欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 说课稿>《探索内错角、同旁内角的平分线的位置关系》说课稿

《探索内错角、同旁内角的平分线的位置关系》说课稿

2022-07-12 08:10:54 收藏本文 下载本文

“牧栩”通过精心收集,向本站投稿了14篇《探索内错角、同旁内角的平分线的位置关系》说课稿,下面是小编为大家整理后的《探索内错角、同旁内角的平分线的位置关系》说课稿,仅供参考,喜欢可以收藏与分享哟!

《探索内错角、同旁内角的平分线的位置关系》说课稿

篇1:《探索内错角、同旁内角的平分线的位置关系》说课稿

2.地位和作用

本节教材是学生了解掌握平行线的判定和性质的基础上,设计的一节拓展内容,它不仅是探究对顶角和邻补角的平分线的位置关的拓展和延伸,也很好的训练了学生的逻辑思维能力推理能力,提高学生的探索和归纳能力,因此,本节教材对学生掌握几何证明起到了承前启后的作用。

3.说教学目标

依据教材的内容和大纲要求以及新课改理念,我确定了以下教学目标。

(1)知识目标:

篇2:《探索内错角、同旁内角的平分线的位置关系》说课稿

②学生能利用内错角、同旁内角的数量关系判断两直线平行。

(2)能力目标:

培养学生动手操作、观察、分析的能力,推理论证及学习的能力,培养学生的创造性思维和逻辑推理能力

(4)情感目标:体现了知识来源于实践,而又运用于生活,同时渗透转化的思想。

二、说重点、难点:

学生在自主探索、验证内错角、同旁内角的平分线位置关系的过程中有许多困难,依据学生现有的实际能力和认知能力,我把本节课的重点确定为:内错角、同旁内角的平分线位置关系的探索和证明,也是本节课的难点。

三、说教法

(1)教法分析

教师的责任之一是把人类已知的科学知识创造条件转化为学生的真知,教学又是引导学生指导知识转化为能力的'一种形式。因此在本节课的教学中,我以学生为中心,教法上采用启发、引导、探索相结合的教学方法。通过创设研究问题的情境,让学生观察——猜想——证明,启发、引导学生积极思考,勇于探索,达到充分发挥学生的主动性、积极性和首创精神。

(2)学法指导

学生自主参与整堂课的知识建构,从结论的猜想到结论的证明,从参与问题的发现与解决。通过学生的思考,尝试解决、组织讨论,在问题解决中深刻理解知识,学生逐步建构自己的知识经验,形成自己的见解

(3)教学手段

根据本节教材的特点,为更有效地突出重点、突破难点,我除了采用常规的教学手段,同时采用了现代教学技术——“多媒体”,实物投影等,使学生多种感官共同参与到整个学习过程中,激发学生的学习兴趣,提高课堂效率。

四、说设计:

这节课的学习主要经历了以下几个环节:

复习回顾

情景引入

探索新知

归纳总结

巩固提高

作业布置

通过分层次布置作业,进一步体现素质教育的全员性与主体性, 符合因材施教的教学原则,使一部分学生的能力有进一步的提高

学生是学习的主体,学习是通过学生的主动行为而发的。在这节课 中,学生广泛参与,积极主动投入学习活动,学生的主体性得到了培养 和发展,在教学过程中,我始终以学生的个体独立思考为基础,引导学 生通过小组内的互相讨论、合作学习,来暴露各层次学生的思维过程及

说评价

特点,对所学内容的不同层次,不同侧面的理解,从而建构起学生自己 的知识体系。这样更全面更深刻,符合了素质教育的全体性和全面性的 要求,通过小组内的互相讨论,合作学习,不仅可以使学生掌握新知, 提高学习水平,还可以培养学生乐于助人、团结合作的精神,使学生在 合作学习中学会学习,学会交流。

篇3:《同位角、内错角、同旁内角》优质说课稿

一、教材分析

1、《同位角、内错角、同旁内角》是人教版新课标实验教材初中数学七年级下学期第五章《相交线与平行线》的第一节第三课时内容。

2、地位和作用

由于角的形成与两条直线的相互位置有关,学生已有的概念是两相交直线所形成的有公共顶点的角(邻补角、对顶角等)即两线四角,在此基础上引出了这节课:两直线被第三条直线所截形成的没有公共顶点的八个角的位置关系——同位角、内错角、同旁内角。研究这些角的关系主要是为了学习习近平行线做准备,同位角、内错角、同旁内角的判定恰恰是后面顺利地学习习近平行线的.性质与判定的基础和关键。这一节内容起到了承上启下的作用:

两线四角 承上 三线八角 启下平行线的判定和性质。

二、教学目标设计

由于本节课只有一课时,主要让学生理解同位角、内错角、同旁内角的概念,明确构成同位角、内错角、同旁内角的条件。所以,教学目标体现在:

(一)

1、明确构成同位角、内错角、同旁内角的条件,理解同位角、内错角、同旁内角的概念。

2、结合图形识别同位角、内错角、同旁内角。

3、通过变式或复杂图形找出同位角、内错角、同旁内角,培养学生的识图能力。让学生找到在千变万化的图形中的不变之处,能够抓住概念的重点。

(二)

1、从复杂图形分解为基本图形过程中,渗透化繁为简,化难为易的化归思想,从图形变化过程中,使学生认识几何图形的位置美。

2、通过观察,探究“三线八角”的过程培养学生的观察、抽象能力;发展图形观念,积极参与数学活动与他人合作交流的意识。

三、教学重点及难点:

(一)重点:根据图形识别哪两条直线被哪条直线所截构成的同位角、内错角、同旁内角。

(二)难点:在复杂图形中辨别同位角、内错角、同旁内角。

(三)教学疑点及解决办法:

正确理解新概念,引导学生讨论、归纳三类角的特征,并以练习加以巩固。

四、教法、学法

(一)教法:教学有法,但无定法,一节课中不能是单一的教法,在这节课中我主要采用的教法有:观察法、讲授法、启发教学法等。

(二)学法:以复习旧知识创设情境引入课题,以指导阅读、设计问题、小组讨论学习新知,以变式练习巩固新知。在这节课中使用的学法主要有:合作学习法、探究法、观察发现法、练习法、讨论法等。

篇4:《同位角、内错角、同旁内角》的说课稿

《同位角、内错角、同旁内角》的说课稿

一、教材分析

1、《同位角、内错角、同旁内角》是人教版新课标实验教材初中数学七年级下学期第五章《相交线与平行线》的第一节第三课时内容。

2、地位和作用

由于角的形成与两条直线的相互位置有关,学生已有的概念是两相交直线所形成的有公共顶点的角(邻补角、对顶角等)即两线四角,在此基础上引出了这节课:两直线被第三条直线所截形成的没有公共顶点的八个角的位置关系——同位角、内错角、同旁内角。研究这些角的关系主要是为了学习习近平行线做准备,同位角、内错角、同旁内角的判定恰恰是后面顺利地学习习近平行线的性质与判定的基础和关键。这一节内容起到了承上启下的作用:

