刚架拱桥病害分析及加固设计研究论文
“LOTUS”通过精心收集,向本站投稿了11篇刚架拱桥病害分析及加固设计研究论文,下面是小编为大家整理后的刚架拱桥病害分析及加固设计研究论文,仅供参考,大家一起来看看吧。
篇1:刚架拱桥病害分析及加固设计研究论文
刚架拱桥病害分析及加固设计研究论文
1工程概况
某刚架拱桥位于福建省一县进出城口,属国道上桥梁。桥全长59.6m,桥宽21m。上部结构:净跨3.0m钢筋混凝土矮肋板梁+净跨50m钢筋混凝土刚架拱+净跨3.0m钢筋混凝土矮肋板梁,主跨横向布设7片刚架拱片,拱片间距3.2m。桥面铺装连续,两侧桥头各一处简易伸缩缝。桥面系采用矢跨比为1/16、厚6cm的微弯板及现浇混凝土填平层。桥面宽度为3.35m(人行道)+14.3m(车行道)+3.35m(人行道)。下部结构采用钢筋混凝土组合式桥台。为配合道路改造工程,该桥将在桥面上直接加铺10cm沥青路面,同时业主要求该桥改造后能够满足公路-Ⅱ级、人群3.5kN/m2的荷载要求。但是该桥无设计和竣工资料,需要对桥梁进行整体进行详细的现状调查、分析后进行相应的处理。
2桥梁现状调查
2.1主要病害
1)桥面铺装存在大量横向裂缝、纵向裂缝;伸缩缝不平顺;人行道板、栏杆、路缘石多处破损缺失;桥面排水不畅、积水;桥头沉降造成搭板凹陷。
2)跨中拱顶附近存在较多裂缝,大小节点附近弦杆段存在个别裂缝,所检裂缝最大宽度测读值为0.25mm,未超过规范限值;拱肋有露筋锈蚀现象;部分拱肋局部存在孔洞、蜂窝麻面等表观病害。
3)微弯板存在开裂现象,主要集中于跨中附近,所检裂缝最大宽度测读值为0.73mm,超过规范限值;微弯板存在大量露筋锈蚀、裂缝、孔洞病害,严重的微弯板混凝土碎裂,导致桥面塌陷,详照片。
4)横系梁存在较多裂缝,车行道下部横系梁尤为严重,所检裂缝最大宽度测读值为0.72mm,超过规范限值。并有露筋锈蚀、混凝土表面蜂窝麻面、剥落现象。
5)下部结构盖梁受水侵蚀严重,有较多竖向裂缝,所检裂缝最大宽度测读值为0.35mm,超过规范限值。
2.2荷载试验
1)静载试验静载试验按公路-Ⅱ级(考虑10cm沥青铺装层)荷载等级进行,静载试验荷载效率为0.86~1.01;在各工况荷载作用下,控制截面应变校验系数在0.14~0.94之间,满足校验系数小于1.00的要求;所测测点的最大相对残余应变小于残余应变限值要求(20%);在各工况荷载作用下,各控制截面挠度校验系数在0.39~0.94之间,满足校验系数小于1.00的要求;所测测点中的主要测点相对残余变形基本满足的残余变形限值要求(限值20%)。
2)环境振动试验实测振动响应信号经试验模态分析,该桥竖向实测基频为5.00Hz,理论基频为3.07Hz,实测基频大于理论值,表明现状桥梁实际刚度较大。
3)桥梁承载力评定结果根据桥梁缺陷状况检测结果、材质状况与状态参数检测结果和荷载试验结果对桥梁承载能力进行核算,该桥承载能力不满足公路-Ⅱ级、人群3.5kN/m2(加铺10cm沥青铺装层)荷载等级的使用要求。
3结构计算分析
为了解桥梁结构提载后受力情况,本工程结构分析采用桥博3.0程序建立平面杆系模型分别对边拱肋和中拱肋进行计算。单片拱肋划分为70个单位,其中三角刚架区24个单位,桥面单元为46个单位,拱角采用完全固结,边支点采用竖向支撑,纵向滑动约束。
4病害原因分析
近几年该地区交通量急剧增加,该刚架拱桥经过长时间运营,构件混凝土的开裂呈普遍现象,裂缝的产生有着各种各样的原因,内部和外部不同原因的裂缝和不同类别的裂缝对结构的安全性和耐久性也有着不同的影响。
4.1微弯板
车轮荷载通过桥面铺装层作用于微弯板上,形成较为直接的受力构件,原设计的微弯板计算模型为将微弯板两端简化为弹性约束的变截面板进行承载力验算,该假定方法与实际受力状态相差甚大,且微弯板厚度仅设为60mm,因此大大降低了微弯板在实际工作中的可靠性。由于桥梁多年的使用,桥面铺装的破损,拱肋下挠、横向偏移等,均造成微弯板支座端偏位,严重者使得微弯板变成两端铰结的简支板,从而微弯板实际受力大大增加,超出设计范围,造成微弯板的破坏。本桥微弯板存在大量裂缝,且部分微弯板的塌陷,正是设计缺陷引起的。
4.2横向联系
刚架拱桥的结构内力分析是根据平面杆系理论进行的,基本采用弹性支撑连续梁的方法进行横向荷载分布分析,而后进行纵向桥梁内力分析。在实际工程应用中,往往很难模拟横向联系的实际受力状况,导致结构内力计算失真。弹性支撑连续梁法需要结构必须有足够的横向连接刚度,横向连接刚度是通过横系梁、桥面铺装层及微弯板进行连接,而这种连接通过多年刚架桥的使用可知,其刚度较弱。由于先天横向刚度的不足,桥梁使用一段时间后,横系梁逐渐出现开裂现象,横系梁的开裂弱化了横向刚度,出现更严重的裂缝,其裂缝基本形态为竖向贯通缝或斜向裂缝。同时在汽车荷载作用下出现振动现象,也使得横向连接减弱,导致刚度降低。同时微弯板的侧向水平推力作用也使得横系梁处于横向受拉,对横系梁产生不利作用。因此,由于刚架拱的先天不足,导致桥梁过早的出现不同程度的病害,病害又导致桥梁横向刚度降低,而刚度的降低加剧了构件的损伤、损坏,周而复始,造成桥梁使用年限大大缩短。
4.3拱肋
