欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>正比例和反比例的比较(人教版六年级教案设计)

正比例和反比例的比较(人教版六年级教案设计)

2022-10-09 08:53:16 收藏本文 下载本文

“moveono”通过精心收集,向本站投稿了17篇正比例和反比例的比较(人教版六年级教案设计),下面是小编收集整理后的正比例和反比例的比较(人教版六年级教案设计),仅供参考,希望能够帮助到大家。

正比例和反比例的比较(人教版六年级教案设计)

篇1:正比例和反比例的比较(人教版六年级教案设计)

教学目标

1.进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律.

2.使学生能正确判断正、反比例.

教学重点

正、反比例的联系和区别.

教学难点

能正确判断正、反比例.

教学过程

一、复习准备

判断下面每题中两种量成正比例还是成反比例.

1.单价一定,数量和总价.

2.路程一定,速度和时间.

3.正方形的边长和它的面积.

4.时间一定,工效和工作总量.

二、新授教学

(一)出示课题

教师明确:我们已经初步学习了判断两种量是不是成正比例或反比例的关系,这节课通过比较弄清它们有什么相同点和不同点.

(二)教学例7(课件演示:正反比例的比较)

例7.观察下面的两个表,根据表分别填空.

表1

路程(千米) 5 10 25 50 100

时间(时) 1 2 5 10 20

在表1中相关联的量是(     )和(       ),(     )随着(       )变化,(     )是一定的.因此,时间和路程成(      )关系.

表2

速度(千米/时) 100

50 20 10 5

时间(时) 1 2 5 10 20

在表2中相关联的量是(     )和(       ),(     )随着(       )变化,(     )是一定的.因此,时间和速度成(      )关系.

1.分组讨论、交流.

2.引导学生讨论回答

(1)从表1中,怎样知道速度是一定的?根据什么判断速度和时间成正比例?

(2)从表2中,怎样知道路程是一定的?根据什么判断速度和时间成反比例?

3.引导学生总结路程、速度、时间三个量中每两个量之间的关系.

速度×时间=路程

4.练习:判断下面两个量成什么比例.

(1)当速度一定时,路程和时间.

(2)当路程一定时,速度和时间.

(3)当时间一定时,路程和速度.

(三)比较正比例和反比例的关系.(继续演示课件:正反比例的比较)

讨论填表:正、反比例异同点

相同点:都有两种相关联的量,一种量随着另一种量变化.

不同点:正比例是变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小.相对应的每两个数的比值(商)是一定的.反比例是变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大).相对应的每两个数的积是一定的.

三、课堂小结

今天我们学习了哪些知识?你还有什么问题吗?

四、巩固练习

(一)判断单价、数量和总价中一种量一定,另外两种量成什么比例.为什么?

1.单价一定,数量和总价成(           ).

2.总价一定,单价和数量成(           ).

3.数量一定,总价和单价成(           ).

(二)从汽车每次运货吨数、运货的次数和运货的总吨数这三种量中,你能找出哪几种比例关系?

五、课后作业

一个单位食堂每天用大米的数量、用的天数和大米的总量如下表.

表1

在表1中,相关联的量是(      )和(       ),(    )随着(     )变化,(

篇2:正比例和反比例

申晋良

教学目标:

1. 使学生理解解比例的意义。

2. 使学生掌握解比例的方法,会解比例。

教学重点:使学生掌握解比例的方法,学会解比例。

教学难点:引导学生根据比例的基本性质,将比例改写成两个内项积等于两个外项积的形式,即已学过的含有未知数的等式。

一、复习准备

教师:我们已经学习了比例的一些知识,谁能说说掌比例的基本性质是什么?

教师:请同学们灵活运用所学的知识来判断下面哪一组中的两个比可以组成比例。(投影)

教师:根据比例的知识,你会在括号里填上合适的数吗。(先完成练习纸上的题目,再逐题说说是怎样想的。)

教师:括号里该填什么数呢?填好后在小组内互相说说你的理由。(学生完成,教师巡视,再汇报)

二、导入新课

1、观察比较。

你发现这四题有什么共同点吗?请与小组内的 同学讨论讨论。(学生汇报) 象这样如果已知比例中的任何三项,就可以根据比例的基本性质求出比例中的另外一个未知项。求这个未知项的过程就叫做解比例。(板书课题)就选用刚刚做过的两题吧。(课件演示)如果这个未知项用字母x表示,这是我们今天要学习的内容。先来看第一题。(演示)

三、教学新课

1.教学例2.54∶x=9∶4

教师:⑴已知哪三项,求哪一项?

⑵你认为第一步应怎样?

⑶依据是什么?下面你会解答吗吗?(学生在课堂作业本上完成,并指名板演)

核对:你知道9 x表示什么?54 x4表示什么?

引导:课本第32页上还有一种解法,比较一下你的解法与书上解法有什么不同?(学生汇报,课件演示)

你的解法与书上解法有什么相同之处?(第一步相同)依据是什么?(学生汇报)你觉得哪种方法好就用哪种方法。

2.教学例3。

教师:再来看第2题。

出示例3: 1.275 =0.4X

教师:这道题和例2相比,有哪些地方不同?

学生:这个比例是分数形式。

教师:⑴哪两个是比例外项,哪两个是比例内项?

⑵像这样的分数形式的比例,同学们会用比例的基本性质来解吗?想一想,怎样解?

学生解答。反馈。

3、比较、小结。

教师:比较一下例2、例3的解答过程有什么相同之处?

第一步的依据都是什么?(应根据比例的基本性质把比例改写成含有未知数的乘法等式。)格式上要注意什么?(先写解,同时把含有未知项的积写在等号的左边。)

4、巩固练习。

⑴出示:14 ∶18 =x∶110 学生独立完成,指名板演。

⑵完成练一练(3道题)

学生独立完成后汇报,全对的举手。

5、小结:谁来说说怎样解比例?(2、3人说)

四、课堂练习。

第6题。出示,学生完成。并汇报。

教师:解下面的比例,如果遇到困难可以与同桌商量,共同解决。(学生汇报结果,教师:你们觉得哪题较困难?)引导说出:左边是比号形式右边是分数形式出现的比例,哪两个是比例外项,哪两个是比例内项?可以先写成比号形式的比例再求出比例的解。(结合学生作业展示进行)

五、小结。说说今天学习了什么?

课后反思:学生基本掌握解比例的方法,学会解比例,能根据比例的基本性质,将比例改写成两个内项积等于两个外项积的形式,即已学过的含有未知数的等式。解比例的过程学生也有自己的方法。

第十课时

4.13

教学目标:理解正比例的意义。

教学重点:理解正比例的意义。

教学过程:

(一)复习准备

请同学口述三量关系:

(1)路程、速度、时间;(2)单价、总价、数量;(3)工作效率、时间、工作总量。

(二)学习新课

今天我们进一步研究这些数量关系中的一些特征,请同学们回答老师的问题。

出示例1:一列火车1小时行60千米,2小时行多少千米?3小时、4小时、5小时……各行多少千米?

生:60千米、120干米、180千米……

师:根据刚才口答的问题,整理一个表格。

表中有几种量?是什么?

路程是怎样随着时间变化的?

师:像这样一种量变化,另一种量也随着变化,这两种量就叫做两种相关联的量。

(板书:两种相关联的量)

师:表中谁和谁是两种相关联的量?