两线四角 承上 三线八角 启下平行线的判定和性质。

二、教学目标设计

由于本节课只有一课时,主要让学生理解同位角、内错角、同旁内角的概念,明确构成同位角、内错角、同旁内角的条件。所以,教学目标体现在:

(一)

1、明确构成同位角、内错角、同旁内角的条件,理解同位角、内错角、同旁内角的概念。

2、结合图形识别同位角、内错角、同旁内角。

3、通过变式或复杂图形找出同位角、内错角、同旁内角,培养学生的识图能力。让学生找到在千变万化的图形中的不变之处,能够抓住概念的重点。

(二)

1、从复杂图形分解为基本图形过程中,渗透化繁为简,化难为易的化归思想,从图形变化过程中,使学生认识几何图形的位置美。

2、通过观察,探究“三线八角”的过程培养学生的观察、抽象能力;发展图形观念,积极参与数学活动与他人合作交流的意识。

三、教学重点及难点:

(一)重点:根据图形识别哪两条直线被哪条直线所截构成的同位角、内错角、同旁内角。

(二)难点:在复杂图形中辨别同位角、内错角、同旁内角。

(三)教学疑点及解决办法:

正确理解新概念,引导学生讨论、归纳三类角的特征,并以练习加以巩固。

四、教法、学法

(一)教法:教学有法,但无定法,一节课中不能是单一的教法,在这节课中我主要采用的教法有:观察法、讲授法、启发教学法等。

(二)学法:以复习旧知识创设情境引入课题,以指导阅读、设计问题、小组讨论学习新知,以变式练习巩固新知。在这节课中使用的学法主要有:合作学习法、探究法、观察发现法、练习法、讨论法等。

五、教与学互动设计:

(一)以旧引新、提出问题:

1.复习提问

(1)互为余角和互为补角,是指两角之间的(数量关系)。

(2)对顶角和邻补角,是指两角之间的(位置关系)。

2.观察图形、提出问题:

1)直线a、直线l相交于点P,构成几个角?有多少对对顶角?有多少对邻补角?

【四个角、两对对顶角、四对邻补角】

2)又有直线b与直线l相交于点Q, 构成几个角?有多少对对顶角?有多少对邻补角?

3.今天我们在三线八角(即两条直线被第三条直线所截)中研究两角的位置关系。

教法说明:顶点重合的角的位置关系学生很熟悉,以此过渡到顶点在一条直线上且不重合的两个角的位置关系,学生容易接受,这些角也是与相交线有关的角,两条直线被第三条直线所截,是相交的又一种情况。认识事物间是发展变化的辨证关系。

(二)尝试指导,学习新知

1、学生自己尝试学习,阅读课本第6页的内容。

2、在阅读的基础上,根据提示及小组讨

论完成下列表格。

角的名称 位置特征 基本图形 图形结构特征

同位角

在两条直线的

在截线的

形如字母“F”

(或倒置)

内错角

在两条直线的

在截线的

形如字母“Z”

(或反置)

同旁内角

在两条直线的

在截线的

形如字母“U”

在截线的同旁找同位角和同旁内角,两旁找内错角,因此在“三线八角”的图形中的主线是截线,抓住了截线,再利用图形结构特征(F、Z、U)判断问题就迎刃而解。

教法说明:让学生自己尝试学习,可以充分发挥学生的积极性、主动性和创造性,表格的设计是深化教学重点,使学生看书更具有针对性,避免盲目性。学生参与讨论,更能加深对概念的理解。

(三)练习讲评,双向反馈

例题1:看图填空:

1)直线c、d被直线b所截,

所得∠12与∠16是__________________________角

∠12与∠14是___________________________角

∠11与∠14是___________________________角

2)直线a、b被直线c所截,

同位角有:____________________________________共有__对

内错角有:____________________________________共有__对

同位角有:____________________________________共有__对

教法说明:以几何画板作演示,进一步帮助学生理解概念。演示时隐去多余图形,即培养学生图形的分离能力。

(四)练习、检测

1.指出在图中,

∠1的.同位角:

∠3的内错角:

∠2的同旁内角:

∠A与∠C是同位角吗?

并指出是那两条直线被哪一条直线所截而成的?

2、 在右图中判定

∠A与∠B是直线AB、CD被直线BC所截而成的同旁内角。 ( )

∠B与∠C是直线AB、CD被直线BC所截而成的同旁内角。( )

3、 在右图中,判定

∠1与∠4是AB、CD被直线AC所截而成的内错角。 ( )

∠2与∠3是AB、CD被直线AC所截而成的内错角。 ( )

教法说明:本组训练题的目的是为了培养学生的识图能力,增强对概念的辨析能力,加深对概念的理解。不管是有“三线八角”图形判断同位角、内错角、同旁内角,还是找出构成这些角的“三线”,都需要进行这样的三个步骤,一看角的顶点,二看角的边,三看角的方位。这三看又离不开主线——截线的确定,让学生知道:无论图形的位置怎样变动,图形多么复杂,都以截线为主线(不变),去解决万变的图形。

恰当地阐明一下教学目的,让学生明白学习新知识地必要性,可以激发学生地学习动机和兴趣。

(五)因材施教、发展个性

操作:在下图中,画直线b使它与直线AB或CD相交所成的角与∠1成为同位角。

教法说明:操作此题的目的:除能准确判别这三类角,还要能构造这些角,进一步深刻理解它们的意义。

(六)小结

1、判断这三类角的思路过程:

①.顶点是否重合?

②.是否是三条直线构成?

③.哪一条是截线?(两角各有一边所在的直线)

2、三线八角中有4对同位角、2对内错角、2对同旁内角。

教法说明:将所学知识进行归纳总结,加强了知识间的联系,充分体现了所学知识的系统性。

(七)布置作业

1.教材P7 练习1题、2题。

2.教材P9 11题 操作:在图(2)中

(1) 量出∠1,∠2,∠3,∠4的度数为:

(2) 在图中,,用∠3与∠4表示一对同位角,这对同位角相等吗?为什么?

(3) ∠1+∠2=180°,∠1与∠4是什么角?有何数量关系?为什么?