根据桥涵通用设计规范,进行恒载、汽车荷载、温度荷载等组合,经结构分析可知,拱顶、拱角最大抗力不满足内力需求;跨中、拱腿(与大节点连接处)、拱角、弦杆(与大节点连接处)等部分部位裂缝宽度大大超出规范的最大要求。同时,根据桥梁检测报告可知,拱肋混凝土质量表观差,表面粗糙、不平、局部蜂窝麻面;大小节点部位配筋不合理,缺乏必要的.构造抗拉钢筋。因此,在桥梁使用过程在大小节点部位出现不规则裂缝,影响桥梁的结构承载力和耐久性。
5加固对策及验算
5.1加固对策
根据检测结果及上述病害分析,提出了主要处理措施,如下:
1)对拱肋跨中两侧各10m的范围内,拱肋下缘粘贴U型钢板,加配U型压条,粘贴钢板采用环氧树脂化学灌浆湿式外包钢法施工。
2)大、小节点受力复杂,两侧粘贴整体大钢板,在横系梁处断开,方便安装,粘贴整体钢板采用环氧树脂化学灌浆湿式外包钢法施工。
3)将拱腿全部和斜撑根部2.5m段外包混凝土加大截面;拱腿顶面、侧面增加混凝土厚度15cm;在拱脚2.5m段区域内,将拱腿和斜腿连成整体。在拱脚新增截面上加强抗弯受力钢筋,并将新增截面的连接钢筋植入原结构,以保证新增截面能与原结构共同受力。拱腿新增截面纵向钢筋与大节点钢板焊接连接,并将该部分混凝土过渡平顺。
4)对横系梁下表面粘贴钢板条加固,侧面上缘粘贴钢板,在拱肋处植入螺杆连接,增强横向刚度。
5)拱肋弦杆上缘出现较多裂缝,计算也发现该部分结构承载能力富余量较小甚至不足,为此采用在靠近弦杆上缘粘贴钢板条方法加固弦杆。
6)若配合整条路线改造,直接在桥面加铺10cm沥青混凝土,桥梁上将增加共250吨恒荷载,考虑原设计资料缺失,无法判定原基础承载力富裕度,应考虑尽量不增加旧桥恒载;同时,根据检测报告可以看出,微弯板及加劲肋存在较多裂缝,通过计算,原微弯板不满足荷载要求。因此,考虑采用将原桥面铺装层铣剖掉2cm的磨耗层,绑扎钢筋铺设8cm厚C40聚丙烯纤维混凝土铺装层,使得新增钢筋混凝土与原桥面板形成组合受力结构,共同承载受力;同时,对微弯板表观病害进行维修处理,采用压力注胶封闭裂缝、钢筋除锈、聚合物砂浆恢复保护层等措施。再者在桥梁铺装6cm沥青混凝土,桥两端与整体路线平滑过渡。既解决了桥面板承载不足的问题,同时又使得旧桥恒载增加不多。
7)对所有宽度大于0.15mm的裂缝进行灌浆处理,灌浆胶采用优质A级环氧灌缝胶。对所有宽度小于0.15mm的裂缝,无论缝宽大小,在进行裂缝的灌浆过程中一并封闭。
5.2加固验算
1)计算参数
验算按照JTGD60-要求进行,汽车荷载采用公路Ⅱ级荷载标准,人群荷载3.5kN/m2。桥面铺装二期恒载为原混凝土铺装层铣剖2cm磨耗层,加铺8cmC40钢筋混凝土铺装层,其上加铺6cm沥青混凝土铺装层。混凝土强度按检测报告实测结果,恒载按改造后使用需要计取。对拱肋、弦杆、及大小节点节点处粘贴钢板的单元将钢板等效为钢筋加入单元截面,等效计算考虑0.9的应力滞后效应。
2)拱肋挠度计算结果
挠度计算结果如所示,计算结果表明,加固措施对桥梁的刚度有大大改善。3)拱肋控制截面强度计算结果经验算现有的桥梁结构跨中强度基本能满足承载能力极限状态要求;拱腿大节点处、拱脚、斜腿脚及弦杆大节点处裂缝宽度不能满足正常使用极限状态要求。比较加固前后的计算结果,对桥梁的薄弱环节进行加强,提高了强度要求,减小裂缝宽度,增加了安全储备,达到了加固效果。边拱肋、中拱肋控制截面强度计算结果如所示;边拱肋、中拱肋控制截面裂缝计算结果如所示。路面加铺沥青混凝土提载后,经加固后桥梁拱肋各截面承载力、裂缝宽度要求等均能满足,并且有较大的富余度。
6结语
本文针对某刚架拱桥的病害特点,结合目前诸多刚架拱桥的病害特点及加固处理经验,进行本桥的病害分析和内力计算分析,找出该桥主要问题所在,提出提载后有效的加固处理措施,最后通过加固验算,加固后桥梁大大提高了承载能力,满足业主单位使用要求。
作者:郑瑞生 詹德勇 黄婷婷 单位:福建省建筑科学研究院 福建省绿色建筑技术重点实验室
篇2:双曲拱桥病害分析及加固改造
双曲拱桥病害分析及加固改造
通过时湖南干线公路几座双曲拱桥的检测评估实践,文章介绍了双曲拱桥的主要病害及原因,并提出可行的改造加固措施.
作 者:李田田 唐登波 LI Tian-tian TANG Deng-bo 作者单位:湖南工大联智桥隧技术有限公司,湖南,长沙,410011 刊 名:企业技术开发(学术版) 英文刊名:TECHNOLOGICAL DEVELOPMENT OF ENTERPRISE 年,卷(期): 28(5) 分类号:U448.221 关键词:双曲拱桥 病害分析 加固改造篇3:色尔古拱桥病害分析及加固探讨
色尔古拱桥病害分析及加固探讨
色尔古拱桥为凉山州S307线昭觉至美姑段上的一座实腹式板拱桥.在使用过程中,该桥主拱圈下游侧开裂严重.文中介绍了该桥的`病害情况,分析了病害产生原因,并探讨了该桥的维修加固方案,可供同类桥梁参考.
作 者:陈艳玮 汤尚明 张 作者单位:陈艳玮,汤尚明(西南交通大学土木工程学院,四川成都,610031)张(甘肃省交通规划勘察设计院,甘肃兰州,730030)
刊 名:四川建筑 英文刊名:SICHUAN ARCHITECTURE 年,卷(期): 30(1) 分类号:U445.7+2 关键词:拱桥 病害 加固篇4:铁路桥梁病害分析与改造加固设计
铁路桥梁病害分析与改造加固设计
随着国民经济的'不断发展、铁路交通技术的不断提高以及生活节奏的不断加快,我国铁路交通发展已取得巨大进步,但同时一部分既有桥梁已经不能满足要求,既有线路不能满足提速后的行车安全等问题,文章分析了现有铁路桥梁病害,并提出了相关改造与加固措施.
