算公式作出一般性的证明.

在加权平均数一节,先列举一个易犯的错误,分析其错误原因,然后推导出公式.

篇11:求平均数2(人教版五年级教案设计)

教学目标

1.进一步理解求平均数的意义,掌握较复杂的求平均数的方法.

2.培养学生灵活计算的能力和解决实际问题的能力.

教学重点

求平均数的意义及较复杂的求平均数的方法.

教学难点

较复杂的求平均数的方法.

教学过程

一、复习准备.

口算【演示课件“求平均数”】

①小明有12本书,小军有20本书,小明和小军平均每人有几本书?

②五(3)班做好事28件,五(4)班做好事36件,平均每个班做好事多少件?

③五年级一班分成3组投篮球,第一组投中28个,第二组投中33个,第三组投中23个平均每组投中多少个?

针对第③题提问:

①说出这道题的问题是什么?

②求平均数必须知道什么条件?

③说一说你是怎样计算的?

板书:投中总个数÷组数

二、学习新课【继续演示课件“求平均数”】

(一)出示例1:五年级一班分成3组投篮球,第一组10人,共投中28个;第二组11人,共投中33个;第三组9人,共投中23个.全班平均每人投中多少个?

学生分组讨论思考题:

1.例1和准备题③比较,题目有什么异同?(从条件和问题两方面考虑.)

2.要求全班平均每人投中多少个,必须先知道什么条件?

板书:投中总个数÷全班总人数.

3.投中总个数和全班总人数知道之后,怎样求全班平均每人投中多少个?

板书:

(1)全班一共投中多少个?

28+33+23=84(个)

(2)全班一共有多少人?

10+11+9=30(人)

(3)全班平均每人投中多少个?

84÷30=2.8(个)

综合:(28+33+23)+(10+11+9)=2.8(个)

答:全班平均每人投中2.8个.

教师提问:对比例1和准备题③你能发现解答方法有什么异同吗?为什么会出现这种不同的情况?

(二)出示例2:下表是五年级二班3个组投中篮球情况统计表.全班平均每人投中多少个?(得数保留一位小数)

各组人数 12 11 10

平均每人投中数 2.5 3 3.2

教师提问:例2和例1比较,有什么异同?(问题一样,但已知条件不同)

要求全班平均每人投中多少个,要知道什么条件?怎样列式?

板书:

(1)全班一共投中多少个?

2.5×12+3×11+3.2×10=95(个)

(2)全班一共有多少人?

__________________________

(3)全班平均每人投中多少个?

__________________________

答:全班平均每人投中________个.

教师:你能列出综合算式吗?

板书:(2.5×12+3×11+3.2×10)÷(12+11+10)

教师强调:求平均数时,有时不能除尽,这时需要根据具体情况取近似值.

三、巩固反馈【继续演示课件“求平均数”】

1.小亮读一本书,前4天平均每天看6.25页,后3天平均每天看8页.小亮这一星期平均每天看多少页?

2.判断正误并说明理由.

①小李加工一批零件,前2时加工28个,后3时加工36个,平均每时加工多少个?

A.(28+36)÷(3+2)( );

B.(28×2+36×3)÷(3+2)( );

C.(28+36)÷2( ).

②一辆汽车从甲地开往乙地,前5时平均每时行60千米,后3时平均每时行56千米,这辆汽车从甲地开往乙地,平均每时行驶多少千米?

A.(60+56)÷(5+3)( );

B.(60+56)÷2( );

C.(60×5+56×3)÷(5+3)( ).

四、课堂总结.

解答求平均数应用题应注意哪些问题?

①明确问题求的是什么平均数;

②总数量÷总份数=平均数

五、布置作业.

1.五年级两个班参加植树活动.一班37人,共植树132棵;二班35人,共植树120棵.五年级平均每班植树多少棵?五年级平均每人植树多少棵?

篇12:求平均数(2)(人教版四年级教案设计)

教学目标

1.使学生理解“平均数”的含义,掌握简单求平均数的方法.能根据简单的统计表求平均数.

2.培养学生分析、综合的能力和操作能力.