【相等,因为等角的补角相等】

教法说明:承上启下、感悟教学背景,横行延伸,纵向发展,带着问题来,带着问题走,可使学生课后自觉地去看书预习,寻找答案

篇5:直线和圆的位置关系说课稿

尊敬的各位评委,亲爱的各位同行,大家好!今天我的说课内容是人教版九年级上册第二十四章第二节第二课时的直线与圆的位置关系。下面我将以教什么、怎么样教、为什么这样教为思路从教材分析、学情分析、教学目标、学法教法、教学过程和板书设计六个方面对本课进行说明。

一、教材分析

教材的地位和作用。

圆在平面几何中占有重要地位,它被安排在初中数学第二十四章,属于一个提高阶段。而直线和圆的位置关系又是本章的一个中心内容。从知识体系上看:它有着承上启下的作用,既是对点与圆的位置关系的延续与提高,又是后面学习切线的性质和判定、圆和圆的位置关系及高中继续学习几何知识的基础。从数学思想方法层面上看:它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比等数学思想方法,有助于提高学生的数学思维品质。

二、学情分析

在此之前学生已经学习了点和圆的位置关系,对圆有了一定的感性和理性认识,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象。加之九年级学生好奇心强,活泼好动,注意力易分散,认知水平大都停留在表面现象,对亲身体验的事物容易激发求知的渴望,因此要想方设法,引导学生深入思考、主动探究、主动获取新知识。

三、教学目标:

根据学生已有的认知基础及本课的教材的地位、作用,结合数学课程标准我将确定如下的教学目标:

(1)掌握直线和圆的三种位置关系性质及判定。

(2)通过观察、实验、合作交流等数学活动使学生了解探索问题的一般方法;

(3)通过直线和圆的位置关系的探究,向学生渗透分类讨论、数形结合、类比的数学思想,

陪养学生观察、分析和概括的能力;

(4)体会事物间的相互渗透,感受数学思维的严谨性,并在合作学习中体验成功的喜悦。

教学的重难点:

重点:直线和圆的三种位置关系的性质与判定。

难点:用数量法刻画直线与圆的三种位置关系。

突破难点的策略:引导学生动手动脑、操作实践,类比点和圆的位置关系的判定方法,配合几何画板直观演示来加深学生对知识的理解。

四、学法教法

教无定法,教学有法,贵在得法。根据新课改理念及学生特点,本节课主要采用“启发式”问题教学法,根据维果斯基的“最近发展区理论”,站在学生思维的最近发展区上启发诱导,用环环相扣的问题将探究活动层层深入;整堂课紧紧围绕“情景问题――学生体验――合作交流”的学习模式展开,并充分发挥几何画板、多媒体课件直观、形象的功能辅助教学,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。

五、教学过程

(1)创设情境,引出课题(3分钟)

从学生的生活经验和已有知识出发,创设情境。通过多媒体课件展示《海上日出》的朗诵视频,让学生观察并抽象出其中的几何图形(直线和圆),营造探索问题的氛围,从而引出课题(直线和圆的位置关系)。同时让学生体会到数学知识无处不在,应用数学无处不有,符合“数学教学应从生活经验出发”的新课标要求。

(2)动手操作、探求新知(20分钟)

a.学生动手实验――探究位置关系得出概念

美国学者说过:听过的会忘记,看过的会记得,做过的能学会。可见实验法在教学中有着何等重要的作用。从这一思想出发,我设计了一个动手操作的环节:让学生在纸上画一条直线,把课前准备好的圆卡片,在纸上移动,再现日出的整个过程,并归纳其公共点的个数变化情况。然后提出问题:你能由此归纳出直线和圆有几种不同的位置关系吗?你是怎样区分这几种位置关系的?如何用语言描述位置关系?教师层层设问,让学生思维自然发展,教学有序的进入实质部分。由于动手操作环节的铺垫,学生很容易能够从公共点个数的变化情况对直线和圆的位置关系进行分类。通过学生演示归纳,师生共同得出有关概念。教师板书讲解内容并总结:可利用直线与圆的交点个数判断直线与圆的三种位置关系。特别强调相切中“只有一个交点”的含义。

b.讲练结合――运用定义法、引出数量法

在学习了直线和圆的位置关系后,学生自然就得到了直线和圆的位置关系的第一种判定方法:定义法,这种方法对学生而言比较直观简单,因此教材上没有相应的练习。于是我设计了一道练习题:在练习中让学生发现用定义法来判断直线和圆的位置关系的局限性,当公共点个数不好判断时又该怎么办呢?你能类比之前所学的点和圆的位置关系的判定方法加以说明吗?从而引出用数量关系刻画直线和圆的位置关系的学习。

c.类比总结――探究第二种判定方法

由点与圆的位置关系的性质与判定,类比迁移到直线与圆的位置关系,学生较容易想到画图、测量等实验方法,小组交流合作,教师适时指导,再利用几何画板重复演示得出结论:

①d>r,直线L和⊙O相离;

②d=r,直线L和⊙O相切;

③d<r,直线L和⊙O相交,也就是用圆心到直线的距离d与半径r的大小关系来判定直线和圆三种位置关系,并强调:既是性质也是判定。

在动手操作,探索新知的过程中,让学生参与到定义的形成与给出过程中,在练习中发现定义法的局限性,从而引出对数量法的学习,让学生类比点和圆的位置关系的判定,验证直线和圆的位置关系,更加直接而自然,有效的突破教学难点,也让学生感受到所学知识间的相互联系。

(3)巩固练习,提高能力(10分钟)

为得到及时的反馈情况,我设计了如下的练习,而这个时段的学生因疲劳,注意力易分散,我抓住学生的好胜心理,首先设计了一道填空题:看谁抢得快

1、(P96练习)已知圆的直径为13cm,设直线和圆心的距离为d:

1)若d=4.5cm,则直线和圆 ,直线和圆有____个公共点;

2)若d=6.5cm,则直线和圆______,直线和圆有____个公共点;

3)若d=8cm,则直线和圆______,直线和圆有____个公共点。

这道题同时运用了数量法和定义法的判定,解题关键是要引导学生找出d与r并进行比较,从中体现数学中的转化思想。

2、Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,判断以点C为圆心,下列r为半径的⊙C与AB的位置关系:(1)r=2cm;(2)r=2.4cm;(3)r=3cm。(P101习题24.2第2题)

3、在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆

(1)当圆C与线段AB相交时,r;

(2)当圆C与线段AB相切时,r;

(3)当圆C与线段AB相离时,r;

解题关键是要引导学生找出这两个问题的不同与联系,再进行求解。通过这两个题可以培养学生解决变式问题的能力。教师引导学生完成,加强个别指导。

(本环节的练习难度层层加大,其目的是让学生加强对新知的理解和应用,培养学生解决问题的能力;基础题目和变式题目的结合既面向全体学生,也考虑到了学有余力的学生的学习,体现了因材施教的教学原则。)

(4)课堂小结构建体系(5分钟)

本节课你有哪些收获?你还有哪些疑惑?