作 者:张有科 作者单位:新疆铁道勘察设计院有限公司,新疆,乌鲁木齐,830011 刊 名:中国高新技术企业 英文刊名:CHINA HIGH TECHNOLOGY ENTERPRISES 年,卷(期): “”(7) 分类号:U445 关键词:铁路桥梁病害分析 铁路交通 改造加固篇5:桥梁加固设计研究论文
桥梁加固设计研究论文
摘要:交通行业近年来随着我国社会经济的不断发展而得到了快速的提升。桥梁作为交通行业中的重要部分,其承载能力直接决定了交通工程的安全性以及工程的使用寿命。本文就主要分析了桥梁承载能力的检测评定以及加固技术。
关键词:桥梁承载;加固设计;能力检测;评定技术
1桥梁承载能力系数的影响因素
1.1结构完整性
桥梁经过长时间的运行,部分构件会出现一定程度上的损伤,受力结构发生变化导致失去其合理性,从而产生缺乏整体性以及结构局部受力过大的现象,这些现象大幅度的降低了桥梁的承载能力,也就削弱了桥梁的安全性。
1.2裂缝
裂缝在钢筋混凝土桥梁结构当中属于常见的一种病害现象。裂缝的存在和发展会降低钢筋混凝土材料的承载能力、抗渗能力和耐久性,从而影响桥梁的使用寿命。一般情况下我们都将混凝土桥梁裂缝分为两种,即非结构裂缝以及结构裂缝。非结构裂缝只要就是指混凝土桥梁自身并不能够满足周围的环境的要求或者是自身性能不达标等原因而导致的一种裂缝。而结构裂缝则是由于桥梁结构的整体承载力明显下降而导致的裂缝。桥梁裂缝问题大多是在其结构受力之后出现,因此在处理桥梁裂缝的过程中要先通过其实际的情况来判断其属于哪一种裂缝问题,之后再采取合理的措施来进行处理。
1.3钢筋锈蚀
桥梁钢筋混凝土结构的钢筋锈蚀严重的损坏了其构件的承载性能以及抗压能力。钢筋锈蚀的原因有多种,但其主要原因为混凝土密实性不足和钢筋保护层厚度不足。钢筋锈蚀对结构构件的损坏主要表现为降低了构件的截面面积、降低了钢筋与混凝土的咬合力以及桥梁结构的承载能力等。
1.4混凝土施工质量
桥梁施工过程中,如对水泥品种的选取、混凝土水灰比和保护层厚度的控制不严格,浇注完成的钢筋混凝土构件内部会存在着严重的质量问题,从而降低了混凝土结构的抗侵蚀能力,尤其是抗锈蚀能力,从而降低了其桥梁结构的承载能力。
2桥梁承载能力检测的评定方法
2.1经验法
经验法主要指的就是在评定桥梁承载能力时,需要具有丰富的工作经验的专家对结构抗力效应考虑引入不超过1.2的结构检验系数,并根据对桥梁现象调查的裂缝、桥台沉陷、挠度以及水平位移等缺陷和病害情况来对桥梁结构的强度以及稳定性进行验算。该方法主要应用于我国“十二五”之前。随着经济以及科学技术的发展,由于该方法受专家主观因素影响较大、其评定指标较为单一、难以把握其检算系数和评定标准以及无法定量化应用检测结果等缺点,其应用频率不断的下降。
2.2承载能力衰减时变模型法
变模型法要根据工程所处的地域以及桥梁结构的类型来确定是否使用,并且该方式对于钢筋强度、混凝土的强度和粘结性、碳化深度等方面的取值较为粗糙。但是该方式的应用为预测桥梁寿命以及旧桥承载能力的评定提供了有力的依据。应用该方式来建立不同损伤程度的桥梁承载能力的衰减模型时要对其混凝土强度、结构的耐久性参数以及钢筋的锈蚀程度进行充分的考虑。
2.3荷载试验方法
荷载试验方式能够直接获取在荷载作用下的桥梁结构的校验系数,并且能够保证系数的客观性以及准确性,从而准确的推断出桥梁的安全储备区间。但是在实际的应用过程中,该方式的耗时较长,并且其试验场地规模相对较大,同时还需要大量的试验资金,因此该方式适用于大型的、资金较为充足的桥梁工程当中。在桥梁承载能力的评定当中应用该方法可能会对其结构造成新的损伤,并且其结果反应的都是结构短期内的现象,若想要检测结构的疲劳特桥梁承载能力检测评定技术在桥梁加固设计中的应用赵鹏山东东泰工程咨询有限公司山东淄博256140性以及耐久性指标等就不能够使用该方法。
2.4基于动测参数的评定法
其承载能力的评定主要是通过结构在激振、荷载以及振动的作用下桥梁结构出现的反应来进行的。动测参数评定方式能够将结构在动力荷载的作用下的力学性能以及受力状况准确的反映出来,其结果与桥梁实际的状态较为切合。但是由于技术的限制,该方式还未形成一个较为完善简便的方法,并且也需要建立于承载能力和动态测试参数相关的计算模型。
2.5基于检测结果定量化的评定法
结果定量化评定法是在我国旧桥承载能力检定方法的基础上进行了修订。该方式能够在评测的过程中对桥梁的缺损状况、自振频率以及材质强度等方面的影响进行综合考虑,提高了评定结果的客观性。但是该方式的应用仍有部分的不足,主要有以下几点:(1)通过回弹法、钻芯取样法以及超声回弹法等方式来判断构件材质的强度,其结果与实际的差异较大。(2)由于工程计算模型的尺寸、边界条件以及施工原因等,通过实测自身频率和理论计算频率的实测值来确定分项标度的时候,其结果与实际的差异相对较大。(3)其规程针对的主要都是钢筋混凝土桥梁,对于钢筋混凝土的组合结构还有许多地方未得到明确。(4)在评测过程中考虑到了耐久性的影响,因此其构件强度、钢筋锈蚀程度以及电阻率的测区等方面的真实性是否能够代表构件的情况还有待证实。
2.6基于原始指纹评定法
原始指纹指的就是在桥梁刚建成时,通过对桥梁进行细致的检测而得到的资料,可将检测的桥梁状态作桥梁的初始状态。在进行桥梁承载能力的评测时可以将桥梁的原始指纹作为其结构的参照标准,并且能够将原始指纹与检测的结果进行对比。采用该种方式要以参数随着时间的衰减模型为参考来判断桥梁的剩余承载能力。原始指纹评定法能够使其检测结果与桥梁的初始状态进行对比,以此来获得结构的损伤程度。其思路相对明确,在评定的过程中能够避免计算模型与实际差异的'影响,能够保证计算结果的真实性。但是该方式的主要缺点就在于其初始状态的调查需要大量的精力来进行测评,并且其承载能力的检测参数衰减关系不明确。
3基于桥梁承载能力的加固设计措施
3.1加装钢板
在桥梁加固工程当中,将钢板加装在桥梁外能够大幅度的增加桥梁的抗承载能力,而且桥梁横截面也不会大量增加。目前这种加固方式并未得到广泛的应用,其主要原因还是钢板的加工工作难度较大,在加装的过程中需要一定的支护设备,在其投入使用后还要不断的进行钢板维修与保养。当前加装的钢板的主要方式是在桥梁表面进行玻璃钢的粘贴。这种方式由于其材料的弹性模量不能够满足混凝土的要求,因此在加固之后一旦受力就极易产生变形。因此只能够在应用于临时加固以及没有大客车通行的桥梁当中。
3.2加装钢筋
加装钢筋的方式就是在桥梁的表面进行二次钢筋加装,固定桥梁表面,从而达到在不增加桥梁自身的重量的前提下有效的提高桥梁的抗弯性。该方式通常不用于城市的桥梁加固工程中,主要是因为该种方法会对桥梁的外观造成一定的影响。
4结束语
在桥梁工程当中,其承载能力的测评以及加固设计是重要的组成部分。在进行桥梁工程加固设计过程中要对其影响承载能力的因素进行充分考虑,同时要选择合理的测评方式,这样才能够保证加固设计以及措施的合理性。
参考文献:
[1]赵魁魁.刘波.桥梁加固设计中桥梁承载能力检测评定技术的应用探析[J].建筑建材装饰,(19).
[2]张劲泉.我国公路桥梁承载能力检测评定技术的现状与发展[C]//中外桥梁病害诊治大会.2005.
