欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 实用文>一次方程组的应用 第三课时

一次方程组的应用 第三课时

2023-05-05 08:40:56 收藏本文 下载本文

“日落回收机”通过精心收集,向本站投稿了9篇一次方程组的应用 第三课时,下面就是小编给大家带来的一次方程组的应用 第三课时,希望能帮助到大家!

一次方程组的应用 第三课时

篇1:一次方程组的应用 第三课时

一次方程组的应用 第三课时

(第三课时)

一、素质教育目标

(一)知识教学点

1.会列出三元一次方程组解简单的应用题.

2.会用待定系数法解题.

(二)能力训练点

培养学生分析问题、解决问题的能力.

(三)德育渗透点

1.使学生进一步了解代数方法的优越性、实用性.

2.渗透特定系数法这一重要的思想方法.

3.了解我国古数学的光辉成就.

(四)美育渗透点

学习列三元一次方程组及用待定系数法解题,渗透解题的简捷性与奇异的数学美.

二、学法引导

1.教学方法:讲解法、谈话法、师生共同分析、发现问题.

2.学生学法:列三元一次方程组解应用题的关键在于迅速寻找出三个相等关系,故尖增强分析问题的能力.

三、重点・难点・疑点及解决办法

(一)重点

1.根据简单应用题的题意列出三元一次方程组.

2.用待定系数法解题的方法.

(二)难点

正确找出表示应用题全部含义的三个相等关系,并把它们表示成三个方程.

(三)疑点

如何正确地寻找相等关系.

(四)解决办法

反复读题、审题,用简洁的语言概括出相等关系.

四、课时安排

一课时

五、教具学具准备

投影仪或电脑、自制胶片.

六、师生互动活动设计

1.通过提问,复习列二元一次方程组解应用题的步骤.

2.通过例6的审题,让学生分析出如何求三种球的相等关系.教师规范板书过程以便学生的模仿.

3.通过反馈练习,强化对列三元一次方程组解应用题的训练,以便能掌握相关的一些变式训练.

七、教学步骤

(一)明确目标

本节课主要学习列三元一次方程组解应用题.

(二)整体感知

列三元一次方程组解应用题的关键在于寻找出正确的相等关系,因而应仔细审题,合理分析,以达迅速求解的目的.

(三)教学过程

1.开门见山,导入新课

前面,我们学习了列二元一次方程组解应用题,哪位同学能简单说一下列二元一次方程组解应用题的步骤?

(设、找、列、解、答)

实际上,有的应用题中未知数的个数不只两个,这节课,我们来学习三元一次方程组的应用.

2.探索新知,讲授新课

例6  学校的篮球数比排球数的2倍少3个,足球数与排球数的'比是2:3,三种球共41个,求三种球各有多少?

题中有几个未知数?要找到几个相等关系?用简洁的语言概括相等关系.

学生活动:分析、思考、回答老师的问题;有三个未知数、三个相等关系.

相等关系:(1)篮球数=2×排球数-3

(2)足球数:排球数=2:3即:2×排球数=3×足球数

(3)三种球数的和=总球数

学生活动:根据刚才的分析解答例1,一个学生板演.

解:设篮球有 个,排球有 个,足球有 个,根据题意

①代入③,得 ④

由④,得⑤

把⑤代入②,得

把 分别代入①、⑤,得

答:篮球有21个,排球有12个,足球有8个.

强调:(1)解方程组的过程可以写在练习本上.

(2)得到结果检验是否正确、合理.

【教法说明】例6采用与二元一次方程组类似的方法进行分析,学生接受不会感到困难.通过比较,可使学生进一步了解代数方法的优越性.

尝试反馈:P38 1、2.两个学生板演.

3.变式训练,培养能力

P41  17.在公式 中,当 时, ;当 时, ,求当 时, 的值.

【教法说明】教师首先介绍这个公式的实际意义,再启发学生根据已知条件先求待定系数 、,然后把 代入,求 .

(四)总结、扩展

列三元一次方程组解应用题的步骤、关键是什么?

八、布置作业

(一)必做题:P40~P41 14,16.

(二)选做题:P41 B组1,4.

(三)思考题:课本第42页“想一想”

(四)复习本章内容

参考答案

略.