(通过提问方式进行小结,交流收获与不足,让学生养成学习知识―总结―再学习的良好学习习惯。教师再总结:这节课我们学习了三种位置关系、两种判定方法、三种思想,有利于帮助学生理清知识脉络,巩固学习效果。3、2、3)

篇6:直线和圆的位置关系说课稿

难点: 用数量法刻画 直线与圆的三种位置关系。

突破难点的策略: 引导学生动手动脑、操作实践 , 类比点和圆的位置关系的判定方法,配合几何画板直观演示 来 加深学生对知识的理解。

四、学法教法

教无定法,教学有法,贵在得法。根据新课改理念及学生特点,本节课 主要 采用 “启发式”问题教学法 , 根据 维果斯基 的“ 最近发展区理论 ”, 站在学生思维的最近发展区上启发诱导,用环环相扣的问题将探究活动层层深入 ; 整堂课紧紧围绕 “情景问题——学生体验——合作交流”的学习模式 展开 ,并充分发挥 几何画板、多媒体课件直观、形象的功能辅助教学 ,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。

五、教学过程

(1) 创设情境,引出课题(3分钟)

从学生的生活经验和已有知识出发,创设情境 。 通过多媒体课件展示《海上日出》的朗诵视频,让学生观察并抽象出其中的几何图形(直线和圆) , 营造探索问题的氛围 , 从而引出课题(直线和圆的.位置关系) 。 同时让学生体会到数学知识无处不在,应用数学无处不有 , 符合“数学教学应从生活经验出发”的新课标要求。

(2) 动手操作    探求新知(20分钟)

a. 学生动手实验——探究位置关系 得出概念

美国学者说过:听过的会忘记,看过的会记得,做过的能学会。可见实验法在教学中有着何等重要的作用。从这一思想出发,我设计了一个动手操作的环节:让学生在纸上画一条直线,   把课前准备好的圆卡片,在纸上移动,再现日出的整个过程,并归纳其公共点的个数变化情况。 然后提出问题: 你能 由此 归纳出直线和圆有几种不同的位置关系吗? 你是怎样区分这几种位置关系的?如何用语言描述位置关系? 教师层层设问,让学生思维自然发展,教学有序的进入实质部分。 由于动手操作环节的铺垫, 学生很容易能够从公共点个数的变化 情况对 直线和圆的位置关系 进行分类 。通过学生演示归纳,师生共同 得出 有关概念。教师板书讲解内容并总结:可利用直线与圆的交点个数判断直线与圆的三种位置关系。特别强调 相切中 “只有一个交点”的含义。

b. 讲练结合—— 运用 定义法、引出数量法

在学习了直线和圆的位置关系后,学生自然就得到了直线和圆的位置关系的第一种判定方法:定义法 ,这种方法对学生而言比较直观简单,因此教材上没有相应的练习。于是我设计了一道练习题:在练习中 让学生发现用定义法来判断直线和圆的位置关系的局限性, 当公共点个数不好判断时又该怎么办呢? 你能类比之前所学的点和圆的位置关系的判定方法加以说明吗? 从而引出用数量关系刻画直线和圆的位置关系的学习。

c. 类比总结——探究第二种判定方法

由点与圆的位置关系的性质与判定,类比迁移到直线与圆的位置关系,学生较容易想到画图、测量等实验方法,小组交流合作,教师适时指导 , 再利用几何画板 重复演示 得出结论:①d>r,直线L和⊙O相离;②d=r,直线L和⊙O相切;③d<r,直线L和⊙O相交,也就是用圆心到直线的距离d与半径r的大小关系来判定直线和圆三种位置关系, 并强调:既是性质也是判定 。

在动手操作, 探索新知 的过程中,让学生参与到定义的形成与给出过程中,在练习中发现定义法的局限性,从而引出对数量法的学习,让学生类比点和圆的位置关系的判定, 验证 直线和圆的位置关系,更加直接而自然 ,有效的突破教学难点 ,也让学生感受到所学知识间的相互联系。

(3) 巩固练习,提高能力(10分钟)

为 得到及时的反馈情况, 我设计了如下的练习,而这个时段的学生 因 疲劳,注意力 易 分散,我抓住学生的好胜心理,首先设计了 一 道填空题:看谁抢得快

1、 ( P96练习) 已知圆的直径为13cm,设直线和圆心的距离为d   :

1)若d=4.5cm   ,则直线和圆          ,   直线和圆有____个公共点;

2)若d=6.5cm   ,则直线和圆______,   直线和圆有____个公共点;

3)若d=   8   cm   ,则直线和圆______,   直线和圆有____个公共点。

这 道 题 同时运用了数量法和定义法的判定 ,解题关键是 要引导学生 找出d与r并进行比较,从中体现数学中的转化思想。

2 、Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm, 判断以点 C为圆心,下列r为半径的 ⊙ C与AB的位置关系 : (1)r =2cm ; (2)r =2.4cm ; (3)r =3cm 。 (P101习题24.2第2题)

3 、   在Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm,以C为圆心,r为半径的圆

(1)当圆C与线段AB相交时,r ;

(2)当圆C与线段AB相切时,r ;

(3)当圆C与线段AB相离时,r ;

解题关键是要引导学生 找出这两个问题的不同与联系,再进行求解。通过这两个题可以培养学生解决变式问题的能力。 教师引导学生完成,加强个别指导。

(本环节的练习难度层层加大,其目的是让学生加强对新知的理解和应用,培养学生解决问题的能力;基础题目和变式题目的结合既面向全体学生,也考虑到了学有余力的学生的学习,体现了因材施教的教学原则。)

(4) 课堂小结 构建体系(5分钟)

本节课你有哪些收获? 你还有哪些疑惑 ?

(通过提问方式进行小结,交流收获与不足,让学生养成学习—总结—再学习的良好学习习惯。教师再总结:这节课我们学习了三种位置关系、两种判定方法、三种思想,有利于帮助学生理清知识脉络,巩固学习效果。3、2、3)

(5) 作业布置    课后延伸   (2分钟)

必做题: 1.阅读教材100-101

2.P112练习2

选做题:如图,已知∠AOB=β(β为锐角) ,M为OB上一点,且 OM=5cm,以M为圆心、以

2.5为半径作圆

(1)⊙M与直线OA的位置关系由         大小决定;

(2)若⊙M与直线OA相切,则β=           ;

(3)若⊙M与直线OA相交,则β的取值范围是        。

六、 板书设计:

篇7:直线和圆的位置关系说课稿

尊敬的各位评委,亲爱的各位同行,大家好!今天我 的说课 内容是人教版九年级上册第二十四章第二节第二课时的直线与圆的位置关系。下面我将以教什么、怎么样教、为什么这样教为思路从教材分析、学情分析、教学目标、学法教法、教学过程和板书设计六个方面对本课进行说明。

一、教材分析

教材的地位和作用。

圆在平面几何中占有重要地位, 它被安排在初中数学第二十四章, 属于 一个提高阶段 。而 直线和圆的位置关系 又是本章的一个中心内容。 从知识体系上看 :它有 着承上启下的作用 , 既是 对 点与圆的位置关系的延续与提高,又是 后面 学习切线的性质和判定、圆和圆的位置关系 及高中继续学习几何知识 的基础 。 从数学思想方法层面上看 : 它运用运动变化的观点揭示了知识的发生过程 以及相关知识 间的内在联系,渗透了数形结合、分类讨论、类比等数学思想方法,有助于提高学生的数学思维品质 。