生:时间和路程是两种相关联的量。

我们看一看他们之间是怎样变化的?

现在我们从后往前看,时间由8小时变为7小时、6小时、4小时……路程又是如何变化的?

从上面变化的情况,你发现了什么样的规律?(小组进行讨论。)

生:时间从小到大,路程也随着从小到大变化;时间从大到小,路程也随着从大到小变化。

师:我们对比一下老师提出的两个问题,互相讨论一下,这两种变化的原因是什么?

(分组讨论)

师:请同学发表意见。

生:第一题时间扩大了,行的路程也随着扩大;第二题时间缩小了,所行的路程也随着缩短了。

师:我们对这种变化规律简称为“同扩同缩”。(板书)让我们再看一看,它们扩大缩小的变化规律是什么?

师:根据时间和路程可以求出什么?

生:可以求出速度。

师:这个速度是谁与谁的比?它们的结果又叫什么?

生:这个速度是路程和时间的比,它们的结果是比值。

师:这个50实际是什么?变化了吗?

生:这个50是火车的速度,是路程和时间的比值,也是路程和时间的商,速度不变。

驶多少千米,速度都是60千米,这个速度是一定的,是固定不变的量,我们简称为定量。

师:谁是定量时,两种相关联的量同扩同缩?

生:速度一定时,时间和路程同扩同缩。

师:对。这两种相关联的量的商,也就是比值一定时,它们同扩同缩。我们看着表再算一算表中路程与时间相对应的商是不是一定。

(学生口算验证。)

生:都是60千米,速度不变,符合变化的规律,同扩同缩。

师:同学们总结得很好。时间和路程是两种相关联的量,路程是随着时间的变化而变化的:时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。扩大和缩小的规律是:路程和时间的比的比值总是一样的。

师:谁能像老师这样叙述一遍?

(看黑板引导学生口述。)

师:我们再看一题,研究一下它的变化规律。

出示例2。

学习例2

按题目要求回答下列问题。(幻灯)

(1)表中有哪两种量?

(2)谁和谁是相关联的量?关系式是什么?

(3)总价是怎样随着米数变化的?

(4)相对应的总价和米数的比各是多少?

(5)谁是定量?

(6)它们的变化规律是什么?

生:(答略)

师:比较一下两个例题,它们有什么共同点?

生:都有两种相关联的量,一种量变化,另一种量也随着变化。

师:对。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是今天我们学习的新内容。(板书课题:正比例的意义)

师:你能按照老师说的叙述一下例1中两个相关联的量之间的关系吗?

生:路程随着时间的变化而变化,它们的比值(也就是速度)一定,所以路程和时间是成正比例的量,它们的关系是正比例关系。

师:想一想例2,你能叙述它们是不是成正比例的量?为什么?(两人互相试说。)

师:很好。请打开书,看书上是怎样总结的?

(生看书,并画出重点,读一遍意义。)

师:如果表中第一种量用x表示,第二种量用y表示,定量用k表示,谁能用字母表示成正比例的两种相关联的量与定量的关系?

师:你能举出日常生活中成正比例关系的两种相关联的量的例子吗?

生:(答略)

师:日常生活和生产中有很多相关联的量,有的成正比例关系,有的是相关联,但不成比例关系。所以判断两种相关联的量是否成正比例关系,要抓住相对应的两个量是否商(比值)一定,只有商(比值)一定时,才能成正比例关系。

(三)巩固反馈

1.课本上的“做一做”。

2.幻灯出示题,并说明理由。

(1)苹果的单价一定,买苹果的数量和总价( )。

(2)每小时织布米数一定,织布总米数和时间( )。

(3)小明的年龄和体重( )。

(四)课堂总结

师:今天主要讲的是什么内容?你是如何理解的?

(生自己总结,举手发言。)

师:打开书,并说出正比例的意义。有什么不明白的地方提出来。

(五)布置作业

课后反思:今天学习了正比例的意义,大部分学生都理解会分析,但是王颜还不明白,在周五要重点指导。

第十一课时

4.14

教学目标:根据成正比例的意义,判断两种量是否成正比例。

教学重点:掌握判断成正比例的方法。

教学过程:

一、复习准备

1、请你说一说正比例的意义。

2、根据刚才所说的,想一想成正比例需要几个要素?

二、探究新知

京东啤酒厂有一条自动生产线,每分钟生产啤酒60瓶,5分钟,10分钟,15分钟……..生产啤酒多少瓶?

讨论学习:生产啤酒的数量与生产的事件是不是成正比例?

1、分组学习,可以利用列表的方法。

2、检查学习效果。

3、练一练:正方形的边长与周长成正比例吗?为什么?

三、巩固练习

1、同桌出题并判断

2、判断练习

(1)每个小朋友年年都要长高,那末小明的身高和年龄。

(2)平行四边形的底一定,平行四边形得高与面积

(3)每公顷播种量一定,播种土地的公顷数与所需种子数。

四、作业:79页2题

五、板书 京东啤酒厂有一条自动生产线,每分钟生产啤酒60瓶,5分钟,10分钟,15分钟……..生产啤酒多少瓶?

总量:时间=效率(一定)

所以成正比例

课后反思:根据成正比例的意义,学生会判断两种量是否成正比例,都很熟练,王颜比周四强多了,会判断。

第十二课时

4.17

教学目标:学习理解反比例的意义。

教学重点:使学生理解反比例的意义。

教学过程:

一、谈话引入

上周我们学习了正比例,今天我们将学习什么?

二、新授

学习例4

1、以小组为单位,学习反比例的意义,每小组准备一张方格图

根据题意填表

每本页数

本数

纸的总页数

2、听取汇报

提问:问题中那两种量是变化的?这两种量有什么变化?

3、得出结论:我们把长方形的长和宽就叫做成反比例的量

4、进一步理解反比例的意义:学习例5

(1)那两种量是相关联的?

(2)这两种量是怎样变化的?

(3)你发现什么规律?

三、总结反比例的意义

指名回答

用字母表示

针对例6进行分析

四、巩固练习

1、 自己举一个反比例的例子。

2、 练一练

五、作业:4

六、板书

课后反思:通过学习正比例意义的分析、判断,学习反比例的意义,学生学习的很快。

第十一课时

4.18

教学目标:根据反比例的意义判断两种量是否成反比例。

教学重点:能够掌握判断反比例的方法。

教学过程:

一、复习反比例的意义

1、 指名同学说一说回忆反比例的意义。

2、提出:你还记得如何判断两种量成正比例吗?

二、新授

(一)学习新知

总人数一定,每组的人数和组数是不是成反比例的?

1、学生读题

2、学生独立完成

3、回报交流:说一说你是怎么判断的?

(二)比较正比例与反比例的区别

小组内比较区别

在班内交流。

三、巩固练习

判断:1、圆锥的地面积已定,圆锥的高和体积成不成比例?如果成比例,成什么比例?

2、自行车有两个泳联条连接起来的齿轮,他们的齿数和转数城不成比例?成什么比例?

3、路程一定,车轮的半径和车轮的转数成不成比例?成什么比例?