篇6:水闸除险加固设计研究论文
摘要:特别在北方地区,出现的灌溉以及排涝等现象影响了交通的正常运行。近几年已经建立了多种水闸对水流量进行制约,在各个地区的经济变化上具有重要作用。但水闸在设计方式上,也存在着不同程度的损害现象,所以就要进行水闸除险加固设计。文章根据对水闸相关设计的研究,阐述几种水闸除险设计的有效方案。
关键词:水闸;除险;加固;设计
水闸在水力工程建设中已经广泛应用,随着我国在科技力量下的推动,水闸设计水平也得到较大提高。在设计水闸期间,要根据当地水力的生态变化、周围环境、水系变化以及自然条件的影响进行分析,然后在设计结构上实现创新设计,并保证在施工期间运行管理的稳定性,从而实现水力工程建设的新挑战。
1水闸设计
1.1结构设计
水闸工程在整个结构布置期间,水闸的中心线要与河道中心线保持在同一水平上。建筑物在建设期间,要保证合理、美观,并在整体设计上保证一定的成本效益和经济效益。不仅在结构形式上保持美观形式,闸孔以及宽度还要形成统一形式,从而实现水闸在运行期间的合理性。在水闸整个结构设计形式上,首先对闸顶高程进行设计。该高程主要为水闸门在上游闸墩顶部的高程设计。它不仅要考虑挡水现象,还要考虑泄水现象。在挡水期间,闸顶的高程一般低于水闸所在的正常蓄水水位。对于泄水,水闸顶部高程一般要保证低于水闸在洪水位上的设计。还要对底板高程进行设计,如果底板高程设计的比较高,在枯水期,就会影响河道流量。如果下游河床子在高程上没有一定变化,闸底板设计的太低就不会影响水闸流量,一般会增加闸墩以及闸门的高程。对水闸闸孔在总净宽以及孔数设计方式上,一般的水闸流态分为两种,一种是泄流期间水流由于不受阻,形成堰流现象;一种是泄流期间由于闸门的阻挡现象,出现孔流状况。所以,根据不同水位的设计要求,就应利用不同比值进行设计。
1.2消能防冲设计
因为影响池水力的因素条件比较多,实现的情况比较复杂,所以要控制消力池的变化因素,就要分析水闸在上游、下游之间的水位差、过闸流量宽度、下游水深以及孔数、宽度等因素。一般利用低流式消能设计[2]。首先,在设计形式上,应先考虑上游与下游的水位差、过闸期间的流量宽度等水力存在的条件,然后再控制消力池的池深度,底板厚度等相关组合。这样不仅能够增加调度期间的灵活性,还能保证一定安全性。
1.3防渗排水设计
由于闸基的上部为砾石层,下部的基石为已经风化的花岗岩,不仅受风力影响比较强烈,而且岩石质量也比较软弱,所以水闸地基处容易出现渗透等现象。为了防渗排水,在设计期间,首先在离闸室上游存在的钢筋混凝土加固防渗墙,然后在上游墙的两侧以及混凝土挡墙下设计高压旋喷防渗墙,并保证防渗效果的稳定性。而且,由于渗透压力的影响,所以应根据上水闸在地基上的深度以及渗透水力进行计算,从而保证渗透期间的稳定效果。
篇7:水闸除险加固设计研究论文
2.1溢流坝除险
由于原来的水闸溢流坝的表层都会存在较强的混凝土,不仅不能满足一定的抗冻性,还产生一定的碳化深度。所以在溢流坝进行除险设计期间,应凿除一部分的混凝土。首先实现消能方式,在原溢流坝下游实现防冲措施时,要利用低流消能,一般在设计期间针对巨大洪水进行的。还要对堰型进行调整,因为消能方式与洪水产生的标准会不断变化,所以对溢流坝的堰面形状就要进行调整。这期间,应利用复核计算,由于该坝体中的基地应力不能实现一定的规范要求,所以就要利用计算方式将坝体基础下顺流方向的长度进行加长。对溢流坝结构进行设计期间,为了保证地基在承载力以及应力上的规范要求,为了对除险加固形式进行设计,就要对溢流坝的顺水流方向长度进行计算,使它能够满足一定的要求标准。特别在溢流坝基础,首先,应将原坝体的高程进行凿除,然后将已经凿除后的形成为新的浇筑坝体,最后将新的混凝土与原坝混凝土进行结合,并保证原坝体内的浆砌石以及基岩相互连接。在确定好溢流坝的前缘长度以及顺流方向长度期间,还要保证上游坝面的垂直现象,并加宽下游的坝基础,从而实现一定的灌溉要求。对于新浇筑的溢流坝,要保证体内混凝土在外包设计形式上具有一定厚度,将溢流坝的坝段进行分组、编号,并保证它在冲沙闸形式上的长度。溢流坝与冲沙闸之间还有用墙过渡开,如果在下游处设计了过河交通桥,在上游就不能设置交通桥。
2.2冲砂闸除险
对原拦河闸进行复核计算能够看出,冲沙闸原设计比较小,不仅在排砂形式上不能满足,汛期中产生的河水砂量比较大,在上游,还会出现比较严重的淤积现象以及河床抬高现象。而且,冲沙闸的金属结构以及相关的机电设备也不能满足相关要求,冲沙闸也不能实现消能防冲作用。冲沙闸在结构设计上,对于地基承载力以及应力比的`设计要求,如果冲砂闸的垂直水流方向为13m,为了除险加固,就要对冲砂闸底板的水流方向长度设计为5m。闸底板一般利用原冲砂闸底板,首先应对原冲砂闸底板进行凿除,然后利用混凝土进行浇筑,并形成合理的冲砂闸底板。新浇筑的混凝土要保证与原有的浆砌石底板、基岩进行接触,并保证底板的浇筑厚度以及混凝土厚度。一般情况下,冲砂闸底板的高程与原冲砂闸底板高程以及河床低高程保持一致。由于冲砂闸孔数一般都保持不变,在孔的净宽以及水断面设计上,要保证在设计期间的相关设计标准,就要选择溢流坝在河道产生的水断面积。对于冲砂闸的闸门,一般为平板钢闸门,并利用手摇螺杆方式进行启动、关闭。冲砂闸的闸门在顶部一般分为两层,下层闸门是专门检修平台,能够实现人行通道。而上层闸门一般为开关相关设备平台,不仅能够对开关设备进行布置,还能检查出闸门的层高要求。
2.3进水闸除险
在原拦河闸实施复核计算形式上,如果出现较大洪水变化,原进水闸就不能保持正常运行形式,所以就要对进水闸进行增高。因为进水闸为金属结构,原进水闸在墩的厚度上根本不能满足该金属的相关结构。原进水闸在不断利用其间,经过长期间的运行,它表面的混凝土以及粗骨料都已经滑落,在闸墩以及闸墙上都出现混凝土裂缝现象。尽管利用水毁进行修复,但内部结构还无法消除。其次,混凝土本身就具有较大强度以及抗冻性,进水闸混凝土结构根本不能实现。所以在设计期间,就要对拆除掉进水闸的启闭机以及闸墩。进水闸的结构设计,为了使基地应力能够满足一定条件,实施的除险加固行为一般是增加水闸底部中水流的流向长度,首先将水闸底板进行凿除,然后增加混凝土的高程变化,在新形成的进水闸底板处,要保证石底板与基岩之间的接触形式,并保证底板的组合厚度。一般在进水闸顶部也设计两层平台,下层为人员检修平台,上层为开关设备平台。
3结论
实施除险加固设计主要能够保障原工程在建设期间实现安全性,并能够以最小的经济成本获得最大经济效益。所以在原工程建设中,不仅要做出该设计的深度研究,还要找出水闸在变化中存在的问题,对存在的问题进行解决,这样才能保障水闸除险加固行为的有效实施。
参考文献:
[1]毛新强.沩水水闸除险加固设计及研究[D].南昌大学,.