3.使学生感悟到数学知识与生活联系紧密,增强对数学的兴趣.

教学重点

明确“求平均数”与“平均分”的区别,掌握求“平均数”的方法.

教学难点

理解平均数的概念,明确“求平均数”与“平均分”的区别.

教学步骤

一、铺垫孕伏.

1.小华4天读完60页书,平均每天读几页?

2.一个上下同样粗的杯子里装有16厘米深的水,把这些水平均倒在4个同样粗细的杯子里,每个杯子里的水深是多少厘米?

3.小明和小刚的体重和是160斤,平均体重多少斤?

师:上述1、2两题都是把一个数平均分成几份,实际每一份都一样多,而第3题是把两个数的和平均分成两份,每份不一定是实际数.所以,“求几个数的平均数”与“把一个数平均分成几份”,是有区别的.

二、探究新知.

1.引入新课.

以前,我们学习过“把一个数平均分成几份,求每份是多少”的应用题,也就是“平均分”的问题.

今天我们共同研究一下“求平均数”问题.(板书课题:求平均数)

2.教学例2.

(1)出示例2.用4个同样的杯子装水,水面高度分别是6厘米、3厘米、5厘米、2厘米.这4个杯子水面的平均高度是多少?

(2)组织讨论:你怎样理解“水面的平均高度”?

(3)学生汇报讨论结果,教师进一步明确:所谓“平均高度”,并不是每个杯子水面的实际高度,而是在总水量不变的情况下,水面高度同样的高度值.

(4)学生操作.

请同学们拿出准备的积木,用每块积木的高度代表1厘米,先用积木按例题的高度要求叠放四堆来表示4杯水的高度,再动脑动手操作一下,使这四“杯”水的水面高度相等.

(5)学生汇报操作结果,一般出现两种方法.

第一种:数出共有多少个积木,或把积木全部叠放在一起,共16厘米,再用

16÷4=4厘米,得出每“杯”水水面的平均高度是4厘米.

第二种:直接移多补少.从6厘米中取2厘米放入2厘米杯中,从5厘米杯中取1厘米放入3厘米杯中,就可直接得到4杯水面高度相同的水,水面高度都是4厘米.这说明原来4杯水水面的平均高度是4厘米.

(6)师:通过同学们的操作,我们得到了这4杯水水面的平均高度是4厘米.但这里有一个问题,操作时,我们使水杯的水面实际高度发生了变化,平均高度得到了,而原来4杯水水面高度却发生了变化.而现实生活中,很多求平均数的情况是不允许改变原值的.例如:高个身高180厘米,矮个身高140厘米,两人的平均身高是160厘米.并不是把高个的身体削下一部分来,接在矮个身体上,使两人身高相等.由此可见,通过直接操作的方法来求平均数,在很多情况下是行不通的.如果我们不通过操作,直接通过计算,能不能求出这4杯水水面的平均高度呢?怎样计算方便呢?

(7)引导学生列式计算.

(6+3+5+2)÷4

=16÷4

=4(厘米)

答:这4个杯子水面的平均高度是4厘米.

小结:通过上题的计算,进一步明确:应先相加求出高度总和,再用高度和除以杯子数,得到平均高度.

(8)看例2与复习题,两题的结果都是4厘米,所表示的意义相同吗?

明确:复习题中,4厘米是平均分的结果,即每个杯子水面的实际高度就是4厘米;例2是求的平均数,4厘米表示的是各杯子水面高度的平均值,而每个杯中水面的实际高度并不一定是4厘米,它们的实际高度并不要求发生变化.

(9)反馈练习.

小强投掷三次垒球,每次的成绩分别是:28米、29米、27米.求平均成绩.

3.教学例3.

(1)出示例3:四年级一班第一小组有6个同学,第二组有7个同学,下面是两组同学身高的统计表(单位:厘米)

篇13:小学四年级数学求平均数教案设计

小学四年级数学求平均数教案设计

教学目标

1.使学生理解平均数的含义,掌握简单求平均数的方法.能根据简单的统计表求平均数.

2.培养学生分析、综合的能力和操作能力.