九、板书设计

5.5  一次方程组的应用(三)

例5

变式

练习

十、背景知识与课外阅读

一个水池装有甲、乙进水管和丙出水管,若打开甲管4小时,乙管2小时和丙管2小时,则水池中余水5吨;若打开甲管2小时,乙管3小时,丙管1小时,则池中余水1吨,求打开甲管22小时,乙管5小时,丙管11小时,池中余水多少吨?

分析和解:设甲、乙、丙三管每小时的流水量分别为 吨,依题意得

通过观察分析方程组的特有形式,可用独特的整体相乘,整体相减法求解

①×7-②×3得

篇2:数学教案-一次方程组的应用 第三课时第三课时

数学教案-一次方程组的应用 第三课时(第三课时)

(第三课时)

一、素质教育目标

(一)知识教学点

1.会列出三元一次方程组解简单的应用题.

2.会用待定系数法解题.

(二)能力训练点

培养学生分析问题、解决问题的能力.

(三)德育渗透点

1.使学生进一步了解代数方法的优越性、实用性.

2.渗透特定系数法这一重要的思想方法.

3.了解我国古数学的光辉成就.

(四)美育渗透点

学习列三元一次方程组及用待定系数法解题,渗透解题的简捷性与奇异的数学美.

二、学法引导

1.教学方法:讲解法、谈话法、师生共同分析、发现问题.

2.学生学法:列三元一次方程组解应用题的关键在于迅速寻找出三个相等关系,故尖增强分析问题的能力.

三、重点·难点·疑点及解决办法

(一)重点

1.根据简单应用题的题意列出三元一次方程组.

2.用待定系数法解题的方法.

(二)难点

正确找出表示应用题全部含义的三个相等关系,并把它们表示成三个方程.

(三)疑点

如何正确地寻找相等关系.

(四)解决办法

反复读题、审题,用简洁的语言概括出相等关系.

四、课时安排

一课时

五、教具学具准备

投影仪或电脑、自制胶片.

六、师生互动活动设计

1.通过提问,复习列二元一次方程组解应用题的步骤.

2.通过例6的审题,让学生分析出如何求三种球的相等关系.教师规范板书过程以便学生的模仿.

3.通过反馈练习,强化对列三元一次方程组解应用题的训练,以便能掌握相关的一些变式训练.

七、教学步骤

(一)明确目标

本节课主要学习列三元一次方程组解应用题.

(二)整体感知

列三元一次方程组解应用题的关键在于寻找出正确的相等关系,因而应仔细审题,合理分析,以达迅速求解的目的.

(三)教学过程()

1.开门见山,导入新课

前面,我们学习了列二元一次方程组解应用题,哪位同学能简单说一下列二元一次方程组解应用题的步骤?

(设、找、列、解、答)

实际上,有的应用题中未知数的个数不只两个,这节课,我们来学习三元一次方程组的应用.

2.探索新知,讲授新课

例6  学校的篮球数比排球数的2倍少3个,足球数与排球数的比是2:3,三种球共41个,求三种球各有多少?

题中有几个未知数?要找到几个相等关系?用简洁的语言概括相等关系.

学生活动:分析、思考、回答老师的问题;有三个未知数、三个相等关系.

相等关系:(1)篮球数=2×排球数-3

(2)足球数:排球数=2:3即:2×排球数=3×足球数

(3)三种球数的`和=总球数

学生活动:根据刚才的分析解答例1,一个学生板演.

解:设篮球有 个,排球有 个,足球有 个,根据题意

①代入③,得 ④

由④,得⑤

把⑤代入②,得

把 分别代入①、⑤,得

答:篮球有21个,排球有12个,足球有8个.

强调:(1)解方程组的过程可以写在练习本上.

(2)得到结果检验是否正确、合理.

【教法说明】例6采用与二元一次方程组类似的方法进行分析,学生接受不会感到困难.通过比较,可使学生进一步了解代数方法的优越性.

尝试反馈:P38 1、2.两个学生板演.

3.变式训练,培养能力

P41  17.在公式 中,当 时, ;当 时, ,求当 时, 的值.

【教法说明】教师首先介绍这个公式的实际意义,再启发学生根据已知条件先求待定系数 、,然后把 代入,求 .

(四)总结、扩展

列三元一次方程组解应用题的步骤、关键是什么?