[2]樊静.对病险水闸除险加固初步设计中一些问题的思考[J].新疆水利,,01:49-51.
[3]姚久经.苏家吉水闸除险加固设计方案探讨[J].水利规划与设计,,06:97-99.
[4]都兴洋,唐振华,孙利,常万军.抚顺市冷口子水闸除险加固设计[J].东北水利水电,2015,08:9-11.
[5]白子昕.水库除险加固之水闸设计探究[J].水利技术监督,,02:50-51.
篇8: 水利枢纽厂加固设计研究论文
水利枢纽厂加固设计研究论文
[摘要]介绍了京南水利枢纽工程及厂房尾水渠左侧护坡、挡墙的结构概况,分析了5月厂房尾水渠左侧护坡发生坍塌的原因,提出了在坍塌段抛填石块的应急处理方案,并论述了模袋混凝土护坡永久修复加固设计方案及施工措施。
[关键词]厂房尾水护坡;坍塌;应急处理;模袋混凝土护坡;设计;施工;京南水利枢纽
1工程概况
京南水利枢纽位于梧州市苍梧县京南镇上游约800m处,下游距梧州市68km,为桂江综合利用规划中的倒数第二个梯级,是一座以发电为主,兼有航运、灌溉、水产养殖、旅游等综合利用效益的水利工程。水利枢纽拦河坝坝址以上集水面积17388km2,水库总库容2.55亿m3,电站装机容量2×34.5MW。京南水利枢纽船闸布置在左岸,右侧为发电厂房,闸室右侧与厂房之间采用回填砂卵石或回填土形成30m高程平台,以平衡或改善船闸结构受力。平台外侧即为厂房尾水渠左侧护坡,坡度1∶2.5,在20m高程设宽1.5m马道。厂房尾水渠左侧护坡坡脚设置R28150混凝土挡墙,其中0+057.634~097.034段挡墙顶高程为14m,底高程为4.24~12m;0+097.034~0+155.000段挡墙顶高程为14m,底高程为12m。挡墙与船闸闸室右闸墙之间回填砂卵石,两者之间形成的边坡表面以75#浆砌石衬护。0+057.634~097.034段挡墙顶浆砌石护坡坡比为1:2.5,护坡20m高程处设置1.5m宽马道,20m高程以上浆砌石护坡坡比为1:2.25,护坡顶部30m高程处设置5.87m宽平台;0+097.034~0+155.000段挡墙浆砌石护坡坡比为1:2.5,护坡顶部20m高程处设置干砌石平台。
2应急处理方案
[1]2.1应急处理方案205月4日,京南水利枢纽厂房尾水渠左侧护坡发生坍塌,坍塌长度约50m。当日晚,梧州市桂江电力有限公司派人潜水探摸水下护坡受损情况,判断该段护坡脚的混凝土挡墙没有被淘刷破坏,无异常状态。2014年5月8日,经现场勘查,厂房尾水渠左侧护坡约0+070~0+127段范围内,20m高程以下的护坡已出现坍塌破坏,并在厂房发电尾水水流持续冲刷、波浪拍打作用下,护坡回填的砂卵石不断被水流带走,冲刷坑附近河水浑浊,呈黄色。现场照片见图1。图12014年5月8日现场照片根据现场实际情况,经研究,建议对尾水渠左侧护坡坍塌修复提出如下应急处理方案:为防止尾水渠护坡损坏进一步扩大而影响到船闸安全运行,采用在毁损护坡范围内先抛填块石应急防护方案处理,避免冲刷坑进一步扩大。应急处理方案主要技术要求如下:
(1)应对电站厂房尾水渠左侧护坡坍塌范围、深度进行勘测,必要时须水下确认护坡挡墙受损情况。
(2)在护坡坍塌范围内先抛填块石,抛填形成表面与原设计护坡坡面基本相同,超填不应超40cm;抛填块石范围应超出护坡冲刷坑边缘1~2m。
(3)用于抛填的块石必须新鲜完整、无风化,块石粒径要求20~40cm之间。
(4)在施工中尽量避免抛填块石进入尾水渠。
(5)应急防护方案(抛填块石护面)完成后,要求密切注意观察护坡的变化情况,如果出现新的`险情,则应立即实施进一步的抢修措施。2.2应急处理方案实施按照上述应急处理方案,广西水电工程局基础工程公司随即组织施工人员进场、备料,于5月23日对厂房尾水渠左侧护坡坍塌范围进行抛填块石作业。应急处理方案实施后,据梧州桂江电力有限公司相关技术人员反馈,经连续观测,护坡坍塌范围未继续扩大,抛填块石表面呈稳定状态,坍塌部位附近河水也未出现浑浊现象。2014年9月3日上午,梧州桂江电力有限公司向上级主管部门申请停机半天,聘请潜水员对厂房尾水渠护坡坡脚混凝土挡墙、尾水渠底板进行了损毁情况探摸,经过详细探查,潜水员报告未发现混凝土挡墙、尾水渠底板出现损毁,基本维持原状,仅发现抛填块石作业时掉落在尾水渠内的少量块石。应急处理方案实施后现场照片见图2。
3永久修复加固设计
3.1设计依据本工程主要永久性挡水建筑物混凝土拦河坝、电站厂房、船闸上闸首为3级建筑物,其余次要建筑物降为4级建筑物,临时建筑物降为5级建筑物。京南枢纽主要挡水建筑物采用的洪水标准为50年一遇洪水设计,5一遇洪水校核。根据《中国地震动参数区划图》(GB18306-)确定工程区地震动峰值加速度为0.05g,相应的地震基本烈度为Ⅵ度。
3.2水文资料
(1)水库正常蓄水位30.0m;电站下游最低尾水位15.45m;
(2)水库设计洪水位35.42m(P=2%);
(3)水库校核洪水位38.29m(P=0.2%);
(4)船闸上游最高/最低通航水位30m/26.2m,船闸下游最高/最低通航水位25.9m/15.45m;
(5)洪峰流量(见表1)。
3.3修复加固方案拟定电站下游最低尾水位为15.45m,而厂房尾水护坡坡脚混凝土挡墙的墙顶高程为14.0m,尾水护坡有局部斜坡段位于水下。考虑这种情况,本次修复加固设计选择“模袋混凝土护坡”和“水下混凝土+常规混凝土护坡”两种方案进行比较。“模袋混凝土护坡”方案不需设置围堰及模板,施工简单方便,尤其是水下部分护坡成型容易,整体性好,施工速度快,对电站发电运行影响较小,非常适合于工期要求较高的护坡加固工程,但造价高于常规混凝土。“水下混凝土+常规混凝土护坡”方案浇筑水下混凝土时,需要立模浇筑,施工工期相对较长,对电站发电运行影响较大,同时由于水下混凝土成型困难,很难控制水下混凝土的浇筑质量,而且造价高于模袋混凝土。两方案经综合比较后,因“模袋混凝土护坡”方案施工速度快、施工质量好的优势明显,本次修复加固设计推荐“模袋混凝土护坡”方案。
3.4修复加固方案设计