二、学情分析

在此之前学生已经 学习了点和圆的位置关系 , 对圆有了一定 的 感性和理性认识 ,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象。加之 九年级学生好奇心强,活泼好动 , 注意力易分散 , 认知水平大都停留在表面现象, 对亲身体验的事物容易激发求知的渴望 , 因此要想方设法,引导学生深入思考、主动探究、主动获取新知识。

三、教学目标:

根据学生已有的认知基础及本课的教材的地位、作用 ,结合数学课程标准 我将确定如下的 教学 目标:

(1) 掌握直线和圆的三种位置关系 性质及判定。

(2) 通过观察、实验、合作 交流 等数学活动使学生了解探索问题的一般方法;

(3) 通过直线和圆的位置关系的探究,向学生渗透分类讨论、数形结合 、类比 的数学思想 ,

陪养学生观察、分析和概括的能力;

( 4 ) 体会事物间的相互渗透 , 感受数学思维的严谨性,并在合作学习中 体验 成功的 喜悦 。

教 学 的重难点 :

篇8:直线和圆的位置关系说课稿

一、教材分析

1 、教材的地位和作用。

圆的教学在平面几何中乃至整个中学教学都占有重要的地位,而直线和圆的位置关系的应用又比较广泛,它是初中几何的综合运用,又是在学习了点和圆的位置关系的基础上进行的,为后面的圆与圆的位置关系作铺垫的一节课,在今后的解题及几何证明中,将起到重要的作用。

2、教学目标:

根据学生已有的认知的基础及本课的教材的地位、作用,依据教学大纲的确定本课的教学目标为:

(1)知识目标:

a、知道直线和圆相交、相切、相离的定义。

b、根据定义来判断直线和圆的位置关系,

会根据直线和圆相切的定义画出已知圆的切线。

c、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。

2)能力目标:

让学生通过观察、看图、列表、分析、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。

3)情感目标:

在解决问题中,教师创设情境导入新课,以观察素材入手,像一轮红日从海平面升起的图片,提出问题,让学生结合学过的知识,把它们抽象出几何图形,再表示出来。让学生感受到实际生活中,存在的直线和圆的三种位置关系,便于学生用运动的观点观察圆与直线的位置关系,有利于学生把实际的问题抽象成数学模型,也便于学生观察直线和圆的公共点的变化。

3。教材的重点难点

直线和圆的三种位置关系是重点,本课的难点是直线和圆的三种位置关系的性质与判定的应用。

4。在教学中如何突破这个重点和难点

解决重点的方法主要是:

(1)由学生观察老师展示的一轮红日从海平面升起的照片提出问题,能不能我们学过的知识把它们抽象出几何图形再展示出来(让学生尝试通过日出的情境画出几种情况),

(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。是什么?)。

在说直线与圆的位置关系时,如何突破这个难点:

(1)突破直线和圆不能有两个以上的公共点,让学生讨论,最后明确否定(因为直线和圆有三个或三个以上的公共点,那么这与不在同一条直线上的三点就可以作一个圆,相矛盾)。

(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。

(3)突破直线和圆有唯一一个公共点是直线和圆相切(指直线与圆有一个并且只有一个公共点,它与有一个公共点的含义不同)。

(4)突破直线和圆的位置关系的`(如果圆O的半径为r,圆心到直线的距离为d,

1,直线l与圆 O相交 <=> d

2,直线l与圆 O相切 <=> d=r

3,直线l与圆 O相离 <=> d>r

(上述结论中的符号“<=> ”读作“等价于”)

式子的左边反映是两个图形(直线和圆)的位置关系的性质,右边是反映直线和圆的位置关系的判定。二、学情分析 根据初三学生活泼好动好奇心和求知欲都非常强,并且在初一,初二基础上初三学生有一定的分析力,归纳力和根据他们的特点,联系生活实际中结合问题结合本节课适合学生的学习材料注重激发学生的求知欲让他们真正理解这节课是在学习了点和圆的位置关系的基础上,进行的为后面的圆与圆的位置关系作铺垫的一节课。通过直线与圆的相对运动,揭示直线与圆的位置关系,培养学生运动变化的辨证唯物主义观点;通过对研究过程的反思,进一步强化对分类和化归思想的认识。

三、教法设计 复习点和圆的位置关系,引导学生用类比的方法来研究直线与圆的位置关系,在直线与圆的位置关系的判定的过程中,采用小组讨论的方法,培养学生互助、协作的精神。学生质疑这一环节充分培养学生敢于提问的习惯,做到不懂就问。学生小结,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。

1,学生观察日出照片,把观察到的情况用自己的语言说出来,抽象出几何图形在学生回答的基础上,教师通过多媒体演示圆与直线的三种位置关系。

2,进一步让学生感受到数学产生于生活,与生活密切相关,并能使学生更好的直观感受直线和圆的三种位置关系。

3,强调公共点的唯一性。给出定义时,尽可能地有学生来概括和叙述,有利于提高学生的语言表达能力。

4,有利于新旧知识的联系,培养学生的迁移能力,掌握用定量研究来解决问题的方法。在学生回答问题的基础上,教师打出直线和圆的位置关系以及它们的数量特征。

5,通过直线到圆的距离d和半径r这两个数量之间的关系来研究直线和圆的位置关系。这样很好的体现数形结合的思想,使较为复杂的问题能简单化。

6,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。

四、学法指导

复习点和圆的位置关系,引导学生用类比的方法来研究直线与圆的位置关系,在直线与圆的位置关系的判定的过程中,采用小组讨论的方法,培养学生互助、协作的精神。学生质疑这一环节充分培养学生敢于提问的习惯,做到不懂就问。

学生小结,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。

五、教学程序

创设情境——————导入新课—————— 新授———————巩固练习—————学生质疑——————学生小结——————布置作业

[提问] 通过观察、演示,你知道直线和圆有几种位置关系?

[讨论] 一轮红日从海平面升起的照片

[新授] 给出相交、相切、相离的定义。

[类比] 复习点与圆的位置关系,讨论它们的数量关系。通过类比,从而得出直线与圆的位置关系的性质定理及判定方法。

[巩固练习] 例1,

出示例题

例1 在Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm,以C为圆心,r为半径的圆与AB有什么样的位置关系?为什么?