四、作业

五、板书: 总人数一定,每组的人数和组数成比例

每组的人数×组数=总人数(一定)

课后反思:这一小节学完了,回想起上周在洞小值班和黄永起老师探讨怎样讲正比例、反比例的意义。黄老师说一节课全讲完了,而我用4课时,我觉得我很扎实,学生掌握很透,也为正比例、反比例应用题打下基础。

正比例和反比例应用题

第十三课时

4.19

教学目标:理解并掌握正比例的意义解答最基本的正比例应用题。渗透事物之间存在普遍联系的辩证唯物主义观点的启蒙教育。

教学重点:掌握正比例应用题的解体思路和计算方法。

教学难点:培养学生观察、比较、归纳、概括及逻辑分析能力。

教学过程:

一、复习

1、 判断下面各题中的两种量成什么比例?为什么?

(1) 火车的速度一定,行使的路程和时间。

(2) 圆的直径和圆的面积。

(3) 出油率一定,出油的重量和大豆的重量。

(4) 亩产量一定,总产量和亩数。

2、 根据下列已知条件,先判断已知条件的两种量是不是成比例,如果成比例,把已知条件用等式表示出来。

(1) 一列火车3小时行150千米,照这样速度5小时行250千米。

(2) 生产8个零件用2小时,生产48个零件用8小时。

(3) 100千克黄豆可榨出13千克豆油,照这样计算,300千克大豆可以榨出ⅹ千克豆油。

(4) 一个榨油厂,第一天用2台榨油机共榨油16吨,第二天用8台同样的榨油机共榨油ⅹ吨。

二、新授

1、 出示例题 例1

2、 你们会做吗?自己做一做。

3、 汇报:

(1)17.5÷(7.5÷3)

4、用比例的方法解答。要强调验算。

学生认真审题读题

用算术方法计算

分析题中的数量关系,谁和谁构成相关联的量,构成什么比例?

分析像“照这样计算”的意义

列方程解答(注意在;设的要全面,不要有半句话)

三、练习

1、一台织布机4小时织布24米,照这样计算,9小时织布多少米?

2、某队安装一条水管,4天安装120米,照这样计算,安装480米水管需要多少天?

四、说说用比例的方法解答应用题的步骤?

五、作业:2、7、8、10

课后反思:今天中心校鲍老师、杨老师、李老师听了我的课,我觉得他们评的很好,尤其在讲正比例应用题中要让学生透彻的分析像“照这样计算”的意义等。还要让学生探求一题多解。

第十四课时

4.20

教学目标:学会解答反比例应用题,养成良好的验算习惯。

教学重点:掌握解题方法

教学过程:

一、复习

先判断两种相关联的量成什么比例,再写出关系式。

1、一批纸,每本30页,可装订40本,每本25页,可装订48本。

2、一批化肥,每车装4吨,可装15车,每车装5吨,可装12车。

3、一艘轮船,从甲地到乙地,每小时行15千米,6小时到达,如果每小时行18千米,5小时到达。

4、运一批货物,每天运10吨,需30天运完,每天运50吨,需ⅹ天运完。

提问:你能把它改成一道应用题吗?学生自主探究

二、新授

1、出示例题 83页例二

学生认真审题读题

用算术方法计算

分析题中的数量关系,谁和谁构成相关联的量,构成什么比例?

列方程解答

学生解决问题并汇报。(强调验算过程)

探求反比例的解题思路

1、 课堂练习

(1) 一批水果,每筐装45克,需40筐,如果每筐装50克,需要多少筐?

(2) 一堆煤,原计划每天烧40克,可以烧15天,如果每天烧50克,可以烧多少天?

(3) 一台拖拉机3天耕地150亩,照这样计算,一星期可以耕地多少亩?

一、 课堂小结:说说正反比例应用题解答方法及关键。

二、 板书

反比例应用题

例2 题目: 方法:

解答方法: 关键:判断

第十五课时

4.21

教学目标:对正反比例应用题进行比较,学会用两种方法解答应用题。

教学重点:掌握两种不同的解答方法。

教学难点:培养学生认真仔细的好习惯。

教学过程:

一、复习:

用比例方法解答应用题的步骤是什么?

二、探求一题多解的方法

85页8题有几种解答方法?

分析题意,找相关联的量

分别是什么?

为什么单位可以不转化?

你能有多少种方法解答

师生共同探讨。

学生在展台演示交流

二、练习

52.2千克面粉可以烤制面包72千克。靠制同样的面包150克,需要面粉多少克?(用两种方法解答)

三、选择 86页13题。

四、思考题:用边长15厘米的方转给一个房间铺地,需要1200块。如果改用边长是25厘米的方砖铺地,需要多少块砖?

作业:练习十一10-----12题

单元检测:2课时

4.24

六年级期末总复习整理

教学要求

1、使学生比较系统地牢固地掌握有关整数和小数、分数和百分数、简易方程、比和比例等基础知识;具有进行整数、小数、分数四则运算的能力,会使用学过的简便算法,合理、灵活地进行计算,进一步提高计算能力;会解简易方程;养成检查和验算的习惯。

2、使学生巩固已获得的一些计量单位大小的表象,进一步明确各种计量单位的应用范围,牢固地掌握所学的单位间的进率,能够比较熟练地进行名数的简单换算。

3、使学生牢固地掌握所学的几何形体的特征,进一步掌握一些计算公式的推导过程和相互之间的联系,能够比较熟练地计算一些几何形体的周长、面积和体积,巩固所学的简单画图、测量等技能,进一步发展学生的空间观念。

4、使学生掌握所学的统计初步知识,能够看懂和绘制简单的统计图表,能对统计数据作简单的分析,并且能够计算求平均数问题。

5、使学生牢固地掌握所学的一些常见的数量关系和应用题的解答方法,能够比较灵活地运用所学知识独立地解答所学的应用题和生活中一些简单的实际问题,进一步培养学生的思维能力。

(一)整数、小数的意义和读写

教学内容:教材第57-59页整数、小数的意义、数位顺序和读写方法、“练一练”,练习十一第1~5题。

教学要求:

1、使学生进一步掌握整数、小数的意义,掌握整数、自然数、小数之间的区别与联系,加深对整数、小数概念的理解与认识。

2、使学生巩固整数、小数的读写方法,会正确比较整数、小数的大小。

教学过程:

一、揭示课题

同学们经过六年的学习,已经学完了小学数学的全部内容。在以后近两个月的数学课里,我们将进行数学总复习。通过总复习,使我们进一步牢固掌握小学数学的知识,为到初中学习打下更好的基础。小学数学总复习分七节内容安排,第一节是整数和小数。今天这节课,首先复习整数、小数的意义和读写方法。(板书课题)通过这节课的复习,要求大家进一步明确整数、小数的相关概念,提高整数、小数的读写能力。

二、复习整数、小数的意义

1、整理整数的概念。

提问:我们已经学过的整数里包括哪些数?(板书)谁来说一说,怎样的数是自然数?(板书:0,1,2,3……)你能举几个自然数的例子吗?(板书学生举例的数)数物体时什么情况下要用。表示?提问:你还看出按顺序排列的自然数里有哪些特点?(让学生自己自由地说一说)小结自然数在数物体时表示的意义,说明自然数是整数,并说明以后还要学习比0小的整数。

2、学生练习。

做“练-练”第1、2题。

第1题让学生在课本上画出整数,圈出自然数,然后指名学生口答。

篇3:正比例的意义(人教版六年级教案设计)

教学目标

1.使学生初步认识正比例的意义、掌握正比例意义的变化规律。

2.学会判断成正比例关系的量。

3.进一步培养学生观察、分析、概括的能力。

教学重点和难点

理解正比例的意义,掌握正比例变化的规律。

教学过程设计

(一)复习准备

请同学口述三量关系:

(1)路程、速度、时间;(2)单价、总价、数量;(3)工作效率、时间、工作总量。

(学生口述关系式、老师板书。)

(二)学习新课

今天我们进一步研究这些数量关系中的一些特征,请同学们回答老师的问题。

幻灯出示:

一列火车1小时行60千米,2小时行多少千米?3小时、4小时、5小时……各行多少千米?