八、布置作业

(一)必做题:P40~P41 14,16.

(二)选做题:P41 B组1,4.

(三)思考题:课本第42页“想一想”

(四)复习本章内容

参考答案

略.

九、板书设计

5.5  一次方程组的应用(三)

例5

变式

练习

十、背景知识与课外阅读

一个水池装有甲、乙进水管和丙出水管,若打开甲管4小时,乙管2小时和丙管2小时,则水池中余水5吨;若打开甲管2小时,乙管3小时,丙管1小时,则池中余水1吨,求打开甲管22小时,乙管5小时,丙管11小时,池中余水多少吨?

分析和解:设甲、乙、丙三管每小时的流水量分别为 吨,依题意得

通过观察分析方程组的特有形式,可用独特的整体相乘,整体相减法求解

①×7-②×3得

篇3:一次方程组的应用4

一次方程组的应用(4)

 教  师王命勇学  科数学年  段初一年  课  题一次方程组的应用(4)时  间  年  月  日    教学目标使学生会掌握待定系数法,并能运用解题  教学重点待定系数法  教学难点解方程组  教学步骤(体现教学内容、教学问题设计、时间安排、板书设计、作业布置和预习等)教学方法教学手段学法指导  一、复习1、什么是方程?2、什么是方程的解?二、新课学习(一)启发指导1、y=ax2+bx+c是不是方程,如是,它是怎样的方程?什么是未知数?什么是系数?2、对于这个方程,如果当x=-1时,y=3,它是什么意思?3、对于系数a、b、c能不能求出,若能求出要几个条件?(二)学生思考、讨论(三)小结、归纳学生的意见1、可以明确y=ax2+bx+c是一个二元二次方程,未知数是x、y;系数是a、b、c;2、当x=-1,y=3时,也就是x=-1y=3要满足这个等式(方程)即:  3=a-b+c3、从2式可以看出此时的系数a、b、c都是未知即2式是一个三元一次方程,我们可知三个未知数,需要一个三元一次方程组才可解出,即还需两组x与y的值;   教  学  步  骤教学方法教学手段4、现在再加上两条件:x=2,y=3;x=5,y=60,同学们思考下,现在能否求出a、b、c,如能怎么求?现在我们来看一下完整的解题过程在以往的作业中,我们做的都是解方程,即先给出一已知的方程(当然此时的'系数是已知的)去求未知数的值,而这道题目,却是相反过来,给出一方程系数是未知的,而是给出x、y的值,要我们通过方程的解(结果)来求系数,这种方法,我们称之为待定系数法,它在数学上是一个很重要也是很常用的一种解题方法,而且在今后大家在理、化的学习上也是很常用的。练习:P36   2小结:本节课我们学习了待定系数法,它的特征是对于一个方程,它的系数是未知的是待求的,而它的解却是已知的,此时,只要把已知的一组(个)值代回原等式,即可。作业:P39  17、18、19 教 学 随 笔  

篇4:应用二元一次方程组练习题

应用二元一次方程组练习题

1.以下方程中,是二元一次方程的是

A.8x-y=yB.xy=3

C.3x+2yD.y=3

(1)66x+17y=39672

5x+y=1200答案:x=48y=47

1.贰元与伍元纸币共25张,共80元,那么贰元与伍元各________张.

2.在代数式ax+by中,当x=5,y=2时,它的.值是7;当x=8,y=5时,它的值是4,则a=_______,b=_________.应用二元一次方程组—鸡兔同笼

1.已知甲数的60%加乙数的80%等于这两个数和的72%,若设甲数为x,乙数为y,则下列各方程中符合题意的是().