3.4.1模袋混凝土厚度确定因模袋混凝土厚度是不均匀的,本工程所称模图22014年9月3日现场照片袋混凝土厚度均指模袋混凝土平均厚度。根据《水利水电工程土工合成材料应用技术规范》(SL/T225-),抗漂浮所需厚度按下式计算:δ≥0.07cHwLwLr3γwγc-γw1+m2m经计算,并根据其他工程经验,确定本工程模袋混凝土厚度为300mm。
3.4.2模袋混凝土护坡抗滑稳定分析根据《水利水电工程土工合成材料应用技术规范》(SL/T225-1998)6.4.4条规定,模袋混凝土护坡抗滑稳定安全系数按下式计算:Fs=L3+L2cosαL2sinαfcs经计算,厂房尾水渠模袋混凝土护坡抗滑稳定系数Fs=1.25>1.20,满足规范要求。
3.4.3厂房尾水渠护坡修复加固设计本次护坡修复加固范围为桩号0+076.5~0+155.0段。14~17m高程段护坡(含20m高程马道)采用模袋混凝土加固,首先按照原设计坡比,对应急处理已抛填块石进行平整、理坡;抛填块石平整完成后,在其表面顺坡预埋充填灌浆50PVC花管,间距2m,接着铺设150mm厚粒径20~40mm的碎石找平层,通过人工摊铺、压实,使碎石充分填充块石间缝隙;随即施工模袋混凝土面层,厚度300mm,混凝土强度等级为C25
(1);最后待模袋混凝土达到设计强度的85%及充填灌浆完成后,用手风钻在模袋混凝土面板表层钻φ50孔至碎石找平层底部,钻孔按梅花形布置,间距3m×3m,在钻孔内填塞φ50塑料盲沟排水管。
(2)17m高程以上至距离20m高程马道内侧水平距离5.3m范围内的护坡采用现浇C25混凝土加固,理坡、预埋充填灌浆管、铺设碎石找平层施工顺序及技术要求同14~17m高程段护坡,且要求同步进行;待14~17m高程段护坡模袋混凝土面层施工完毕后,方可施工17m高程以上现浇混凝土面层,厚度300mm,混凝土强度等级为C25,混凝土面层沉降缝按5m间距设置,缝内填充沥青木板;在混凝土面层浇筑前,将预埋的50PVC排水管固定到碎石找平层底部,排水管按梅花形布置,间距3m×3m,排水管预埋端用铁丝绑扎土工布反滤袋150mm×150mm×100mm。模袋混凝土、现浇混凝土护坡施工均完成后,混凝土强度达到设计强度70%以上时,即可对护坡面层以下回填料进行充填灌浆。厂房尾水护坡损毁修复加固设计图见图3~4。
4模袋混凝土护坡施工
(1)抛填块石平整、理坡。坡面抛填块石平整、理坡采用汽车轮渡装载长臂挖掘机整平,局部人工配合。用于铺设找平层的碎石料,由20t自卸汽车运到京南镇码头,使用货船转运至厂房尾水护坡处由汽车轮渡上的长臂挖掘机直接卸料、摊铺,再通过人工摊铺、蛙式打夯机压实。
(2)模袋混凝土浇筑。模袋铺展由人工自上而下顺坡滚铺,水面上采用定位船进行定位,模袋展开平整到位后,在搭接处进行缝合。在厂房尾水护坡下游20m高程平台布置0.4m3搅拌机集中拌制混凝土,人工胶轮车输送至集料斗,混凝土泵送至模袋灌口,人工配合混凝土充灌、找平,水下施工由潜水员在水下负责连接模袋充灌口和混凝土软管口、混凝土踩压。
(3)充填灌浆施工。充填灌浆施工在混凝土强度达到设计强度的70%后进行,充填灌浆通过预埋的φ50PVC花管、HB80型灌浆泵灌浆。
(4)塑料盲沟排水管施工。待护坡混凝土强度达到设计强度的85%后,使用手风钻造孔,人工填塞塑料盲沟排水管。
5结语
厂房尾水护坡损毁产生原因是护坡在厂房发电尾水水流持续冲刷、波浪拍打作用下,浆砌石护坡局部产生破坏,致使回填的砂卵石不断被水流带走,坍塌范围不断扩大。鉴于桂江正处在汛期,电站尾水位较高,先进行抛填块石临时应急防护处理,避免护坡坍塌进一步扩大,待枯水期再全面永久修复加固处理。应急处理方案实施后,经反馈,护坡坍塌范围未继续扩大,抛填块石表面呈稳定状态,也未发现坍塌部位附近河水出现浑浊现象。模袋混凝土护坡永久修复加固方案不需设置围堰及模板,施工简单方便,尤其是水下部分护坡成型容易,整体性好,施工速度快,对电站发电运行影响较小,对工期要求较高的护坡加固工程是非常好的设计方案。
参考文献
[1]广西水利电力勘测设计研究院.广西桂江京南水利枢纽厂房尾水护坡损毁修复加固工程初步设计报告(报批稿)[R].南宁:广西水利电力勘测设计研究院,2014.
[2]刘峰,徐婷婷. 三峡水利枢纽右岸尾水渠护坡强制式滑模施工[J]. 西北水电,,
[3]林聪俐,黄柏洪,胡凡. 模袋混凝土护坡在水利工程中的应用[J]. 水利建设与管理,,28
[4]周日仔. 理想的护坡结构-模袋混凝土[J]. 华南港工,, (1):24-25.
[5]刘红波,张开新. 鲁地拉水电站地下厂房尾水出口围堰设计与施工[J]. 云南水力发电,2011,2
篇9:钢管混凝土拱桥设计研究的论文
摘要:介绍了上海城市轨道交通明珠线特殊大桥-苏州河桥(25m+64m+25m)的三跨中承式钢管混凝土梁-拱组合体系桥的设计特点,施工阶段划分及结构分析过程和施工难点处理措施。
关键词:钢管混凝土结构;拱桥;设计与施工;徐变控制;
1概述
苏州河桥位于上海城市轨道交通明珠线跨越既有沪杭铁路苏州河桥桥位,与苏州河正交。桥梁需跨越苏州河及两岸的万航渡路和光复西路。河道通航标准为通航水位3.5m,Ⅵ级航道,净宽20m,净高>=4.5m;两岸滨河路规划全宽20m(机非混行),其中机动车道宽8m;两侧非机动车道宽各3m;人行步道宽各3m;两岸滨河路机动车道净高>=4.50m,非机动车道净高>=3.50m,人行道净高>=2.5m。桥式采用25+64+25m三跨中承式钢管混凝土梁-拱组合体系桥,桥梁全长114m,宽12.5m。外部结构体系为连续梁,即拱脚与桥墩处以支座连接,内部为由主纵梁、小纵梁和横梁及钢管混凝土拱肋的组合结构体系。
篇10:钢管混凝土拱桥设计研究的论文
2.1桥型选择
本方案设计的主导思想是在现有桥梁结构的技术水平发展的基础上有所创新,桥梁造型与周围环境相协调,桥式方案力求新颖独特,并充分体现现代化大都市的节奏与气派。
拱桥是一种造型优美的桥型,它的主要特点是能充分发挥材料的受压性能,而钢管混凝土的特点是在钢管内填充混凝土,由于钢管的套箍作用,使混凝土处于三向受压状态,从而显著提高混凝土的抗压强度。同时钢管兼有纵向主筋和横向套箍的作用,同时可作为施工模板,方便混凝土浇筑,施工过程中,钢管可作为劲性承重骨架,其焊接工作简单,吊装重量轻,从而能简化施工工艺,缩短施工工期。