生:60千米、120干米、180千米……

师:根据刚才口答的问题,整理一个表格。

出示例1。(小黑板)

例1 一列火车行驶的时间和所行的路程如下表。

师:(看着表格)回答下面的问题。表中有几种量?是什么?

生:表中有两种量,时间和路程。

师:路程是怎样随着时间变化的?

生:时间1小时,路程是60千米;2小时,路程为120千米;3小时,路程为180千米……

师:像这样一种量变化,另一种量也随着变化,这两种量就叫做两种相关联的量。

(板书:两种相关联的量)

师:表中谁和谁是两种相关联的量?

生:时间和路程是两种相关联的量。

师:我们看一看他们之间是怎样变化的?

生:时间由1小时变2小时,路程由60千米变为120千米……时间扩大了,路程也随着扩大,路程随着时间的变化而变化。

师:现在我们从后往前看,时间由8小时变为7小时、6小时、4小时……路程又是如何变化的?

生:路程由480千米变为420千米、360千米……

师:从上面变化的情况,你发现了什么样的规律?(同桌进行讨论。)

生:时间从小到大,路程也随着从小到大变化;时间从大到小,路程也随着从大到小变化。

师:我们对比一下老师提出的两个问题,互相讨论一下,这两种变化的原因是什么?

(分组讨论)

师:请同学发表意见。

生:第一题时间扩大了,行的路程也随着扩大;第二题时间缩小了,所行的路程也随着缩短了。

师:我们对这种变化规律简称为“同扩同缩”。(板书)让我们再看一看,它们扩大缩小的变化规律是什么?

师:根据时间和路程可以求出什么?

生:可以求出速度。

师:这个速度是谁与谁的比?它们的结果又叫什么?

生:这个速度是路程和时间的比,它们的结果是比值。

师:这个60实际是什么?变化了吗?

生:这个60是火车的速度,是路程和时间的比值,也是路程和时间的商,速度不变。

驶多少千米,速度都是60千米,这个速度是一定的,是固定不变的量,我们简称为定量。

师:谁是定量时,两种相关联的量同扩同缩?

生:速度一定时,时间和路程同扩同缩。

师:对。这两种相关联的量的商,也就是比值一定时,它们同扩同缩。我们看着表再算一算表中路程与时间相对应的商是不是一定。

(学生口算验证。)

生:都是60千米,速度不变,符合变化的规律,同扩同缩。

师:同学们总结得很好。时间和路程是两种相关联的量,路程是随着时间的变化而变化的:时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。扩大和缩小的规律是:路程和时间的比的比值总是一样的。

师:谁能像老师这样叙述一遍?

(看黑板引导学生口述。)

师:我们再看一题,研究一下它的变化规律。

出示例2。(小黑板)

例2 某种花布的米数和总价如下表:

(板书)

按题目要求回答下列问题。(幻灯)

(1)表中有哪两种量?

(2)谁和谁是相关联的量?关系式是什么?

(3)总价是怎样随着米数变化的?

(4)相对应的总价和米数的比各是多少?

(5)谁是定量?

(6)它们的变化规律是什么?

生:(答略)

师:比较一下两个例题,它们有什么共同点?

生:都有两种相关联的量,一种量变化,另一种量也随着变化。

师:对。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是今天我们学习的新内容。(板书课题:正比例的意义)

师:你能按照老师说的叙述一下例1中两个相关联的量之间的关系吗?

生:路程随着时间的变化而变化,它们的比值(也就是速度)一定,所以路程和时间是成正比例的量,它们的关系是正比例关系。

师:想一想例2,你能叙述它们是不是成正比例的量?为什么?(两人互相试说。)

师:很好。请打开书,看书上是怎样总结的?

(生看书,并画出重点,读一遍意义。)

师:如果表中第一种量用x表示,第二种量用y表示,定量用k表示,谁能用字母表示成正比例的两种相关联的量与定量的关系?

师:你能举出日常生活中成正比例关系的两种相关联的量的例子吗?

生:(答略)

师:日常生活和生产中有很多相关联的量,有的成正比例关系,有的是相关联,但不成比例关系。所以判断两种相关联的量是否成正比例关系,要抓住相对应的两个量是否商(比值)一定,只有商(比值)一定时,才能成正比例关系。

(三)巩固反馈

1.课本上的“做一做”。

2.幻灯出示题,并说明理由。

(1)苹果的单价一定,买苹果的数量和总价(  )。

(2)每小时织布米数一定,织布总米数和时间(  )。

(3)小明的年龄和体重(  )。

(四)课堂总结

师:今天主要讲的是什么内容?你是如何理解的?

(生自己总结,举手发言。)

师:打开书,并说出正比例的意义。有什么不明白的地方提出来。

(五)布置作业

(略)

课堂教学设计说明

第一部分:复习三量关系,为本节内容引路。

第二部分:新课从创设正比例表象入手,引导学生主动、自觉地观察、分析、概括,紧紧围绕判断正比例的两种相关联的两个量、商一定展开思路,结合例题中的数据整理知识,发现规律,由讨论表象到抽象概念,使知识得到深化。

第三部分:巩固练习。帮助学生巩固新知识,由此验证学生对知识的理解和掌握情况,帮助学生掌握判断方法。最后指导学生看书,抓住本节重点,突破难点。安排适当的练习题,在反复的练习中,加强概念的理解,牢牢掌握住判断的方法。合理安排作业,进一步巩固所学知识。

总之,在设计教案的过程中,力争体现教师为主导,学生为主体的精神,使学生认识结构不断发展,认识水平不断提高,做到在加强双基的同时发展智力,培养能力,并为以后学习打下良好的基础。

板书设计

篇4:反比例的意义(人教版六年级教案设计)

教学目标

1.使学生理解反比例的意义,掌握成反比例的变化规律,并能初步运用。

2.能正确判断成正反比例的量,为解答正反比例应用题打下基础。

教学重点和难点

理解反比例的意义,掌握两种相关联的量变化规律。

教学过程设计

(一)复习准备

1.(出示幻灯)

一种练习本的数量和总页数如下表:

师:请回答下列问题。

(1)表中哪个量是固定不变的量?

(2)哪两种量是相关联的量?它们的变化规律是怎样的?

(3)表内相关联的两种量成正比例吗?为什么?

2.填空。(小黑板(一))

两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中________,这两种量叫做成________的量,它们的关系叫做________关系。

3.判断下面各题中两种量是否成正比例。

(1)文具盒的单价一定,买文具盒的个数和总价(  )。

(2)水稻产量一定,水稻的种植面积和总产量(  )。

(3)一堆货物一定,运出的和剩下的(  )。

(4)汽车行驶的速度一定,行驶的时间和路程(  )。

(5)比值一定,比的前项和后项(  )。

可选其中一、二题,说一说为什么?