A.60%x+80%y=x+72%yB.60%x+80%y=60%x+y

C.60%x+80%y=72%(x+y)D.60%x+80%y=x+y

篇5:一次方程组的应用4

教  师王命勇学  科数学年  段初一年  课  题一次方程组的应用(4)时  间  年  月  日    教学目标 使学生会掌握待定系数法,并能运用解题  教学重点待定系数法  教学难点 解方程组  教学步骤 (体现教学内容、教学问题设计、时间安排、板书设计 、作业 布置和预习等)教学方法教学手段学法指导  一、复习1、什么是方程?2、什么是方程的解?二、新课学习(一)启发指导1、y=ax2+bx+c是不是方程,如是,它是怎样的方程?什么是未知数?什么是系数?2、对于这个方程,如果当x=-1时,y=3,它是什么意思?3、对于系数a、b、c能不能求出,若能求出要几个条件?(二)学生思考、讨论(三)小结、归纳学生的意见1、可以明确y=ax2+bx+c是一个二元二次方程,未知数是x、y;系数是a、b、c;2、当x=-1,y=3时,也就是x=-1y=3要满足这个等式(方程)即:  3=a-b+c3、从2式可以看出此时的系数a、b、c都是未知即2式是一个三元一次方程,我们可知三个未知数,需要一个三元一次方程组才可解出,即还需两组x与y的值;   教  学  步  骤教学方法教学手段4、现在再加上两条件:x=2,y=3;x=5,y=60,同学们思考下,现在能否求出a、b、c,如能怎么求?现在我们来看一下完整的解题过程在以往的作业 中,我们做的都是解方程,即先给出一已知的方程(当然此时的系数是已知的)去求未知数的值,而这道题目,却是相反过来,给出一方程系数是未知的',而是给出x、y的值,要我们通过方程的解(结果)来求系数,这种方法,我们称之为待定系数法,它在数学上是一个很重要也是很常用的一种解题方法,而且在今后大家在理、化的学习上也是很常用的。练习:P36   2小结:本节课我们学习了待定系数法,它的特征是对于一个方程,它的系数是未知的是待求的,而它的解却是已知的,此时,只要把已知的一组(个)值代回原等式,即可。作业 :P39  17、18、19 教 学 随 笔

篇6:二元一次方程组及应用的说课稿

一、说教学设计的理念

1、树立“以人为本,人人都学有价值的数学,不同的人在数学上得到不同的发展”的理念。

2、通过动手实验、合作交流培养学生自主探索,寻找结论的学习意识。

3、通过本节课教学,加强对学生思维方法的训练,增强小组合作意识

二、说教学内容的重组加工

1、学生分析

认知起点,学生已初步掌握了本章知识,他们已经能比较熟练得求出二元一次方程组的解,知道用二元一次方程组表示等量关系。七年级学生活泼好动,乐于展示、表现自我,求知欲较强,他们的逻辑思维以开始处于优势地位,

2、教材分析

本章知识是在学习了一元一次方程即应用后的又一种重要的用来表示数量关系的数学模型,用它解决某些实际问题比用一元一次方程更简捷,但在解法上他们又存在着相互转化的关系,在这节的教学中不仅要让学生充分认识到消元这种思想方法的重要性,更重要的是让他们进一步体会知识的形成过程,提高他们能准确选择模型解决问题的能力。

3、教学重点、难点分析

难点:已知一组解,如何构造二元一次方程组使解相同

重点:解二元一次方程组

4、教学目标

(1)知识与技能:

进一步体会列二元一次方程组解决实际问题的优越性,熟练用消元法解二元一次方程组

(2)过程与方法:

通过自主探索过程,培养对数学的感情,培养分析问题能力及从实际问题中抽象出数学模型的能力,学会与人合作,交流自己的方法意见。向终身学习型人才发展。

(3)情感与态度:

引导学生探索发现,培养学生主动探索,乐于合作交流的品质和素养,让学生先猜测再动手实践加以验证,懂得实践是检验真理的唯一标准的道理。鼓励学生有自己独特见解,培养学生的创新品质。

5、教学方法分析

本节课采用“探究、讨论、发现”的方法。因为它符合本节课教学内容的特点,从学生年龄来说讨论法虽然更适合于高年级的学生,但这是一节复习课,我认为复习应该是知识的整合和提高的过程,因此也可以。

三、说教学过程及反思

我的教学过程可分为三个环节一、探索只用二元一次方程也能解决实际问题,但答案不唯一。二、探索要使一的问题答案是唯一的,那么在刚才的基础上应该再添加一个,关于这两个未知数的关系的条件,然后才能列出二元一次方程组解出唯一答案。这个环节是难点。这样设计的目的是通过过程探索加深学生对二元一次方程组的解的理解,即它是两个方程的公共解,同时与列一元一次方程形成对比,即需要两个条件才能得出唯一答案。再者通过对一个问题实施两种列法,一种解法,也体现了二元与一元之间的.转化思想。第三个过程是解方程组训练消元法的应用。目的让学生进一步熟炼消元这种数学方法,同时使知识形成一个完整的体系。