(1)r=2cm; (2)r=2。4cm; (3)r=3cm

由学生填写下例表格。

直线和圆的位置关系

公共点个数

圆心到直线距离d与半径r关系

公共点名称

直线名称

图形

补充练习的答案由师生一起归纳填写

教学小结

直线与圆的位置关系,让学生自己归纳本节课学习的内容,培养学生用数学语言归纳问题的能力。然后老师在多媒体打出图表。

本节课主要采用了归纳、演绎、类比的思想方法,从现实生活中抽象出数学模型,体现了数学产生于生活的思想,并且将新旧知识进行了类比、转化,充分发挥了学生的主观能动性,体现了学生是学习的主体,真正成为学习的主人,转变了角色。

六,板书设计:

课题:直线和圆的位置关系

一,复习点与圆的位置关系

二,直线与圆的位置关系

1,相交、相切、相离的定义。

2,直线与圆的位置关系的性质定理。

3,直线与圆的位置关系的判定方法。

例1:

三,课堂练习

四,小结

篇9:圆与圆的位置关系说课稿

圆与圆的位置关系说课稿

一、 说教材

(一) 教材所处的地位及作用

本章节是高中必修2平面解析几何初步圆与方程的第三节内容。本节内容是学生在已经掌握“圆的方程”、“直线和圆的位置关系”后,在已获得一定的探究方法的基础上,进一步探究两圆的位置关系,它是圆与方程章节中一种重要的位置关系。

(二)教学目标

1.了解圆与圆之间的几种位置关系。

2.掌握利用圆心距和半径之间的大小关系判定圆与圆的位置关系。

(三)重点、难点

1.重点:圆和圆的五种位置关系及其应用。

2.难点:圆和圆的五种位置关系及数量间的关系。

二、说教法

常言道:“教必有法,教无定法”。所以我针对高一学生的心理特点和认知能力水平,大胆地处理教材,并作了精心的安排,采用启发式教学、循序渐进的原则、采取类比、观察、讨论、归纳等方法,注重创设问题情景,充分体现数学是源于实践又运用于生活。在本节课的教学中注意与学生已有知识的联系,减少学生对新概念接受的困难。通过教师的.引导,启发调动学生的积极性,让学生在课堂上动手、动口、动眼、动脑,主动参与到整个教学活动中,教法的核心是类比,在直线与圆位置关系的基础上类比出圆与圆的位置关系。

三、说学法

“授人以鱼,不如授人以渔”。培养学生类比、观察、分析、归纳能力,根据本节课的特点,我以实际问题为出发点,以学生活动为主线,让学生自己观察、归纳,让他们在学习中学会学习。

四、说教学过程分析

环节1,举一些生活中常见的例子,奥迪标志,五连环,齿轮等引出所要讲的新课题圆与圆的位置关系,。

环节2,在进入新课讲解之前,先给学生复习直线与圆的位置关系,在由此拓展拓展到圆与圆的位置关系。给学生讲解圆与圆之间的几种位置关系和用圆心距和半径之间的大小关系判定圆与圆的位置关系。

环节3,例1由两圆的方程判断位置关系,重点讲解几何方法,若有学生提到代数法,教师对两种方法进行比较,告诉学生怎样恰当选用这两种方法。

例2难度加深一些,要充分运用两圆相切的几何性质,要引导学生想到不同的解题思路。然后做一些练习进行巩固。

环节4,对本节课小结

篇10:《直线与圆的位置关系》 说课稿

在本届贵阳市中青年教师教学研讨会中,修文中学提出打造有自己特色的“良知高效课堂”,整个课堂进程分四步八环节。本人承担的是直线与圆的位置关系这一堂课与大家交流,有不足之外请老师们批评指正。

1、教材地位

从知识结构来看,直线与圆的位置关系是对圆的方程应用的延续和拓展,又是后续研究圆与圆的位置关系和直线与圆锥曲线的位置关系等内容的基础。在直线与圆的位置关系的判断方法的建立过程中蕴涵着诸多的数学思想方法,这对于进一步探索、研究后续内容有很强的启发与示范作用。

2、学生情况

对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交。从直线与圆的直观感受上,学生懂得从圆心到直线的距离与圆的半径相比较来研究直线与圆的位置关系。本节课,学生将进一步挖掘直线与圆的位置关系中的“数”的关系,学会从不同角度分析思考问题,为后续学习打下基础。另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。

3、教学目标

新课程标准的要求是能根据直线与圆的方程判断其位置关系(相交、相切、相离),体会用代数方法处理几何问题的思想,感受“形”与“数”的对立和统一;初步掌握数形结合的思想方法在研究数学问题中的应用。

根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,本节课教学应实现如下教学目标:

4、知识与技能

篇11:《直线与圆的位置关系》 说课稿

掌握用圆心到直线的距离d与圆的半径r的大小比较,判断直线与圆位置关系,几何法

以及通过方程组解的个数判断直线与圆位置关系,代数法

直线和圆的方程的应用,能用直线和圆的`方程解决一些简单的问题,初步了解用代数方法处理几何问题的思想、能根据直线和圆的位置关系求简单的参数问题;

5、过程与方法

理解直线和圆的三种位置关系,感受直线和圆的位置与它们的方程所组成的二元二次方程组的解的对应关系;体验通过比较圆心到直线的距离和半径之间的大小及通过方程组的解的个数判断直线与圆的位置关系,能用直线和圆的方程解决一些条件下圆的切线问题;领会数形结合的数学思想方法,提高发现问题、分析问题、解决问题的能力。

6、情感态度与价值观

通过对本节课知识的探究活动,加深学生对解析法解决几何问题的认识,从而领悟其中所蕴涵的数学思想,体验探索中成功的喜悦,激发学习热情,养成良好的学习习惯和品质。

教法学法为了实现上述教学目标,本节课采取以下教学方法:

(1)恰当的利用多媒体课件,通过学生熟悉的实际生活问题引入课题,拉近数学与现实的距离,激发学生的问题意识和求知欲,调动学生主体参与的积极性。

(2)采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,站在学生思维的最近发展区上启发诱导。

(3)在整个数学教学过程中,既要体现学生的主体地位,更要强调教师的主导地位,在科学讲授的同时教会学生清晰的思维和严谨的推理。

在学法上注重以下几点:

(1)让学生从代数和几何两个角度来解决直线与圆的位置关系问题,并体会几何法的优越性;

(2)在用代数法解决直线与圆的位置关系时,要能够明确运算方向,把握关键步骤,正确的处理较为复杂数据。

课堂结构设计:

整个教学过程是四步组成,自主学习,合作探究,老师辅导、课堂展示。共分为八个环节,复习、独立训练、相互探讨、老师参与、形成结论、课堂展示、评价(互评师评)、反思。

教学过程设计:

通过问题情境,激发学生的学习兴趣,使学生找到要学的与以学知识之间的联系;问题串的设置可让学生主动参与到学习中来;在判断方法的形成与应用的探究中,师生的相互沟通调动学生的积极性,培养团队精神;知识的生成和问题的解决,培养学生独立思考的能力,激发学生的创新思维;通过练习检测学生对知识的掌握情况;根据学生在课堂小结中的表现和课后作业情况,查缺补漏,以便调控教学。