师:通过刚才的复习,我们对正比例的意义理解得很好。你们想一想,有正比例就一定有反比例。什么时候成反比例呢?今天我们就学习反比例的意义。(板书课题:反比例的意义)

(二)学习新课

1.出示例4。(小黑板(二))

例4 华丰机械厂加工一批零件,每小时加工的数量和加工的时间如下表:

(1)分析表,回答下列问题。(幻灯出示)

①表中有哪种量?

②两种相关联的量是如何变化的?

③你能说出它们的关系式吗?

④相对应的每两个数的乘积各是多少?

⑤哪种量是固定不变的?

师:请同学们打开书自学,然后分组讨论以上问题。(老师巡视、指导。)

(2)同学们发言。

根据同学发言,用彩色粉笔画出箭头并加以说明:

①每小时加工的数量扩大,加工的时间反而缩小;当每小时加工的数量缩小,加工的时间反而扩大。它们变化的规律是:一扩一缩或一缩一扩,变化的倍数相同。(板书)

②两种量中相对应的两个数的积都是600。

(板书) 10×60=600 30×20=600  50×12=600

③从数量关系看:

(3)我们来总结一下反比例的意义是什么?

(4)上述小结让学生照板书内容自述。

2.出示例5。

例5 用600页纸装订同样的练习本,每本的页数和装订的本数有什么关系呢?请先填表后,再回答下列问题。

观察上表,回答下面的问题:

①表中有哪两种量?

②装订的本数怎样随着每本的页数变化?

③它们变化的规律是怎样的?

④题目中的600是哪种量?

⑤根据两种相关联的量,你能列出一个怎样的关系式?可以求出什么?

生:(答略)

师:我们通过这一例题再次总结一下反比例的意义。

看小黑板(一)中第二条空线,总结反比例的意义。

师:对照反比例的意义详说例5成什么比例。

生:装订的本数是随着每本页数的变化而变化的。每本的页数扩大,装订的本数反而缩小;每本的页数缩小,装订的本数反而扩大。每本的页数和装订的本数的积总是一定的。如:

15×40=600 20×30=600  25×24=600

所以说每本的页数和装订的本数是成反比例的关系。

师:刚才你们对照例题总结得很好,它们的共同点是什么呢?

幻灯出示:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

(学生看幻灯,读一读。)

师:谁能对照反比例的意义说一说例4是成什么比例?

(学生看黑板叙述,老师在关系式上标出定量和它们的关系。)

生:加工的时间随着每小时加工数量的变化而变化,每小时加工的数量和加工的时间的积(零件总数)是一定的,我们就说每小时加工的数量和加工的时间是成反比例的量,它们的关系是反比例的关系。

3.学习字母公式。

师:如果用字母x和y表示两种相关联的量,用k表示它们的积(一定),你能概括出成反比例的字母公式吗?

生:x×y=k(一定)。

师:很好。我们今天学习了反比例的意义。和正比例相比较,它们的相同点和不同点你能总结一下吗?(两人互相讨论)

教师指复习小黑板(一)(即填空),学生回答。

生:相同点是都有两种相关联的量,都有一个定量。不同点是,成正比例的量,两种相关联的量同扩同缩,而且相对应的两个数的商(比值)一定;成反比例的量,两种相关联的量一扩一缩,相对应的两个数的积是一定的。

师:大家总结得很好,要判断两种相关联的量成什么比例的量,就要抓住相对应的个数是商一定,还是积一定。这是判断两种量是成正比例还是成反比例的关键。

(三)巩固反馈

1.打开书看今天讲的内容,并划出重点。

2.看课本中的“做一做”,逐一回答书中的问题。

3.书中练习题4,用语言详叙判断成什么比例?为什么?

4.你能举出一个成反比例的例子吗?(自由发言)

5.练习判断两种量是否成反比例。

(1)煤的总量一定,每天的烧煤量和烧的天数(  )。

(2)李叔叔从家到工厂,骑车的速度和所需要的时间(  )。

(3)玉华做12道练习题,做完的与没做的题(  )。

(4)长方形面积一定,它的长和宽(  )。

(四)课堂总结

本节我们初步了解了反比例的意义,并能运用反比例的意义判断一些简单的问题。通过正、反比例意义的对比,使我们进一步认识到,要判断两种相关联的量是成正比例关系还是成反比例的关系,要抓住两种相关联的量的变化规律,这是本质。今后我们还要继续研究。

(五)布置作业

练习题中第4,5题。

课堂教学设计说明

本节课是通过知识引进、知识讨论、知识运用总结进行的。

首先通过复习,巩固了正比例的意义。通过旧知识引出新知识“反比例的意义”,过渡自然,知识做到了连贯性。

在引导学生学习正比例学习的基础上,启发学生主动、自觉地去观察、分析、概括、发现规律,从而既学到了新知识,又增长了自学能力。

幻灯演示、小组讨论、集体反馈,选用多样的教学手段,使枯燥的知识活起来,充分调动学生的积极性,激发学生的兴趣。

通过知识的对比,加强了知识的内在联系,并通过区别不同的概念,巩固了知识。学生的全面参与,培养了总结、区别、沟通的能力。练习的多样、及时,使学生加深概念的理解。

板书设计

篇5:六年级数学正比例和反比例练习题

六年级数学正比例和反比例练习题

1.圆的周长与下面那种量成正比例关系( )

A.圆的面积B.圆的直径C.圆周率

2.如果圆锥的底面半径一定,那么圆锥的体积与圆锥的高( )

A.成正比例B.成反比例C.不成比例

3.如果ab=3,那么a与b( )

A.不成比例B.成反比例C.成正比例

4.用地砖铺一间教室,地砖的`块数和( )成反比例.

A.每块地砖的边长B.每块地砖的面积C.每块地砖的周长

5.下面说法正确的是( )

A.同一幅方格图中,数对(1,2)和(2,1)表示的位置相同

B.把1.005这个数扩大100倍,原数的小数点要向右移动三位

C.一个平行四边形的底是5厘米,它的面积和高成反比例

D.85X=1是方程

篇6:《正比例反比例》教案

《正比例反比例》教案

教学内容:

P47~48,例7、正、反比例的比较。

教学目的:

进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能正确运用。

教学过程:

一、复习

判断下面两种理成不成比例,成什么比例,为什么?

(1)单价一定,数量和总价。

(2)路程一定,速度和时间。

(3)正方形的边长和它的面积。

(4)工作时间一定,工作效率和工作总量。

二、新授。

1、揭示课题

2、学习例7

(1)认识:“千米/时”的读法意义。

(2)出示书中的问题要求学生逐一回答。

(3)提问:谁能说一说路程、速度和时间这三个量可以写成什么样的.关系式?

(4)填空:用下面的形式分别表示两个表的内容。

当一定时,()和()成()比例关系。

还有什么样的依存关系?

(5)教师作评讲并小结。

(6)用图表示例7中的两种量的关系。

指导学生描点、连线

观察:在表里路程和时间成什么比例?表示正比例关系的是一条什么线?A点表示什么?B点呢?

在这条直线上,当时间的值扩大时,路程的对应值是怎样变化的?时间的值缩小呢?

用同样的方法观察右表。

3、总结正、反比例的特点(异同点)

由学生比、说

三、巩固练习

1、练一练第1、2题

2、P49第1题。

四、课堂小结:

正、反比例关系各有什么特点?怎样判断正比例或反比例关系?关键是什么?