我对自己的设计思路比较满意,因为我一直以为学数学就是领悟数学思想方法,训练思维,提高推理分析的能力。在平时的教学中我一直比较注重发散思维的训练,和逆向思维的训练,注重引导学生从多个角度两个方向分析问题。引导学生在课堂活动中感悟知识的生成、发展与变化过程。

我的课领导们已经听了过程就不再赘述。下面我按照教学环节把我这节课分析一下;

一采用刘三姐对歌引入,切近生活,激发兴趣,引起学生注意。提出问题后,学生受定向思维影响,认为答案是唯一的,这种情况下我用提问的方式激发学生思考,如我问一个男孩的困惑在那里,然后给与合理提示,使他们继续讨论得出答案。缺点:备学生不充分,以致引题较难,脱离育才学生实际,今后应注意开讲很重要但要注意所选问题的难易程度。

二突破难点仍然采用讨论法,期间部分学生思维受阻,我请一名同学解释了他的解题过程,又加以适当引导和鼓励,使讨论达到高潮。优点是能鼓励学生用实验的办法寻求解题思路,引导他们通过对比的方法发现二元一次方程组和一元一次方程之间的联系,在考虑到时间不够用的情况下,仍然坚持让学生继续展开讨论,上黑板展示自己的劳动成果,并且我认为,通过这节课的训练这些孩子肯定会喜欢上讨论交流这种形式的,通过这节课教学使他们已经完成了一个从羞于讨论到开始讨论的过程。我在巡视的过程中发现了这种微妙的变化我很高兴。缺点是:引导方向不够明确,浪费了学生的时间。

数学是一门精确的学问,不允许教师含糊其辞,不允许让学生猜你要表达什么意思,如:我在第一个问题解决了以后,问孩子们:你们能不能添上一个条件使分法是唯一的呢/实际上这个问法对这些孩子来说还是跳跃性太大,致使他们再次陷入迷惘,我想如果我这样处理是不是更好一些:老师在黑板上把同学们刚才回答的几组解列出来,然后让他们观察每一组解之间的关系,再添条件构造方程。给我的教训是向学生提问不是一件轻而易举的事情,要问得新奇,问得有趣,问得巧妙,问得具有启发性,问得难而有度,问得高而可攀,就非得是前做好充分准备,精心构思不可。学生的时间是宝贵的,因此我要学会提出一个真正称得上是问题的问题。今后备课我应该认真考虑到各个环节,做好各种准备工作。

三解方程组 因为时间不够用处理非常仓促我原本的意图是想通过对比让他们体会代入消元源自于实际问题。因为这章知识点是解在前用在后

而我复习的时候把它倒过来也是这个原因。我组织他们讨论解方程组时经常出现的哪些错误,这样能使学生在轻松的过程里接受这些错误从进而改正他们。另外这节课还存在两个问题:小组活动单一化小组,活动结束后应该让他们充分展示自己的劳动成果,增加成就感。小组合作意识不强列,回答问题不积极,原因之一是他们的表达能力根本跟不上,我在巡视时有许多孩子跟我说老师我不知道该怎么说。所以我认为这种自主探究,合作交流的教学形式应该继续搞下去,孩子的表达能力继续锻炼。

大家都知道凯慕柏莉奥立佛近日当选为—年美国年度教师这在美国是一项殊高的荣誉。他曾经说:“好老师不必是那些上出成功课或教出得分最高班的老师。好老师是那些有能力去反思一堂课理解什么是对了什么是错了寻找策略让下次更好的教师。

以上是我对我的授课过程的分析,有不当之处恳请各位领导批评指正。

篇7:二元一次方程组及其应用教学总结

在2月21日的xx区教学常规互检协调会上,作为课改核心校的我们,向其他兄弟学校的教务主任和分管教学的副校长提出:教学开放周举行校际间同课异构的设想,这一个设想得到了大家的一致赞同,并在xx中学的课堂开放周中开始实行,在这次活动中,我校两个xx市校际组成员安排到xx中学进行授课,我是其中之一。