回顾反思,拓展延伸:

以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,不妥之处,敬请各位老师批评指正,谢谢

篇12:《复习直线和圆的位置关系》说课稿

1、教学目标:

(1)知识目标

A.通过回顾初中所学直线与圆的位置关系的定义进一步理解直线与圆的位置关系;

B.会根据直线和圆的方程用代数法和几何法判断直线与圆的位置关系;

C.掌握直线和圆的位置关系判定的应用,会求已知圆的交线和切线方程。

(2)能力目标

让学生通过观察,分析,总结归纳出根据直线与圆的方程来判断直线与圆的位置关系的方法,培养学生分析问题解决问题的能力,让学生对坐标法有进一步的了解,并能用参数法、数形结合的方法去分析、解决相应的数学问题,同时训练学生数学思维,培养学生寻求一题多解的能力。

(3)情感目标

通过学生自己动手实验和探索,培养学生动手能力和发现问题的能力;通过师生互动,生生互动的教学活动过程,形成学生的体验性认识,体会成功的愉悦,提高数学学习的兴趣,树立学好数学的信心,培养锲而不舍的钻研精神和合作交流的科学态度。

2、教学重点、难点:

重点:直线和圆的三种位置关系

难点:直线和圆的三种位置关系的性质和判定的应用

3、教学方法与手段:

教学方法:问题探究式、启发式引导、参与式探究、互动式讨论

学习方法:自主探究、观察发现、合作交流、归纳总结。

教学手段:借助多媒体动态演示,构建学生探究式学习的教学环境。

4、教学过程:

创设情景 引入新课

教师带领学生复习点与圆的位置关系,然后借助多媒体动态演示生活中常见的日出实例,引导学生观察直线和圆的位置关系的几何特征,提出问题。

(1)直线和圆有几种位置关系,他们各有什么特征?

(2)怎样去判断他们的位置关系?

提出问题,引导学生思考和探索。

观察思考,动手探究,交流发现。

通过直观画面展示问题情景,增强学生感性认识,激发学生学习兴趣,让数学更贴近生活。

引导启发 探索新知

对于问题(1)教师叫学生代表起来说出直线和圆的三种位置关系:相交、相切、相离。

教师再引导学生观察直线和圆的三种位置关系,从直线与圆的交点个数上总结出三种位置关系的几何特征(学生回答,教师板书)

(1).直线与圆相交,有两个公共点;

(2).直线和圆相切,有且只有一个公共点;

(3).直线与圆相离,没有公共点。

教师层层设问,逐步引导,活跃学生数学思维,学生有的可能“从直线与圆的交点个数上来进行区分” 有的可能“从圆半径r与圆心到直线的距离d的大小进行区分,教师都要给予表扬与鼓励,并引导学生找出三种位置关系的几何特征,教师板书。

观察、思考、猜测、概括学生回答问题,概括定义。

通过学生概括定义,培养学生归纳概括能力。由点与圆的'位置关系的性质与判定,类比到直线与圆的位置关系,在教师的帮助下从直线与圆的交点个数上区分这三种位置关系。

对于问题(2)先让学生先独立思考2分钟,然后分组讨论,整理出讨论结果,教师叫学生代表起来发表自己的看法。在过程中既有对正确认识的赞赏又对错误见解的分析及对该学生的鼓励,然后引导学生归纳出两种思路:

思路一:根据直线和圆交点个数来判断直线和圆的位置关系。具体做法是联立方程消去 或 后,得一个一元二次方程,然后计算一元二次方程的判别式△

当△>0时,直线和圆相交

当△=0时,直线和圆相切

当△<0时,直线和圆相离

思路二:直线和圆的位置关系:相交,相切,相离。根据点到直线的距离知识我们求出圆心到直线的距离为d,若圆的半径为r,则有

直线和圆相交 d

直线和圆相切 d=r

直线和圆相离 d>r

教师组织学生讨论第(2)个问题,让学生完成,最后叫学生代表说出他们的结论,教师补充板书讲解的内容。并总结:可利用直线与圆的交点个数判断它们的三种位置关系。特别强调“只有一个交点”的含义。得出这个结论后,教师要注意有的学生可能会回答:利用圆心到直线的距离d与圆半径r之间的大小关系也可以判断直线与圆的三种位置关系。此时,教师肯定他们的发现,并鼓励他们,同时也指出这便是第二种方法,教师板书。

学生观察图形,积极思考,归纳总结,在教师的引导下获得直线与圆的位置关系的两种判断方法。

在此基础上学生会想到用画图、测量等实验方法,小组交流合作,在教师的指引下去发现判断直线与圆的位置关系的两种方法。

在本环节中教师应关注如下几点:

1、教师应该对有自己独到见解的学生给与表扬,鼓励他们,对于正确的结论应予以肯定,增强学生学好数学的信心,同时激发学生学习兴趣;

2、学生能否理解符号“ ”,若不能教师应作简单说明。

讲练结合 巩固新知

例1已知直线 和圆心为C的圆 ,判断直线 与圆的位置关系;如果相交,求出他们的交点坐标。

讲解例题1时,引导学生借助数学图形来分析,让学生进一步感受数形结合的数学思想,同时帮助学生构建自己的解题思维模块;得出解题思路后老师详细讲解一种方法,然后提问:有没有第二种方法解决此题?(教师引导学生完成)

让学生从不同的解题思路中进一步体会多种数学思想的解题方法,发散学生思维,为今后教学打下基础。

受例1的启发,大部分学生已经有了解题思路,教师点拨根据不同的情况采用最简单的方法巩固练习。(学生独立完成,再叫学生回答)

(1)已知直线 ,圆 。试判断直线 与圆C有无公共点,有几个公共点。

(2)判断直线 与圆 的位置关系。

教师引导学生读清题目,理解题意,找出题中已知条件,再由上面总结出的判断直线与圆的位置关系的方法得出此题的第一种解法:将直线和圆的方程联立,判断直线与圆的位置关系,并求出交点坐标,教师板书解题过程;

教师提问:还有没有其他解法?组织学生完成,最后老师总结并板书解答过程;并强调解题格式;

教师组织学生独立完成巩固练习,教师加强个别指导,收集信息评估回授,发现问题,及时采取补救措施。

观察分析,独立思考并尝试动手写出解答过程,然后听取老师解析。

积极思考,小组交流合作

学生独立完成,再与同桌相互评议,学生代表上黑板写出解题过程。本环节例题及练习题设置要体现层次感,让班级全体学生都能得到训练,加强同学们对新知识的理解与应用,培养学生解决问题的能力;基础题和变式题的结合既面向全体学生,也考虑到了学有余力的学生的学习,体现了因材施教的教学原则。在本环节中,坚持以教师的主导作用的原则,充分

发挥教学评价的激励、调控功能。

知识拓展 深化提高

例2 已知过点M(-3,-3)的直线 ,被圆 所截得的弦长为 ,求直线 的方程。

在对例1问题成功解决的基础上给出例2,让学生再次探究、体验用数形结合,转化,函数等数学思想来解决数学问题的方法,加强用代数方法解决几何问题的能力,感受坐标法在研究几何问题中的应用,同时提升学生对直线与圆的位置关系相关知识的应用能力。

过圆外一点求圆的切线方程。

提问:过圆上一点可以作几条圆的切线,过圆外及圆内一点呢?怎样求圆的切线方程?