五、作业

P49第2题(1)(4)(5)(6)(9)

六、课后作业

1、P49第2题(2)(3)(7)(8)(10)

2、收集生活中正、反比例关系的量并分析。

篇7:成正比例的量(人教版六年级教案设计)

教学目标

1.使学生理解正比例的意义.

2.能根据正比例的意义判断两种量是不是成正比例.

3.培养学生的抽象概括能力和分析判断能力.

教学重点

使学生理解正比例的意义.

教学难点

引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念.

教学过程

一、复习准备

口答(课件演示:成正比例的量)

1.已知路程和时间,怎样求速度?

2.已知总价和数量,怎样求单价?

3.已知工作总量和工作时间,怎样求工作效率?

二、新授教学

(一)导入新课

这些都是我们已经学过的常见的数量关系.这节课,我们继续研究这些数量关系中的一些特征.

(二)教学例1.(课件演示:成正比例的量)

1.一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米……

2.出示下表,并根据上述内容填表.

一列火车行驶的时间和路程

时间(时)

……

路程(千米)

……

3.思考:在填表过程中,你发现了什么?

(1)表中有时间和路程两种量.

(2)当时间是1小时,路程则是90千米,

时间是2小时,路程是180千米……

时间变化,路程也随着变化.

时间扩大,路程随着扩大;时间缩小,路程也随着缩小.

教师说明:像这样,时间变化,路程也随着变化,我们就说,时间和路程是两种相关

联的量.

教师板书:两种相关联的量

(3)请每位同学先取一组相对应的数据,然后计算出路程与时间的比的比值.

教师板书:

(4)教师提问:根据计算,你发现了什么?

教师说明:相对应的两个数的比的比值都一样或固定不变,在数学上叫做“一定”

教师板书:相对应的两上数的比值一定

4.教师小结

刚才同学们通过填表、交流,我们知道时间和路程是两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小.它们扩大、缩小的规律是:路程和时间的比的比值总是一定的.即

教师板书:

(三)教学例2(继续演示课件:成正比例的量)

例2.在一间布店的柜台上,有一张写着某种花布鞋的米数和总价的表.

时间(时)

1

2

3

4

5

6

7

……

路程(千米)

8.2

16.4

24.6

32.8

41.0

49.2

57.4

……

1.观察上表

(1)表中有数量(米数)和总价这两种量,它们是两种相关联的量.

(2)总价随米数的变化情况是:

米数扩大,总价随着扩大;米数缩小,总价也随着缩小.

(3)相对应的总价和米数的比的比值是一定的.

教师板书:

2.师生小结

通过刚才的观察和分析,我们知道总价和米数也是两种什么样的量?为什么?

怎样变化?它们扩大、缩小的规律是怎样的?

教师板书:  (一定).

(四)抽象概括正比例的意义.

1.比较例1、例2,思考并讨论,这两个例子有什么共同点?

(1)例1中有路程和时间两种量;例2中有米数和总价两种量.即它们都有两种相关联的量;

(2)例1中时间变化,路程就随着变化;例2中米数变化,总价也随着变化.

教师板书:一种量变化,另一种量也随着变化.

(3)两种量中相对应的两个数的比值(也就是商)一定.

篇8:正、反比例的意义(人教版六年级教案设计)

教学目标

1.使学生理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例.

2.通过观察、比较、归纳,提高学生综合概括推理的能力.

3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.

教学重点

理解正反比例的意义,掌握正反比例的变化的规律.

教学难点

理解正反比例的意义,掌握正反比例的变化的规律.

教学过程

一、导入新课

(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

(二)教师提问

1.你为什么马上能想到还剩多少呢?

2.是不是因为吃了的和剩下的是两种相关联的量?

教师板书:两种相关联的量

(三)教师谈话

在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和

数量也是两种相关联的量.你还能举出一些例子吗?

二、新授教学

(一)成正比例的量

例1.一列火车行驶的时间和所行的路程如下表:

时间(时) 1 2 3 4 5 6 7 8 ……

路程(千米) 90 180 270 360 450 540 630 720 ……

1.写出路程和时间的比并计算比值.

(1)

(2)    2表示什么?180呢?比值呢?

(3)    这个比值表示什么意义?

(4)    360比5可以吗?为什么?

……

2.思考

(1)180千米对应的时间是多少?4小时对应的路程又是多少?

(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

教师板书:时间、路程、速度

(3)速度是怎样得到的?

教师板书:

(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.

3.小结:有什么规律?

教师板书:商不变

(二)成反比例的量

1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.

工效(个) 10 20 30 40 50 60 ……

时间(时) 60 30 20 15 12 10 ……

2.教师提问

(1)计算工效和时间的乘积.

(2)这一组题中涉及了几种量?谁与谁是相关联的量?

(3)请你举例说明谁与谁是相对应的两个数?

(4)在这一组题中两种相关联的量是如何变化的?(举例说明)

3.小结:有什么规律?(板书:积不变)

(三)不成比例的量

1.出示表格

运走的吨数 10 20 30 40

剩下的吨数 90 80 70 60

总吨数(和不变) 100 100 100 100

2.教师提问

(1)总吨数是怎样得到的?

(2)谁与谁是两种相关联的量?

(3)它们又是怎样变化的?变化的规律是什么?

运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变

(四)结合三组题观察、讨论、总结变化规律.

讨论题:

1.这三组题每组题中谁与谁是两种相关联的量?

2.在变化过程中,它们的异同点是什么?

共同点:都有两种相关联的量,一种量变化,另一量也随着变化

不同点:第一组商不变,第二组积不变,第三组和不变.

总结:

3.分别概括正、反比例的意义

4.强调第三组题中两种相关联的量叫做不成比例

5.教师提问

(1)两种量成正比例必须具备什么条件?

(2)两种量成反比例必须具备什么条件?

(五)字母关系式

三、巩固练习

判断下面各题是否成比例?成什么比例?

篇9:成反比例的量(人教版六年级教案设计)

教学目标

1.理解反比例的意义.

2.能根据反比例的意义,正确判断两种量是否成反比例.

3.培养学生的抽象概括能力和判断推理能力.

教学重点

引导学生理解反比例的意义.

教学难点

利用反比例的意义,正确判断两种量是否成反比例.

教学过程

一、复习准备(演示课件:成反比例的量)

1.下表中的两种量是不是成正比例?为什么?

购买练习的本数(本) 1 2 4 6 9

总价(元) 0.80 1.60 3.20 4.80 7.20

2.回忆:成正比例的量有什么特征?

二、新授教学

(一)引入新课

我们已经学习了常见数量关系中成正比例关系的量的特征.这节课我们继续研究常见的数量关系中的另外一种特征--成反比例的量.

教师板书:成反比例的量

(二)教学例4(演示课件:成反比例的量)

1.出示例4,提出观察思考要求:

从表中你发现了什么?这个表同复习的表相比,有什么不同?

(1)表中的两种量是每小时加工的数量和所需的加工时间.

教师板书:每小时加工数和加工时间

(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大.

教师追问:这是两种相关联的量吗?为什么?

(3)每两个相对应的数的乘积都是600.

2.这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?

教师板书:零件总数

每小时加工数×加工时间=零件总数

3.小结

通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的.

(三)教学例5(演示课件:成反比例的量)

1.出示例5,根据题意,学生口述填表.

2.教师提问:

(1)表中有哪两种量?是相关联的量吗?