3.使学生感悟到数学知识与生活联系紧密,增强对数学的兴趣.

教学重点

明确求平均数与平均分的区别,掌握求平均数的方法.

教学难点

理解平均数的概念,明确求平均数与平均分的区别.

教学步骤

一、铺垫孕伏.

1.小华4天读完60页书,平均每天读几页?

2.一个上下同样粗的杯子里装有16厘米深的水,把这些水平均倒在4个同样粗细的杯子里,每个杯子里的水深是多少厘米?

3.小明和小刚的体重和是160斤,平均体重多少斤?

师:上述1、2两题都是把一个数平均分成几份,实际每一份都一样多,而第3题是把两个数的和平均分成两份,每份不一定是实际数.所以,求几个数的平均数与把一个数平均分成几份,是有区别的.

二、探究新知.

1.引入新课.

以前,我们学习过把一个数平均分成几份,求每份是多少的应用题,也就是平均分的问题.

今天我们共同研究一下求平均数问题.(板书课题:求平均数)

2.教学例2.

(1)出示例2.用4个同样的杯子装水,水面高度分别是6厘米、3厘米、5厘米、2厘米.这4个杯子水面的平均高度是多少?

(2)组织讨论:你怎样理解水面的平均高度?

(3)学生汇报讨论结果,教师进一步明确:所谓平均高度,并不是每个杯子水面的实际高度,而是在总水量不变的情况下,水面高度同样的高度值.

(4)学生操作.

请同学们拿出准备的积木,用每块积木的高度代表1厘米,先用积木按例题的高度要求叠放四堆来表示4杯水的高度,再动脑动手操作一下,使这四杯水的水面高度相等.

(5)学生汇报操作结果,一般出现两种方法.

第一种:数出共有多少个积木,或把积木全部叠放在一起,共16厘米,再用

164=4厘米,得出每杯水水面的平均高度是4厘米.

第二种:直接移多补少.从6厘米中取2厘米放入2厘米杯中,从5厘米杯中取1厘米放入3厘米杯中,就可直接得到4杯水面高度相同的水,水面高度都是4厘米.这说明原来4杯水水面的.平均高度是4厘米.

(6)师:通过同学们的操作,我们得到了这4杯水水面的平均高度是4厘米.但这里有一个问题,操作时,我们使水杯的水面实际高度发生了变化,平均高度得到了,而原来4杯水水面高度却发生了变化.而现实生活中,很多求平均数的情况是不允许改变原值的.例如:高个身高180厘米,矮个身高140厘米,两人的平均身高是160厘米.并不是把高个的身体削下一部分来,接在矮个身体上,使两人身高相等.由此可见,通过直接操作的方法来求平均数,在很多情况下是行不通的.如果我们不通过操作,直接通过计算,能不能求出这4杯水水面的平均高度呢?怎样计算方便呢?

(7)引导学生列式计算.

(6+3+5+2)4

=164

=4(厘米)

答:这4个杯子水面的平均高度是4厘米.

小结:通过上题的计算,进一步明确:应先相加求出高度总和,再用高度和除以杯子数,得到平均高度.

(8)看例2与复习题,两题的结果都是4厘米,所表示的意义相同吗?

明确:复习题中,4厘米是平均分的结果,即每个杯子水面的实际高度就是4厘米;例2是求的平均数,4厘米表示的是各杯子水面高度的平均值,而每个杯中水面的实际高度并不一定是4厘米,它们的实际高度并不要求发生变化.

(9)反馈练习.

小强投掷三次垒球,每次的成绩分别是:28米、29米、27米.求平均成绩.

3.教学例3.

(1)出示例3:四年级一班第一小组有6个同学,第二组有7个同学,下面是两组同学身高的统计表(单位:厘米)

(2)读题,组织学生讨论:两组人数不同,每人的身高也不尽相同,想要直接比较出哪一组的身高较高,怎么做比较好呢?

(3)根据讨论结果,明确先求出每组的平均身高,再进行比较.

(4)列式计算.

第一小组的平均身高是多少?