在接到这个任务时,我就先向xx中学的同课异构教师——xx老师了解他们的教学进度及学生的学习情况,得知该校学生的整体数学基础比较低。针对这一种情况,我采取导学案的形式来进行总复习,围绕着二元一次方程组解法及其应用展开,首先,我通过二元一次方程、二元一次方程组、方程组的解、二元一次方程组的解题方法的类型、解应用题的步骤等概念入手,帮助学生回顾旧知识。然后,通过两道二元一次方程组的解法让学生进行练习,再来,利用方程组的同解原理,了解二元一次方程组解的意义,最后,我引出XX年中考的那道数学应用题,让学生及时与中考题目进行对接,提高学生的实际解题能力。

在上完课之后,我与xx中学的数学教研组一起进行教研交流,首先,xx中学的同行们非常赞同我的教学设计及教学思路,觉得这样的教学设计学生很容易掌握,思路很清晰。但是,在帮助学生回顾旧知识的时间花得太多,导致后面的综合题没办法展开,应该淡化概念的'教学,强调学生的实际应用能力,同时,也应该通过二元一次方程组的一题多解的形式让学生选择方程组两种解法来比较出方法的优劣,提高学生对于“代入消元法”和“加减消元法”的选择依据。

听了xx中学同行们的建议之后,我也自己反思了一下,觉得现在作为初三年的总复习,应该重视的是学生的理解能力和综合应用能力的提升,而不是纠结于概念的记忆,作为概念的东西只要让学生了解就可以了,重点应放在应用题的分析以及对于二元一次方程组与一次函数之间的关系上,提高学生的综合水平和应用能力。

篇8:二元一次方程组

教学建议

一、重点、难点分析

本节教学的重点是使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解.难点是了解二元一次方程组的解的含义.这里困难在于从1个数值变成了2个数值,而且这2个数值合在一起,才算作二元一次方程组的解.用大括号来表示二元一次方程组的解,可以使学生从形式上克服理解的困难;而讲清问题中已含有两个互相联系着的未知数,把它们的值都写出来才是问题的解答.这是克服这一难点的关键所在.

二、知识结构

本小节通过求两个未知数的实际问题,先应用学生以学过的一元一次方程知识去解决,然后尝试设两个未知数,根据题目中的两个条件列出两个方程,从而引入二元一次方程、二元一次方程组(用描述的语言)以及二元一次方程组的解等概念.

三、教法建议

1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念.

2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组.

3.通过二元一次方程组的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题.

4.为了减少学习上的困难,使学生学到最基本、最实用的知识,教学中不宜介绍相依方程组如

和矛盾方程组如

等概念,也不要使方程组中任何一个方程的未知数的系数全部为0(因为这种数学中的特例较少实际意义)当然,作为特例,出现类似

之类的二元一次方程组是可以的,这时可以告诉学生,方程(1)中未知数 的系数为0,方程(1)也看作一个二元一次方程.

教学设计示例

一、素质教育目标

(-)知识教学点

1.了解二元一次方程、二元一次方程组和它的解的概念.

2.会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数的形式.

3.会检验一对数值是不是某个二元一次方程组的解.

(二)能力训练点

培养学生分析问题、解决问题的能力和计算能力.

(三)德育渗透点

培养学生严格认真的学习态度.

(四)美育渗透点

通过本节的学习,渗透方程组的解必须满足方程组中的每一个方程恒等的数学美,激发学生探究数学奥秘的兴趣和激情.

二、学法引导

1.教学方法:讨论法、练习法、尝试指导法.

2.学生学法:理解二元一次方程和二元一次方程组及其解的概念,并对比方程及其解的概念,以强化对概念的辨析;同时规范检验方程组的解的书写过程,为今后的学习打下良好的数学基础.

三、重点・难点・疑点及解决办法

(-)重点

使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解.

(二)难点

篇9:二元一次方程组

(三)疑点及解决办法

检验一对未知数的值是否为某个二元一次方程组的解必须同时满足方程组的两个方程,这是本节课的疑点.在教学中只要通过多举一系列的反例来说明,就可以辨析解决好该问题了.

四、课时安排

一课时.

五、教具学具准备

电脑或投影仪、自制胶片.

六、师生互动活动设计

1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念.

2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组.