教师板书:每本张数和装订本数

(2)装订的本数是怎样随着每本的张数变化的?

(3)表中的两种量有什么变化规律?

(四)比较例4和例5,概括反比例的意义.

1.请你比较例4和例5,它们有什么相同点?

(1)都有两种相关联的量.

(2)都是一种量变化,另一种量也随着变化.

(3)都是两种量中相对应的两个数的积一定.

2.教师小结

像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系.

3.如果用字母  和  表示两种相关联的量,用  表示它们的积一定,反比例关系可以用一个什么样的式子表示?

教师板书:  ×  =  (一定)

(五)教学例6(演示课件:成反比例的量)

1.出示例6,教师提问:

(1)每天播种的公顷数和要用的天数是不是相关联的量?

(2)每天播种的公顷数和要用的天数有什么关系?它们的积是什么?这个积一定吗?

(3)播种总公顷数一定,每天播种公顷数和要用的天数成反比例吗?为什么?

2.思考:播种的总公顷数一定,已经播种的公顷数和剩下的公顷数是不是成反比例?

三、课堂小结

这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例.在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断.

四、课堂练习

(一)判断下面每题中的两个量是不是成反比例,并说明理由.

1.路程一定,速度和时间.

2.小明从家到学校,每分走的速度和所需时间.

3.平行四边形面积一定,底和高.

4.小林做10道数学题,已做的题和没有做的题.

篇10:人教版六年级正比例练习题

(1)每时织布米数一定,织布的总米数和时间成正比例。

(2)人的年龄和身高成正比例。

(3)梨的单价一定,购买梨的总价和数量成正比。

(4)每次搬砖的块数一定,搬的总块数与搬的次数成正比例。

(5)三角形的面积一定,底和高成正比例。

人教版六年级正比例练习题三、判断两种量是不是成正比例 。

(1)苹果的单价一定,购买苹果的数量和总价.

(2)轮船行驶的速度一定,行驶的路程和时间.

(3)每小时织布米数一定,织布总米数和时间.

(4)小新跳高的高度和他的身高.

(5)正方形的面积和边长

(6)正方形的周长和边长

篇11:人教版六年级正比例练习题

第一题: A、B 、C 三种量的关系是: A×B = C 4 选择 1.把一根铁丝截成同样长的小段,截成的段数和每段的长 。

1.如果 A一定,那么 B和 C成( )比例;

2.如果 B一定,那么 A和C 成( )比例。 第二题:

如果Y=8X (Y ,X都不为0), X和 Y成( )比例.

篇12:六年级数学下册正比例和反比例单元测试

六年级数学下册正比例和反比例单元测试

一、轻松填一填。(每空2%,共18%)

1、1、比例尺=():(),

2、一幅平面地图上,图上距离4厘米表示实际距离80千米,这幅地图的比例尺是()。

3、A、B两地相距6千米,在比例尺是1:300000的地图上应画()厘米。

4、比例尺800:1表示图上距离是实际距离的()倍。

5、一个零件长8毫米,画在设计图上是16厘米,这幅设计图的比例尺是()。

6、用边长是2分米的方砖铺地需要3000块,改用边长是5分米的方砖铺地,要用()块。

7、在A×B=C中,当B一定时,A和C成( )比例,当C一定时,A和B成( )比例。

8、一幅图的比例尺是。A、B两地相距320km,画在这幅图上应是()cm。

9、六年级同学排队做广播操,每行人数和排成的行数成()比例;出油率一定,花生油的质量和花生的质量,成()比例;3x=y,x和y成()比例;实际距离一定,图上距离和比例尺成()比例。

二、判断如下情形成“正”比例、“反”比例或“不成”比例。(每空1%,共16%)

1、教室的面积一定,某班学生人数与人均占地面积成( )比例。

2、《鹤壁日报》定价一定,订阅份数和所需要的总钱数成( )比例。

3、大豆油的总质量一定,大豆的千克数和出油率成( )比例。

4、圆的半径和周长成( )比例。

5、长方形的周长一定,长和宽( )比例。

6、一袋面粉食用去的数量和剩下的数量( )比例。

7、长度一定的铁丝平均分成若干段,每段长度和截的段数成( )比例。

8、如果y=5x,那么x和y成( )比例。

9、购置电脑的总价一定,电脑单价和数量成()比例。

10、电脑的单价一定,购置电脑的数量和总价成()比例。

11、一个人的年龄和身高成()比例。

12、圆锥的体积和底面积成()比例。

13、工作总量一定,工作效率和工作时间成()比例。

14、在一定的时间里,制造零件的个数与制造一个零件所需要的时间成()比例。

15、从兰州到北京,火车所行的时间与速度成()比例。

16、长方体的底面积一定,体积和高成()比例。

三、选择。(每空2%,共8%)

1、如果甲数=乙数÷5,那么甲数和乙数()。

A、成正比例B、成反比例C、不成比例

2、一个正数和它的倒数成()。

A、正比例B、反比例C、不成比例

3、一个长方形的面积是12平方厘米,按1:4的比例尺放大后它的面积是()。

A、48平方厘米B、96平方厘米C、192平方厘米

4、下面数量关系中()能构成正比例,()能构成反比例。

A、路程÷速度=时间(一定)B、总价=单价×数量C、K=2

D、A×B=C(一定)E、A+B=C(一定)

四、数学与生活。(40%)

1、在比例尺是1:000的地图上,甲市到乙市的距离是3.6厘米。汽车以每小时30千米的速度从甲市到达乙市要用几小时?(8%)

2、在比例尺是1:500000的地图上,测得南京与上海的距离是6厘米,在另一幅比例尺是1:400000的.地图上,南京与上海的距离应是多少厘米?(8%)

3、在同一张地图上,量得甲乙两地的图上距离是40厘米,乙丙两地的距离是50厘米,已知甲乙两地的实际距离是8千米,乙丙两地的实际距离是多少千米?(8%)

4、在一幅比例尺为1:500的平面图上量得一间长方形教室的长是3厘米,宽是2厘米。这间教室的实际面积是多少平方米?(8%)

5、某张平面示意图的比例尺是1:8000,

(1)3200米的长的马路在图上应是多长?(4%)

(2)一个长方形居民小区在图上长1厘米、宽0.5厘米,它的实际占地面积是多少平方米?(4%)

五、操作题。(18分)

(一)(6%)

1、学校离中心广场有()千米。

2、淘气的家在中心广场南偏西30°北

方向、离中心广场8千米的地方,

请你画出淘气家的所在位置。

3、淘气每分钟走80米,他从家出

发到中心广场然后到了学校大约用

()分钟。

(二)淘气和笑笑分别从AB两地相向而行,淘气每分行70米,笑笑每分行80米,几分钟相遇?(先测量,再计算,比例尺是1U45000)(6%)

(三)下表为购买笔记本时数量与总价的表格统计。(6%)

数量/本01234567…

总价/元01.53

(1)将表格补充完整,根据表中的数据,在图中描点再顺次连接。

(2)哪个量没变?数量和总价之间成什么比例?

(3)从图中可以看出,如果买9本笔记本,需要多少元钱?

篇13:六年级数学正比例与反比例练习题

六年级数学正比例与反比例练习题

一、复习

1、什么是正比例?用字母怎样表示?也就是怎样才成正比例?

2、什么是反比例,用字母怎样表示?也就是怎样才成反比例?