提高练习:

求经过点(1,-7)且与圆 相切的切线方程。

分析:已知一定点要求过该点与一圆相切的切线方程,可根据直线的点斜式设出直线方程,再根据直线与圆相切的位置关系求出相关量。

教师引导学生一起分析例2,借助图象帮助分析,进一步给学生灌输数形结合的数学思想,再引导学生将图中关系转化为代数形式,得出解题思路,教师板书出步骤,得出结果后,引导学生检验结果是否都符合要求,让学生养成良好的学习习惯。

教师引导学生思考,组织学生完成,再作评讲。

学生跟随老师思路,仔细听取老师的解析过程。

学生先独立思考,做出解答过程后再与同学交流,学生代表发言,教师讲解后学生再一次回顾。

这一阶段是学生解题思路,解题技巧成型的重要阶段,由于是下半节课,学生有可能会分散注意力,因此教师教学设计要得当、选题要新颖,才能使学生的思维成为破解难题的利剑;否则学生会就此罢休,无法达到预期目的。解析时进一步培养学生数学建模思想和数形结合思想,为学生以后的学习打下基础

小结新知 画龙点睛

一、直线与圆的三种位置关系

相交、相切、相离。

二、直线与圆的位置关系的两种判断方法:

1、代数法:联立直线与圆的方程,判断消元后关于 (或 )的一元二次方程的判别式

2.几何法:判断圆心到直线距离d与半径r的大小关系

教师提问,引导学生一起回顾本节课所学内容,并指出学生回答不妥之处。

学生回答,同时反思不足

通过提问方式进行小结,交流收获与不足,让学生养成学习――总结――再学习的良好学习习惯,有利于帮助学生理清知识脉络,同时明确本节课的学习目标,提高课堂效率。

布置作业 复习巩固

课后习题4.2 1、3、5

重新阅读课本本节相关内容并预习下一节课内容。

让学生养成课后复习阅读的良好习惯并通过适量的练习复习巩固课堂知识。

5、教学设计说明:

直线与圆的位置关系是高考的考点之一,是在学生已有的平面几何知识基础上进行教学,以点与圆的位置关系上升为直线与圆的位置关系,从简单到复杂,从几何特征到代数问题(坐标法)的教学过程,它应用比较广泛,同时也为后面圆和圆的位置关系作了铺垫,对后面的解题及相关数学问题的解决将起到重要的作用,且本节是直线与圆锥曲线位置关系的基础,故要求学生充分掌握。

针对上述情况,我精心设计教学过程,借助多媒体动态演示直线和圆的位置关系,直观形象地展示了直线与圆的位置关系,化抽象为具体,以便学生更好的理解他们之间的关系及其几何特征,再引导学生把几何形式的结论转化为代数形式;教学过程中采用问题探究式、参与式探究、互动式讨论等教学方法,为学生自主探究、合作交流构建一个好的平台;分层次设置例题与练习,让全体学生都得到提升;讲解例题时应用启发式引导教学方法,不断训练学生数学思维,借助图象分析题意,加深学生对数形结合思想了解;新课结束后,引导学生小结本课内容,培养学生归纳总结的能力。

篇13:《直线与圆的位置关系》说课稿

2、 我们如何利用坐标法将初中判断直线和圆的位置关系代数化?

答:先利用点到直线的距离公式求圆心到直线的距离,再和半径比较大小。

3、 在直线与直线的方程这一节里,我们是如何利用代数的方法判断直线与直线的位置关系的?它对你在思考直线和圆的位置关系时有何启迪?

答:在直线与直线的方程这一节里,我们先把两直线的方程联立解方程组

篇14:《直线与圆的位置关系》说课稿

方程组有无数个解 《直线与圆的位置关系》说课稿 两直线重合

在思考直线和圆的位置关系时,我们可类似地把直线和圆的方程联立解方程组

方程组有一个解 《直线与圆的位置关系》说课稿 直线与圆相切

方程组没有解 《直线与圆的位置关系》说课稿 直线与圆相离

方程组有两个解 《直线与圆的位置关系》说课稿 直线与圆相交

二、例题讲解:

1、 让学生先自学例1并回答下列问题:

(1) 第二小题中,消去x的步骤怎样?如何判断方程组有没有解?

(2) 你认为这两种方法哪一种较简单,为什么?

答:(1)消去x的结果是 《直线与圆的位置关系》说课稿 ,一样可以判断和求解;

(2)方法一较简单,因为方法二在求交点坐标时仍要解方程组。

2、例2设直线 《直线与圆的位置关系》说课稿 与圆 《直线与圆的位置关系》说课稿 相切,求实数 《直线与圆的位置关系》说课稿 的`值。

2、例3过点 《直线与圆的位置关系》说课稿 作 《直线与圆的位置关系》说课稿

圆的切线L,求切线L的方程.

4、 练习:课本第83页练习1、2

问题1涉及初中知识,可使得学生比较容易上手。

问题2体现了将几何问题代数化的思想。

问题3以前一章知识做类比,有利于培养学生类比归纳的能力。

通过前面对知识的分析,例题1对学生来说应该比较容易,又通过两个问题检查学生的理解程度。

例2建立直线与圆的深度理解

例3该例题有利于培养学生全面考虑问题的良好思维习惯。

通过两个课本练习,巩固直线与圆的位置关系的判断方法。

课堂小结

判断直线与圆的位置关系主要有以下两种方法:

1:方程组有一个解 《直线与圆的位置关系》说课稿 直线与圆相切

方程组没有解 《直线与圆的位置关系》说课稿 直线与圆相离

方程组有两个解 《直线与圆的位置关系》说课稿 直线与圆相交

【《探索内错角、同旁内角的平分线的位置关系》说课稿】相关文章:

1.九年级数学《圆和圆的位置关系》说课稿

2.《位置与方向》说课稿示例

3.命题及其关系说课稿

4.初一数学《三角形的高中线角平分线》说课稿

5.财务审计与成本控制关系探索

6.点和圆的位置关系教学设计

7.数学教案-直线和圆的位置关系公开课

8.《直线与圆的位置关系》教学案例与反思

9.初中数学《点和圆的位置关系》的教案设计

10.九年级数学《圆和圆的位置关系》教学反思

下载word文档
《《探索内错角、同旁内角的平分线的位置关系》说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

最新推荐
猜你喜欢
  • 返回顶部