苏州河桥的桥型方案经过研究分析、结构优化及评估论证,最后采用25+64+25m飞鸟式钢管拱桥的设计方案。以抗压能力高的钢管混凝土作为主拱肋,以抗拉能力强的高强钢绞线作为系杆,通过边拱肋的重量,随着施工加载顺序逐号张拉系梁中的预应力筋以平衡主拱所产生的水平推力,最终在拱座基础中仅有很小的水平推力。拱脚与桥墩的连接由固接改为铰接,以避免由于轨道交通无缝线路产生的纵向水平力和温度应力引起拱脚过大的推力而导致拱脚处混凝土开裂,克服了拱桥对基础的苛刻要求。
全桥总布置如图1:
2.2上部结构
主桥为中承式拱桥,主拱理论轴线为二次抛物线,矢跨比为1:4,其中桥面以下部分采用C50钢筋混凝土结构,截面为带圆角的矩形截面。桥面以上部分采用钢管混凝土结构,钢管截面为圆端形,采用A3钢,钢管壁厚16mm,外涂桔红色漆,内填C55微膨胀混凝土。
边拱矢跨比为1:7.4,理论轴线为二次抛物线,截面采用钢筋混凝土矩形截面,按偏心受压构件设计。拱上立柱采用圆形截面钢管混凝土立柱,下端与边拱肋固结,上端设聚四氟乙烯球冠形铰支座,与边纵梁铰接。
主拱每侧设7根吊杆,间距约6.4m,吊杆采用挤包双护层大节距扭铰型拉索,吊杆钢索双护层均为高密度聚乙烯护层(PE+PE桔红色),锚具为冷铸墩头锚。吊杆上端锚固在钢管混凝土拱肋内,下端锚固在横梁底部。
主拱桥面以上部分共设三道一字型风撑,每侧边拱设三道横撑,主拱设一道横撑,以增加全桥的稳定性。拱座采用钢筋混凝土结构,每墩设两个拱座。通过横撑相连。拱座施工时应预先埋好立柱钢管、主拱及边拱伸入拱座内的钢筋,准确对位。
桥面系为由边纵梁、横梁、小纵梁及现浇桥面板组成。边纵梁为箱形断面,边孔与边拱肋相接部分及中拱与边纵梁连接部分为矩形断面,采用C50级部分预应力混凝土结构,在恒载及自重作用下为全截面受压构件。横梁采用C50级预应力混凝土结构,全桥共设小横梁15片,端横梁2片,中横梁与边纵梁接合处2片。全桥共设四片小纵梁(全桥通长)与横梁固结在一起形成格构体系。桥面板采用C40级钢筋混凝土板,桥面板采用在格构系上现浇的方法处理。桥面板的钢筋布置应采取防迷流措施。
桥面排水原则上采用“上水下排”,即横坡加导水槽方式,在桥梁横断面内设0.5%的横坡。承轨台每隔一定的距离断开,向两侧排水。
桥面上部建筑设施包括混凝土道床及轨道、通信信号电缆支架、隔音屏、防噪柱及接触网腕臂柱。桥面布置有:聚氨脂防水层、0.5%双向排水坡、落水管、承轨台及钢轨、I字形钢筋混凝土柱、防噪屏及电缆支架等。每隔30~50m设接触网立柱一对,每隔1000m左右布置一组接触网锚固立柱。桥上不设人行道及照明。
支座采用QGPZ盆式橡胶支座和QGBZ板式橡胶支座。
2.3下部结构
拱桥主墩基础采用桩基础,将⑨层粉细砂层作为桩基持力层,为满足桥梁上部钢轨对基础沉降的要求,经分析计算比较,采用桩径为D=0.8m的钻孔灌注桩,桩长67m,每个主墩12根桩,承台4.8×17.0×2.0m,边墩基础采用8根桩径D=0.8m钻孔灌注桩,桩长67m,承台4.35×16×2.0m,边墩及盖梁为双柱式钢筋混凝土结构。
3结构分析
结构分析采用有限元程序SAP91进行三维空间计算,包括整体分析、稳定分析等,用桥梁专用平面分析程序PRPB和BSACS分别进行了验算。在计算时桥面以上主拱拱肋除按钢管混凝土设计外,还用类似于钢筋混凝土构件的方法进行施工计算,在截面形成阶段采用应力叠加法设计。钢管的套箍系数取0.8。
3.1施工阶段计算
本桥施工体系转换分五个阶段进行,施工中中孔利用既有铁路钢桥作支架,待新桥建成后拆除既有桥。
第一阶段:在支架上现浇两边段(立柱、拱、横梁)及全桥边纵梁,待混凝土达到强度后每片边纵梁内张拉两根预应力束。
第二阶段:将工厂内制造的主拱肋钢管,每侧7段,运到工地,在边纵梁上搭设支架拼装就位。空钢管拱肋合拢后即封住主拱、纵梁结合处,再形成钢管混凝土截面。待主拱内混凝土达到设计强度后即开始张拉吊杆,给吊杆以初始张拉力,后锚固于主拱肋内。现浇中段横梁,待混凝土达到设计强度的90%后,张拉横梁预应力筋,浇全桥小纵梁,待混凝土达到设计强度后,张拉小纵梁内的预应力束。在每片边纵梁两端施加预应力,张拉两根预应力束。
第三阶段:张拉边纵梁内T2及B2各一束,铺装中孔桥面板后,拆除中拱支架。
第四阶段:拆除边拱支架,浇注全桥桥面板,张拉边纵梁内三根预应力束。
3.2成桥阶段计算
进行以下几方面的计算:
1.二期恒载按换算均布荷载分担到横梁和纵梁上;
2.支座沉降计算;
3.温度变化计算;
4.活载为轻轨列车荷载,每列最多八节,每节8轴,重车轴重170kN,轻车轴重80kN,双线荷载;
5.计算承轨台在成桥后三个月、六个月、一年、三年的徐变变形量。
3.3稳定性分析
在本桥的稳定性方面,设计时考虑两片主拱之间加设三道一字型风撑,拱肋基础连成整体。全桥整体稳定分析采用SAP93曲屈稳定分析程序进行计算,弹性稳定系数10-12。
3.4桩基计算
桩基设计从三方面控制:
1.地基承载力控制:Nd=(up?fili+fipAp)/K;
2.桩身强度控制:s?0.2R;
3.沉降控制:满足轨道变形的要求,控制在2cm。
最终沉降量采用分层总和法计算,将桩基承台桩群与桩之间土作为实体深基础,且不考虑沿桩身的'压力扩散角,压缩层厚度自桩端全断面算起,至附加压力等于土的自重压力的20%处。
沉降计算结果
4施工关键问题
4.1与既有铁路桥关系及处理
苏州河桥桥位选择的目的即是利用旧沪杭铁路上的旧铁路桁架作为施工架桥的临时支架,新桥完成后即拆除旧桥。
经调查得知:沪杭铁路内环线上既有的苏州河桥,建于19,基础桩采用木桩,上部结构于1994年更换新钢桁梁,钢桁梁为一孔跨度44.34m的简支梁,其全长45.4m,桁高5.5m,采用高强螺栓连接。一孔重量为132.98t(包括东侧人行道及上弦检查走道,人行道1.5m)。该桥为单线桥,设计活载为中活荷载。苏州河桥其南端接万航渡路平交道口,铁路通讯、信号电缆从桥下穿过,市区电线、高压线由桥侧上空跨过。
因此桥梁设计时应考虑两个问题,其一,如何使新桥在施工的各个阶段施加于支架上的荷载不超过旧有铁路桥的设计承载力,其二,保证旧桥拆除时不影响新桥的安全稳定。