二、练习

1.判断下面每题中的三个量成什么比例?h

(1)速度、路程和时间(2)工作总量、工作效率和工作时间

(3)单价、总价和数量(4)平行四边形的面积、底和高

(5)出示“练一练”第5题

2.下列各题中的两种量是不是成比例,成什么比例,并说明理由。

(1)买相同的电脑,购买的电脑台数与总价=单价(一定),正比例

(2)每捆练习本的本数相同,练习本的总本数与捆数=每捆练习本的本数(一定),正比例

(3)总路程一定,已行的路程与未行的路程(是和关系,不是积或比值关系)

(4)分数值一定,分数的分子与分母=比值(一定),正比例

(5)长方形的长一定,它的面积和宽不成比例

(6)长方体的`体积一定,底面积和高底面积×高=体积(一定),反比例

(7)一本书的总页数一定,看的天数与平均每天看的页数

看的天数×平均每天看的页数=一本书的总页数(一定)反比例

(8)圆的周长和直径=∏(一定)正比例

(9)订阅《扬子晚报》,订的份数与总价=单价(一定)正比例

(10)图上距离一定,实际距离与比例尺实际距离×比例尺=图上距离(一定),反比例

(11)小麦的出粉率一定,小麦的质量与面粉的质量不成比例

(12)六(1)班同学做操,每排站的人数与排数每排人数×排数=总人数(一定)(六(1)班人数一定)

三、用正反比例解决问题。

1、光辉服装厂4天加工服装160套,照这样计算,生产360套服装,需要多少天?

2、化肥厂有一批煤,每天用12吨,可用40天。如果这批煤要用60天,每天只能用多少吨?

3、修路队3天修路150米,照这样的速度,再修10天,又修多少米?

4、一辆汽车从甲城开往乙城,每小时行45千米,5小时到达。返回时,每小时行驶50千米,几小时回到甲城?

5、一间房子,用面积是16平方分米的方砖铺地,需要54块。如果改用面积是9平方分米的方砖,需要多少块?

7、用同样的砖铺地,铺18平方米要用砖618块。如果铺24平方米,要用砖多少块?

篇14:六年级数学正比例和反比例练习题介绍

六年级数学正比例和反比例练习题介绍

1、想一想,填一填。(20分)

(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种中相对应的两个数的比值一定,这两种量叫做,它们的关系叫()。

(2)如果用字母x和y表示两种相关联的量,用k表示它们的积(一定),反比例关系可以表示为()。

(3)xy=15,x和y成()比例。

(4)x÷y=5,那么x与y成()比例。

(5)甲数与乙数互为倒数,甲数和乙数成()比例。

2、下列各题中的`两种量是不是成比例,成什么比例。(20分)

(1)汽车的速度一定时,行驶的路程和时间。()

(2)总产量一定,每公顷产量和播种的公顷数。()

(3)一个人的年龄和他的身高。()

(4)购买同种铅笔的数量和总价。()

(5)和一定时,一个加数和另一个加数。()

3、对号入座(将正确答案的序号填在括号内)。(24分)

(1)用同样的砖铺地,铺36平方米要用1236块,铺90平方米要用多少块砖?这道题里的()是一定的。

A.总面积B.每块砖的面积

C.砖的总块数

(2)下面两种量成正比例的是()。

A.分数值一定,分数的分子和分母

B.利息一定,利率和本金

C.长方体的体积一定,底面积和高

(3)在一定的时间里,做一个零件所用的时间与所做零件的个数()。

A.成正比例B.成反比例

C.不成比例

篇15: 《正比例和反比例》教后反思

最近两节课教了正、反比例的有关知识,学生的学习效果不太令人满意,总感觉有这样那样的不足,比如:学生对概念的理解还不是那么深刻;对正、反比例的判断方法掌握得还不够到位等等。其实我深知本课学习内容比较抽象,怎样让这些抽象的概念知识形象化,教学中我注重了强化学生的体验感知,我从多个学生耳熟能详的生活实例入手,让学生充分感悟所学的数学概念。随后还进行了大量的`层次不同的练习。

教学效果与以往相比是有了明显的提高,但总感觉还是那么不太令人满意。练习中学生对两种正反比例的量判断还不是那么熟练,特别是像有时两种相关联的量并不成比例,如人的身高和年龄;圆的面积和半径等等。学生判断时就会犯经验主义的错误,正比例、反比例张冠李戴。反映出学生对概念的掌握还不是那么清晰。

所以我感觉对于这样比较抽象的概念课,今后的教学中我们应该如何突破?如何进一步提高课堂效益,消除学生的认识误区,值得我们好好深思。

篇16:数学教案-正比例和反比例的比较

正比例

反比例

相同点

1.都有两种相关联的量.

2.一种量随着另一种量变化.

不同点

1.变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小.

2.相对应的`每两个数的比值(商)是一定的.

1.变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大).

2.相对应的每两个数的积是一定的.

探究活动

灵活判断

活动目的

1.理解正反比例的意义.

2.能根据正反比例的意义,正确判断两种量是否成比例,成什么比例.

活动过程

1.教师出示思考题目:

(1)正方形的边长和面积是否成比例?

(2)圆的面积和半径是否成比例?

2.学生分小组讨论.

3.学生分小组汇报讨论结果.

4.师生共同小结并总结规律.

篇17:《正比例和反比例》教学反思

数学来源于生活, 又服务于生活, 联系生活实际创设问题情境, 是新课标精神的体现。教学中, 我从创设生活数学问题入手, 进入新课学习, 在学生掌握新知的基础上, 又回到问题情境的他讪, 同时还提供一个理具有综合性、开放性的题目: “你能举出一个正比例或反比例的例子吗? 为什么? ”在学生能准确由A X B = C 表示三量之间的比例关系后, 我又设计了这样一个环节: 请同学自己举一些生活中较熟悉的三量关系, 说说它们之间存怎样的关系, 再次回归生活, 让学生体验教学的价值, 这也是新课程教学理念――人人学有价值的数学。

教学中, 我尊重学生的的个性差异, 尊重学生的学习成果。如: 在学生知道了正、反比例的意义、关系式后, 我提出: “用你喜欢的方式喜欢的方式表示正、反比例的联系和区别。”既注重了科学学习方法的渗透, 又尊重了学生的个性发展和学习成果。

练习与提高部分, 我打破了老师出示题目――自己完成――集体订正的模式, 而是通过练习型课件, 让学生自己判断正确性, 既充分挖掘各省市毕业会考试题这一课题资源, 又通过“你真棒”、“你太聪明了”、“有点马虎哟”、“要加把劲呀”、“要仔细呀”等鼓励性的“语言”, 更大限度的激发学生的参与热情, 让不同的学生有不同层次的收获与提高。

【正比例和反比例的比较(人教版六年级教案设计)】相关文章:

1.数学教案-正比例和反比例的比较

2.六年级数学正比例和反比例练习题介绍

3.《正比例反比例》教案

4.六年级数学正比例和反比例同步的练习试题

5.人教版六年级正比例教学设计

6.《正比例函数》教案设计

7.分数乘、除法应用题比较(人教版六年级教案设计)

8.比和比例2(人教版六年级教案设计)

9.人教版正比例教学设计

10.正比例和反比例与练习教案教学设计(苏教国标版六年级下册)

下载word文档
《正比例和反比例的比较(人教版六年级教案设计).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部