3.通过二元一次方程组的.解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题.

七、教学步骤

(-)明确目标

本节课的教学目标为理解二元一次方程及二元一次方程组的概念并会判断一对未知数的值是否为二元一次方程组的解.

(二)整体感知

由复习方程及其解,导入二元一次方程及二元一次方程组的概念,并会判断它们;同时学会用一个未知数表达另一个未知数为今后的解方程组埋下伏笔;最后学会检验二元一次方程组解的问题.

(三)教学过程

1.创设情境、复习导入

(1)什么叫方程?什么叫方程的解和解方程?你能举一个一元一次方程的例子吗?

回答老师提出的问题并自由举例.

【教法说明】提此问题,可使学生头脑中再现有关一元一次方程的知识,为学习二元一次方程做铺垫.

(2)列一元一次方程求解.

香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?

学生活动:思考,设未知数,回答.

设买了香蕉 千克,那么苹果买了 千克,

根据题意,得

解这个方程,得

答:小华买了香蕉3千克,苹果6千克.

上面的问题中,要求的是两个数,能不能同时设两个未知数呢?

设买了香蕉 千克,买了苹果 千克,根据题意可得两个方程

观察以上两个方程是否为一元一次方程,如果不是,那么这两个方程有什么共同特点?

观察、讨论、举手发言,总结两个方程的共同特点.

方程里含有两个未知数,并且未知项的次数是1,像这样的方程,叫做二元一次方程.

这节课,我们就开始学习与二元一次方程密切相关的知识―二元一次方程组.

【教法说明】学生自己归纳总结出方程的特点之后给出二元一次方程的概念,比直接定义印象会更深刻,有助于对概念的理解.

2.探索新知,讲授新课

(1)关于二元一次方程的教学.

我们已经知道了什么是二元一次方程,下面完成练习.

练习一

判断下列方程是否为二元一次方程,并说明理由.

① ② ③

④ ⑤ ⑥

练习二

分组练习:同桌结组,一人举例,一人判断是否为二元一次方程.

学生活动:以抢答形式完成练习1,指定几组同学完成练习2.

【教法说明】这样做既可以活跃气氛,又能加深学生对二元一次方程概念的理解.

练习三

课本第6页练习1.

提出问题:二元一次方程的解是惟一的吗?学生回答后,教师归纳:一元一次方程只有一个解,而二元一次方程有无限多解,其中一个未知数( 或 )每取一个值,另一个未知数( 或 )就有惟一的值与它相对应.

练习四

填表,使上下每对 、的值满足方程 .

-2

0

0.4

2

-1

0

3

师生共同总结方法:已知 ,求 ,用含有 的代数式表示 ,为 ;已知 ,求 ,用含有 的代数式表示 ,为 .

【教法说明】由此练习,学生能真正理解二元一次方程的解是无限多的;并且能把一个二元一次方程定成用含有一个未知数的代数式表示另一个未知数的形式,为用代入法解二元一次方程组奠定了基础.

(2)关于二元一次方程组的教学.

上面的问题包含两个必须同时满足的条件,一是香蕉和苹果共买了9千克,一是共付款33元,也就是必须同时满足两个方程.因此,把这两个方程合在一起,写成

这两个方程合在一起,就组成了一个二元一次方程组.

方程组各方程中,同一字母必须代表同一数量,才能合在一起.

练习五

已知 、都是未知数,判别下列方程组是否为二元一次方程组?

① ②

③ ④

【教法说明】练习五有助于学生理解二元一次方程组的概念,目的是避免学生对二元一次方程组形成错误的认识.

对于前面的问题,列二元一次方程组要比列一元一次方程容易些.根据前面解得的结果可以知道,买了香蕉3千克,苹果6千克,即 , ,这里 , 既满足方程①,又满足方程②,我们说

【一次方程组的应用 第三课时】相关文章:

1.一次方程组的应用

2.二元一次方程组练习题

3.第三课时《角在生活中的应用》教案设计

4.二元一次方程组教学设计

5.中国石拱桥第三课时

6.《詹天佑》第三课时教案

7.《地名》第三课时教案

8.《非洲》教案第三课时

9.二元一次方程组练习题及答案

10.八年级数学二元一次方程组知识点

下载word文档
《一次方程组的应用 第三课时.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部