(136+142+140+135+137+144)6

=8346

=139(厘米)

第二小组的平均身高是多少?

(132+141+133+138+145+135+142)7

=9667

=138(厘米)

第一小组的平均身高比第二小组的高多少?

139-138=1(厘米)

答:第一小组平均身高高一些,高1厘米.

(5)反馈练习.

一个小组有7个同学,他们的体重分别是:39千克、36千克、38千克、37千克、35千克、40千克、34千克.这个小组平均体重是多少千克?

三、课堂小结.

通过小结,进一步区分平均分与平均数两个概念的不同含义,巩固求平均数的方法.

四、布置作业.

回家后量出你家中每个人的身高,记录下来,并求出全家人的平均身高.

篇14:《平均数》说课稿

一、说教材

(一)本节内容在全书及章节的地位

本节课是《数据的分析》中第一节内容,主要让学生认识数据统计中基本统计量,是一堂概念性较强的课,也是学生学会分析数据,作出决策的基础。本节课的内容与学生生活密切相关,能直接指导学生的生活实践。

(二)教学的目标和要求

知识目标:理解算术平均数、加权平均数的含义,掌握算术平均数、加权平均数的计算方法,明确算术平均数、加权平均数在数据分析中的作用。

能力目标:会计算一组数据的平均数,培养独立思考,勇于创新,小组协作的能力。

情感目标:体验事物的多面性与学会全面分析问题的必要性,渗透诚实、进取观念,培养吃苦创新精神。

(三)教学的重点和难点

本着课程标准,在吃透教材基础上,我觉得本节课的重点是:

教学重点:算术平均数、加权平均数的概念以及其计算和确定方法。

教学难点:平均数的计算,加权平均数的理解和运算。

二、说学生

1、学生与教材

(1)小学已学过平均数。

(2)生活接触过平均数。

2、学生的特点(心理正处于一个重要的转折时期)

(1)他们一方面好奇心强,爱说爱动、争强好胜、学习的动力多来自兴趣激情,收获多来自“无意注意”。

(2)另一方面,他们的自觉性差、自控能力弱、情绪起伏较大,动力和效果都不稳定。

下面,为了讲清重点、难点,结合学生的心理特征,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

三、说教法

为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,我主要是以问题的方式启发学生,以生动有趣的实例吸引与激励学生;在整个过程中采用情境教学法。同时,注重培养学生阅读理解能力与小组协作能力,在教学过程中主要以学生“探究思考~小组讨论~相互学习”的学习方式而进行。采用了探究式的教学方法,整个探究式学习过程充满了师生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

四、说学法

数学作为基础教育学科之一,转变学生数学学习方式,不仅有利于提高学生的数学素养,而且有利于促进学生整体学习方式的转变。我采用着重于学生探索研究的启发式教学方法,结合师生共同讨论、归纳。在课堂结构上,根据学生的认知水平,我设计了以下6个成次的学法:

①引入概念;

②形成概念;

③例―深化概念;

④巩固新知;

⑤总结反思;

⑥自主探究,它们环环相扣,层层深入,从而顺利完成教学目标。

接下来,我再具体谈一谈这堂课的教学过程:

五、说教学程序及设想

(一)引入概念

长期以来,很多学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验 和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

首先由学生的平均成绩、平均年龄引入,复习算术平均数的求法,努力激发学生的学习兴趣。

(二)形成概念

在学生计算出以上问题的平均数后,小组讨论研究,看谁做的对,学生得出自己的见解后,老师提问,然后引导对比分析以上两个问题的相同点与不同点,从而讨论归纳出加权平均数的概念。

(三)深化概念

接着以所学知识解决一个实际问题,一个很贴近实际的应聘问题,第一问设计很简单,用算术平均数易求,接着出示第二问,给每个数赋上“权”,让学生探讨用刚刚学到的知识解决,学生都有一种跃跃欲试的感觉,这样学生就很容易深化学生对概念的理解。

(四)巩固新知

使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的讨论研究,真正掌握算术平均数、加权平均数的计算方法,在教师的引导下加深了对新知识的巩固和提高。