设计时,每个施工阶段的计算均增加了一项,即验算旧桥的承载力,对支架拆除顺序进行了准确规定。但在施工时,有遇到以下问题:
1.根据现场量测结果,新桥纵轴线偏离老桥轴线(南端82mm,北端73mm),使得老桥偏心受力。
2.由于新桥全宽12.5m,而老桥全宽5.9m。新桥的两侧边纵梁均位于老桥的外面,故施工支架必须伸出老桥之外,采用I字钢横向架设于老桥顶上,以满足立模的需要和刚度要求。
3.由于老桥桁梁的两端为斜焊,上面不能架设I字钢,另外,既有人行道在施工期内又不能封闭,故必须对老桥进行接长处理,以满足架设I字钢和桥上支架与岸上满堂支架连接的需要,老桥接长采取在上弦杆用2根并列的I200mm接出,梁端部和岸上的竖杆均采用300mm的钢管,在梁的斜杆中间另加一根竖杆,各杆件的连接均采取满焊的方式,并在纵横向加设斜拉杆以增加稳定。
4.由于轨顶标高限制,老桥梁顶与新桥边纵梁底的间距较小,架设施工支架I55I字钢后,仅剩32cm左右的间隙,故边纵梁底模下的纵向隔栅只能采用10X20cm的方木,在纵向隔栅与I字钢之间垫楔形木,用以调整梁底标高,同时便于以后拆模。
5.I字钢分别架设在老桥钢桁梁的节点及两节点间1/3处,两端各挑出4.03-4.12m和2.48-2.57m,为保证I字钢的稳固,在老桥桁梁处采用U形钢筋将I字钢与老桥上弦杆焊接,同时在I字钢下部,用75X75角钢纵向连接成整体,该纵向角钢又可作为斜撑的支撑点。
6.在老桥的梁底与桥台的支承垫石、台帽间均用硬木和钢板等加以塞死,以增加老桥钢梁的稳固。
由于施工时采取的施工方法使得施工荷载超过设计荷载,故设计单位根据施工方式及拆模顺序的要求,重新验算了老桥承载力、老桥上弦杆挠度、老桥横向倾覆稳定、施工支架I字钢悬臂端挠度及I字钢稳定。
4.2预应力梁张拉
预应力张拉时,应力应变实行双控,张拉程序为:0初应力(0.1σk)1.0σk持荷5分钟锚固。设计取值已考虑锚固损失,故不采用超张拉。从0.1σk至1.0σk的伸长量数值为控制值,该值与0.9σk的设计伸长值相比较,判断是否超标。施工单位也实测弹性模量,核算伸长量。
预应力张拉时按强度、龄期实行双控。强度要求达到100%,龄期控制在9-19天。
锚具供货厂家提供的夹片需片片检验硬度,并控制在允许范围内,现场按规定抽检。
4.3钢管拱的吊运和安装、钢管内混凝土灌注
由于在旧桥上搭设施工支架,施工场地有限,钢管拱肋安装采取边纵梁上支设管排、排架中部铺上钢轨滑道,以及滑辘提升措施的施工方案,取保安全施工。由于中承式拱与桥面连接处需三方向固接,即此处的结点需连接钢管拱、边纵梁、横梁与桥面以下钢筋混凝土拱肋,而边纵梁、横梁为预应力梁,钢管拱内有加劲肋和钢筋,三者相连形成固接,要求强度和质量非常高,而钢管拱的安装精度控制为6mm,施工难度非常大。
同时,由于在同类型桥梁中,该桥的跨度较小,钢管断面不会很大,为方便混凝土灌注,同时考虑到景观问题,钢管断面选择为椭圆形断面,在混凝土灌注时要求严格控制骨料规格的要求,确保混凝土灌注均匀、饱满。
4.4基础施工
苏州河桥主墩距老桥基础很近,南主墩中心与老桥台边相距6.5m,北主墩中心与老桥台边相距5.8m,由于老钢桥将作为新建桥的临时施工支架,因此施工中老桥不能受到扰动。同时进入汛期后,在主墩基础施工时也需确保防汛的要求,最后主墩施工采取如下措施:
a.采用沉井施工法,确保对土体的围护。
b.采用超长护筒(河床以下2.0m),确保不因渗水而产生塌孔。
c.采用沉井封底,克服因渗水而出现沉陷。
主墩总体施工顺序如下:沉井制作、沉井下沉、钻机操作平台布置、埋设护筒、沉井封底、钻孔桩施工、承台和拱墩施工。
4.5施工监测
由于该桥结构形式复杂,施工难度大,因此,施工时进行了以下监测:
1.徐变变形
对梁、拱的徐变变形进行跟踪量测。分别在桥面边跨端部、边跨跨中、中墩支点处桥面、纵横梁与拱相交处、中跨中和拱顶处设8个测试断面,共23个点。
2.拱肋钢管截面应力监测。
3.施工过程中各个阶段拱脚实施变位、倾角监控。
4.现场实测钢管混凝土弹性模量发展曲线。
5经济技术指标
该桥全长114米,宽12.5米,桥梁面积1425m2,桥梁总概算1216万元,综合经济指标为8300元/m2。
6综合分析
钢管混凝土拱桥首次在轨道交通桥梁中(尤其是在上海这种软土地区)应用,是一种大胆的尝试,它主要有以下几个特点:
1.桥梁造型优美:飞鸟式钢管拱桥横跨苏州河,形成明珠线的一道风景;
2.以抗压能力高的钢管混凝土作为主拱肋,以抗拉能力强的高强钢绞线作为系杆,通过边拱肋的重量,随着施工加载顺序逐号张拉系梁中的预应力筋以平衡主拱所产生的水平推力,最终在拱座基础中仅有很小的水平推力。克服了拱桥对基础的苛刻要求。
3.利用旧沪杭铁路上的旧铁路桁架作为施工架桥的临时支架,新桥完成后即拆除旧桥,解决了水上施工的难点。
参考文献
1.上海城市轨道交通明珠线苏州河桥施工设计总说明,4月。
2.陈宝春,钢管混凝土拱桥发展综述,《桥梁建设》,第二期。
3.上海城市轨道交通明珠线苏州河桥施工组织设计,196月。
篇11:小运河桥宽空心板梁病害分析和加固设计
小运河桥宽空心板梁病害分析和加固设计
以宁通公路小运河桥为背景,通过对钢筋混凝土空心板梁病害的检测调查,分析了其主要病害包括裂缝、横向联结破坏及钢筋锈蚀等的`成因,并针对病害进行了相应的加固设计,为今后类似老桥加固提供了参考.
作 者:杨曙岚 Yang Shulan 作者单位:江苏省交通科学研究院,江苏南京,210017 刊 名:现代交通技术 英文刊名:MODERN TRANSPORTATION TECHNOLOGY 年,卷(期):2009 6(3) 分类号:U445.71 关键词:桥梁工程 宽空心板梁 桥梁病害 加固设计 bridge engineering wide hollow slab beams reinforcement bridge disease reinforcement design【刚架拱桥病害分析及加固设计研究论文】相关文章:
5.辣椒病害防治论文
10.高层建筑节能设计研究论文






文档为doc格式