(五)总结反思

由学生总结本节课所学习的主要内容:

(1)算术平均数、加权平均数的概念。

(2)算术平均数、加权平均数的计算和确定方法。

让学生通过知识性内容的小结,把课堂教学传授的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质。

(六)自主探究

学生经过以上五个环节的学习,已经初步掌握了算术平均数、加权平均数的计算和确定方法,有待进一步提高认知水平,因此我针对学生素质的差异设计了有层次的训练题,其中包括了必做题和选做题,留给学生课后自主探究,这样既使学生掌握基础知识,又使学有余力的学生有进一步发展的空间和余地,这样也充分反映了新课改的精神,就是让不同的学生在数学上得到不同的发展。

以上是我教学的设计过程。在整个教学过程中努力让学生从已有的生活经验出发,把这些生活中的问题抽象成数学模型,并能加以解释和应用它,真正体会数学的实际作用。

篇15:《平均数》说课稿

尊敬的各位评委老师:你们好!我说课的内容是人教版义教课程标准教科书小学数学四年级下册第八单元《平均数与条形统计图-平均数》。下面我谈谈本节课的教学设想,不妥之处,恳请各位教师指正。

一、教材与学情分析

这节课是平均数是人教版义教课程标准教科书小学数学四年级下册第八单元第一节的内容,是“统计与概率”中的基础部分。统计中反映一组数据的一般情况与集中趋势的统计量,也常用于不同组数据的比较与分析,解决相关实际问题。这里的平均数是指算术平均数。平均数是在学生已学习理解了平均分与除法运算等知识的基础上开展教学的。认识掌握平均平均数能为以后进一步学习统计相关知识奠定基础。

二.教学目标

根据以上对教材的理解和学情的分析,制定如下教学目标:

知识与技能方面:理解平均数意义,掌握平均数的计算方法,能计算简单数据的平均数;

过程与方法方面:引导学生经历认知平均的探索过程,培养增强学生观察分析数据,解决相关实际问题能力;

情感、态度与价值观方面:使学生在认识平均数的过程中,体会平均数的意义作用,感悟数学与生活的联系,增强数学兴趣与学习自信。

三.教学重难点

依据课程标准和教材内容与理解,本课我确定了以下教学重点和难点。

教学重点:理解平均数的意义,掌握平均数的计算方法。

教学难点:理解平均数的意义作用,运用平均数相关知识进行简单数据分析解决简单实际问题。

教具、学具准备:多媒体课件,有关平均数的数据统计表。

四、说教法与学法

数学课程教学的基本核心理念是让“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”、“教学活动是以学生为主体,教师为主导”下的师生共同参与、交往互动、共同发展的过程。同时教有法而无定法,贵在得法。因此,依据教材与现代建构主义学习论,结合学生学情,我拟将选择情景教学、直观演示、谈话启发、激疑,引导学生自主观察、思考、合作交流、归纳构建新知,实践应用,理解掌握平均数意义与计算方法,发展思维,训练能力。

五、说教学程序

(一)创设情境,感知引新

1、课件出示情景问题:在我家的书橱上、中、下两层书架上的图书本数如下表所示:怎样整理才能使每层书架上的图书本数一样多?

2.引导思考汇报整理方法

3.教师谈话引题:像这样把几个不同的数通过“移多补少”,先合并再平均分等方法,得到的相同的数,就称作这几个数的平均数。今天就来进一步认识平均数。板书课题:平均数。

(二)引导探索,认知平均数

1.教学例1

(1)课件出示情景,提出问题

通过课件展示呈现:在学校开展的“节能减排、保护环境”活动中,四年级环保分队4名队员收集的饮料瓶数量如下图(例1主题图)所示,环保分队平均每人收集了多少个?

(2)引导观察思考,探究方法

①引导观察,思考讨论(课件呈现思考问题)

队员收集瓶子数量的条形统计图中,横轴表示什么?纵轴表示什么?

名队员收集的个数分别是多少?谁最多谁最少?

题目中要求的问题是什么?

有什么方法能使他们收集的数量变成一样多呢?

(学生交流讨论中,教师指出:思考讨论交流中,可看图说方法,也可以动手算一算)

②交流汇报,总结方法――移多补少(结合课件展示)

汇报中,教师:

一是结合课件直观展示队员收集的数量,强调指出他们收集的个数“不一样多”并板书:“不一样多”;

二是学生汇报将多的移给少的时,结合课件展示移动方法,启发学生说这种方法可简单概括为几个字?(“移多补少”,同时板书)。

三是质疑:移多补少后,他们平均收集的个数一样多吗?是多少?这个数叫什么数?,学生认识明白后在板书“移多补少”后面板书:“一样多”,再在“一样多”下面补上“平均数”。

③深入探究,拓展方法――先求和再平均分

质疑:还有别的方法吗?学生汇报方法算式与计算过程,说想法,教师通过课件展示算式:(14+12+11+15)÷4=52÷4=13。

平均数算法质疑理解(14+12+11+15)表示什么?(队员收集个数的和――总数量);为什么要除以4?(14+12+11+15)÷4表示(把总数量平均分为4份,4表示总份数,结果13就是4名队员收集瓶子个数的平均数,也就是环保小分队平均每人收集的个数)?也印证了移多补少法的结果。

板书:总数量÷总份数=平均数

强化平均数意义

质疑:13这个平均数是每人收集到的饮料瓶的实际数量吗?同学们发现了什么?13是怎么得来的?平均数的大小范围怎样?

(不是,每人收集的实际数量比13多或比13少;平均数13是通过移多补少和先求和再平分得到的四个数据的平均值;平均数大于四人收集的四个数组中的最小数并小于其中的最大数)

2.教学例2

(1)教师质疑谈话引入

师:前面我们学习了平均数,谁能说说平均数的意义?

生:平均数表示一组数据的'平均值。

师:学习了平均数,有什么作用呢?人们常常通过计算一组数据的平均数来进行数据分析和解决一些实际问题。

(2)问题观察思考分析讨论(课件出示)

从主题图和数据统计表中知道了哪些信息?

男、女生队人数相等吗?

成绩比较哪个好?怎么判定?

(3)汇报交流,解决问题(结合课件展示思考讨论问题和问题解答)

教师重点质疑:你是怎么判定的?可否根据两队各自的总人数来比较判定?为什么?怎样计算各队的平均成绩?

问题解答后质疑强调:如果男、女生两队人数相等,还用计算每队的平均成绩来比较吗?但在两队人数不等的情况下,用平均数来表示和比较各队的成绩更为公平。

(三)应用拓展,强化巩固新知

依据教学重难点知识,结合教材后“做一做”与习题进行变式拓展应用巩固练习,实践应用,学生独立操作,深化理解,巩固新知,形成技能。

(四)总结归纳,引导学生谈收获

通过质疑汇报:“今天我们学习了什么内容?”、??“你有哪些收获?”回顾、反馈本课所学知识。教师小结。

六、说板书设计

板书是教学知识点的浓缩再现,梳理整合。本节课我拟通过以下简洁的板书突出重点,促进增强学生对重点知识的理解识记

七.教学反思

本节教学设想主要依据“学习者的知识是在一定情境下,借助于他人的帮助,如人与人之间的协作、交流、利用必要的信息等等,通过意义的建构而获得的。”

教师是学习活动的组织者、意义建构的引导者、帮助者、促进者。”即“教师为主导,学生为主体”及“学生是信息加工的主体、是意义的主动建构者”等现代建构主义学习论,教学设计中注重“学生为中心及其能动作用”、“情境”与“协作学习”对意义建构的重要关键作用。

以上说课,定有诸多不妥之处,恳请各位评委教师批评指正。

篇16:求平均数

教学目标 :

1、结合统计的具体事例理解平均数的意义,会求简单的平均数。

2、能从各种信息中,发现并提出平均数问题,并探索求平均数的方法。

3、体会平均数在现实生活中的实际意义及广泛应用,逐步具有自主探索与合作交流的意识和能力。

4、体验平均数在描述事物时存在状态方面的优越性。对学生进行教育。

教学重难点:

理解和掌握求平均数的方法,理解平均数的意义。

教学关键:

通过实践活动使学生感悟平均数的含义,从而更好地掌握求平均数的多种方法,并能灵活应用,解决实际问题。

教学具准备:

红旗和黄旗各一面、课件、三个笔筒(21支铅笔)、乒乓球拍和乒乓球等。

教学设计:

本节课的教学脉络按“平均数”(数学概念)――求平均数(计算方法)――应用题(实际应用)逐步展开。

活动环节

教师活动

学生活动

设计意图

掂球比赛

引出争论

看!老师给你们带来了什么?高兴吗?像老师这样掂球你会吗?

好今天红队和黄队来比一比谁掂得多,有信心吗?

各队赶快推选出自己乒乓能手上台来!

谁愿意当裁判来数一数?

老师把大家的成绩统计在黑板上,请各裁判汇报!

看看比赛成绩哪个队获胜了呢?

…看来不能以某一个孩子的成绩来比;

…看来也不能以总成绩来比;

怎么办呢?通过本节课的探究,我们就能解决评优的问题。

裁判选手各就各位

掂球比赛

各裁判汇报成绩

大家发表自己的看法

创造性地使用教材,通过学生喜欢的体育运动到评选优胜小队,学生都乐于其中,所提的问题与已学知识构成矛盾,激发了学生的探究欲望。

笔筒分笔

方法渗透

老师先考考大家:怎样使这三个笔筒里的笔同样多呢?

…我们给这种方法取个名字叫“移多补少” ;

难道只有这种办法吗?

…老师给你的办法取个名字叫“先合后分”。

两种方法都可以知道平均每个笔筒里的笔有7支。

…同学们用了两种方法使笔筒里面的笔同样多,真聪明!

学生上台实际操作,同时说说过程。

通过简单的,具体生动的笔筒分笔,让每一个孩子初步体会到“移多补少” “先合后分”能使几种东西同样多。

学习例题

新知建构

1、出示例题。在废品回收活动中,四个小朋友上交的矿泉水瓶如图:

你获得的哪些数学信息?…你能提出什么数学问题?…

2、要求平均每个人收集了多少个?也就是要使每个小朋友收集的矿泉水瓶同样多,怎么办?…

3、学生汇报,教师边课件演示,过程之中给予适当的点拨,让学生的表述准确清楚。

4、谁能用算式表示出刚才“先合后分”的过程?…引导孩子说出用瓶子总的个数除以人数。

5、

6、小结。刚才孩子门用了两种方法都可以知道平均每个人收集了13个(课件演示统计表),这13个是小红收集的吗?是小兰收集的吗?是小美收集的吗?那这个“13”是个什么数呢?对,这个“13”就是这四个小朋友收集的平均数,同学们注意观察,这个平均数“13”与这四个小朋友实际收集的个数相比,你发现了什么?在全班交流…是呀,这个平均数13并不代表实际每个孩子收集的,而是反映的四个小朋友收集的整体水平,它比最多的15个少,比最少的11个多,是处于中间的一个平均水平。

学生汇报所获信息。

学生提出数学问题。

学生汇报,教师边课件演示,过程之中给予适当的点拨,让学生的表述准确清楚。

学生根据演示列出算式,

学生认真观察,分析平均数“13”的特点,各抒己见。

在学生体验了两种方法之后,探索求平均数的方法,感悟平均数的实际意义,用数学算式抽象出操作过程,使在浓厚的学习兴趣中,积极动手操作,动脑思考,呈现了知识的产生――发展――初步完善的过程。

评选优胜

运用新知

现在你们能用刚才所学的.知识来解决“评优”问题了吗?怎么评呢?…

两个队交换计算平均数。

用平均数来评价两个队的成绩,现在大家觉得公平了吗?你是怎么认识平均数的?它有什么好处呢?…启发孩子明白平均数能较好地反映一组数据的整体水平。

是呀,平均数的作用真大,在日常生活中经常会用到它。

两个队交换计算平均数

评选优胜队

谈谈对平均数的理解。

首尾呼应,突出了孩子的主体地位,真正让孩子体验感悟平均数的优越性。

新知拓展

总结提升

1、教材44页第2题。气温。

2、平均数论坛。

(1)游泳池平均水深120厘米,小雪说:“我有142厘米,不会有危险的!”她说得对吗?

(2)数学故事:小陈应聘,他受骗了吗?公司员工平均月工资元,怎么理解呢?

3、小会计师。

4、教材45页第4题。

5、总结

记录本地一周的最高气温和最低气温,并算出平均最高气温和最低气温。

学生讨论交流

帮银河之星大擂台的选手算分。

(1)甲、乙两种饼干的平均月销售量谁多?多多少?(2)分析一下乙种饼干的销售量越来越大的原因。(3)如果你是该公司的老板你会怎么做?

篇17:平均数说课稿

平均数说课稿

同学们,欢迎你进入微课堂,今天,我们来一起学习《平均数再认识》,我们都读过《小马过河》这个故事,今天,小马又来到一条小河边,想要过河,小马身高1.4米,小河平均水深1米?小马过河有危险吗 ?(小马过河有危险,因为平均水深1米,并不是说河里每一处水深都是1米。可能有的地方比较浅,只有几十厘米,而有的地方比较深,可能超过1.4米。所以,下马过河可能会有危险。看来平均数还真是奇妙,可以帮我们解决生活中的很多问题。看屏幕,(点课件)老师从网上查到一组数据,(1)根据有关规定,我国对学龄前儿童实行免票乘车,即一名成年人可以携带一名身高不足1.2m的儿童免费乘车。1.2m这个数据可能是如何得到的呢?我们首先就要调查一下0- 6岁儿童的身高数据,但是我们无法确定一个准确数值,这就需要计算出数据的平均数来解决问题。1.2米表示学龄前儿童身高的平均数。 接着看,⑵据统计,目前北京市6岁男童身高的平均值为119.3cm,女童身高平均值为118.7cm.请根据上面信息来判断,你认为这个规定合理吗?因为1.2米是6岁儿童的身高数据的平均数,说明全国6岁的儿童的身高可能在1.2米左右。所以这个规定是合理的。老师还了解到这么一份资料,学校篮球队的同学正在进行篮球比赛。李强所在的快乐篮球队,队员的平均身高是160厘米。那么,李强的身高可能是155厘米吗?平均身高160厘米,表示的是篮球队员身高的一般水平,并不代表队里每个人的身高。李强有可能比平均身高矮,比如155厘米,当然也可能比平均身高高,比如170厘米。通过调查,李强的身高是166厘米。超过了平均身高。接着往下看,

下表是“新苗杯”少儿歌手大奖赛的成绩统计表。

评委1

评委2

评委3

评委4

评委5

平均分

选手1

92

98

94

96

100

选手2

97

99

100

84

95

选手3

90

98

87

85

90

从统计表中,你认为谁成绩比较好?看来,要比较出选手的水平高低,用平均数来表示,选手的'成绩比较公平。那么怎样求一组数据的平均数呢?在实际比赛中,通常采取去掉一个最高分和一个最低分,然后再计算出平均数的记分方法。你能说出其中的道理吗?由于每个评委的欣赏角度不同,每人给同一位选手打出的分数也就不同,去掉一个最高分和一个最低分,可以使最后的得分更加公平合理,更能代表选手的实际水平。按照上述的方法计算出三位选手的成绩。(1)号选手:(98+94+96)=96分(2)99+97+95=97分(3)号选手98+90+90=94分。第一号通过刚才的学习,说一说你对平均数有了哪些新的认识?说得真好!愿大家能带上今天所学的内容,去解决生活中与平均数有关的各种问题吧。

【平均数教案设计】相关文章:

1.平均数说课稿

2.数学教案-平均数

3.平均数教案

4.平均数教学设计

5.平均数教学设计方案

6.平均数评课稿

7.众数中位数平均数练习题

8.求平均数的练习题

9.数学三年级平均数说课稿

10.二年级上册平均数说课稿

下载word文档
《平均数教案设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部