《圆内接四边形》的优秀教学反思
“lamwan”通过精心收集,向本站投稿了13篇《圆内接四边形》的优秀教学反思,今天小编在这给大家整理后的《圆内接四边形》的优秀教学反思,我们一起来阅读吧!
篇1:《圆内接四边形》的优秀教学反思
《圆内接四边形》的优秀教学反思
今天,教学内容是《圆内接四边形》,这是继《圆周角》教学内容之后的第二个课时。教学内容是通过上一节所学的“圆周角定理”得出“圆内接四边形的对角互补”,其中还需要讲解“圆内接四边形”概念,及例题。
我初步设计的教学方案是:通过习题回顾------引出图形“圆和四边形”------介绍圆内接四边形的概念------提出讨论:是否每一个四边形均有外接圆?------引发探讨:圆内接平行四边形(菱形、梯形等)是什么特殊四边形?为什么?(合作交流)------例题讲解(学生探究)------自主练习------总结归纳------布置自行设计的作业(涉及到圆周角定理及圆内接四边形定理的题目,因课本后没有相应练习)。
开始的教学非常顺利,习题回顾对学生巩固昨天所学起到很好的作用,说明“圆周角”的内容学生应该基本掌握。而且这道题的图形正好出现“圆与四边形”,顺其自然地,我很自然地提出“圆内接四边形”的概念,并加以讲解。当我提出问题:是否每一个四边形均有外接圆?此时,学生进入到沉思时间,学生们的思想正在高速运行。令我惊讶的是,短时间中就有学生回答:不一定,理由是必须满足“四个顶点到同一个定点的距离相等。”学生的回答让我高兴,说明学生对一个多边形能否有外接圆的要求理解透彻!还说明学生对“圆”的概念理解深刻,还能证明我所教的学生的'思维敏捷,反应迅速,综合能力强!
紧接下来,为了保持这种良好的思维程度,调动所有学生参与讨论的积极性,我马上提出问题:圆内接平行四边形是( )。这是一个填空问题,按理说,前面的问题都能很快回答出来,这种题目对学生来说应该简单。但是,出乎预料的是,学生说道的答案竟然有“矩形、正方形”,此时的我,真的不知道说什么好!竟然有一个数学还好的学生说:矩形或正方形。我马上说:学生还分小学、初中、高中生。他竟然没有反映!但是很多同学反映了,只能是矩形。这位同学可能是站着很紧张,可以愿谅的。
当大家都认可之后,我提出问题:为什么?
所有学生都沉默了!
时间在流失,离下课时间越来越少了。本来才40分钟,不能这样流失。我说:有没有一点思路?接下来又说:证明一个平行四边形有哪些方法?
学生在想,有学生在轻轻回答,当然,他们能把如何证明一个平行四边形是矩形的方法说出来,这点我表扬了他们。
我想还是让学生来答证明方法,必竟是很容易的。但是,我也想不到的结果出现了。
学生1:因为对边平行,所以邻角互补,又因为另一组对边平行,所以另一组对角互补,所以有角相等。同理,对角相等。当我听到这时,我吃惊了!我说:为什么要证平行四边形对角相等?难道没有学过吗?(因为筹建宜春八中,没有上他们的课),但学生们都说:学过!
学生2:证明四个角是直角。
学生3:证明有一个角为直角
……
种种方法,让我哭笑不得。我没有想到,学生对四边形的知识是这样的贫乏。基本理论的缺失,真的让学生解决问题无从下手。我想:这节课我一定会拖堂的(因为我上课从未出现过拖堂现象,但今天必须,我没有办法了)!
我只有自行解说了:平行四边形,对角相等;又是圆内接四边形,所以对角互补,所以这两个角都等于90度。所以这个平行四边形是矩形!学生听后,大声笑了,他们说这么简单?我说:就这么简单,难道你认为有错吗?学生说:没有。
课后,我想,为什么学生这么简单的问题都答不出?根据学生这节课的反映,说明他们以前的基本知识缺乏,所以思维没有跟上。在以后的教学中,特别要注意以前的知识与现在知识的联系,多向学生讲解,这样才能有收获!
篇2:《圆内接正多边形》的教学反思
《圆内接正多边形》的教学反思
1、要创造性的使用教材
教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。
2、相信学生并为学生提供充分展示自己的机会
通过课前小组合作社会调查、课堂展示正多边形的过程,为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题解决问题的独到见解,以及思维的误区,以便指导今后的教学。课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。
3、在教学中注意的方面
本节新概念较多,对概念的教学要注意从“形”的角度去认识和辨析,但对概念的.严格定义不能要求过高。在概念教学中,要重视运用启发式教学,让学生从“形”的特征获得对几何概念的直观认识,鼓励学生用自己的语言表述有关概念,再进一步准确理解有关概念的文字表述,促进学生主动学习。通过形象生动的直观图形,给学生营造一个问题情景,通过问题的探索来调动学生的内在动力,提高学习积极性,提高探索知识的能力。
4、注意改进的方面
在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性。
篇3: 《圆内接正多边形》的教学反思
今天,教学内容是《圆内接四边形》,这是继《圆周角》教学内容之后的第二个课时。教学内容是通过上一节所学的“圆周角定理”得出“圆内接四边形的对角互补”,其中还需要讲解“圆内接四边形”概念,及例题。
我初步设计的教学方案是:通过习题回顾------引出图形“圆和四边形”------介绍圆内接四边形的概念------提出讨论:是否每一个四边形均有外接圆?------引发探讨:圆内接平行四边形(菱形、梯形等)是什么特殊四边形?为什么?(合作交流)------例题讲解(学生探究)------自主练习------总结归纳------布置自行设计的作业(涉及到圆周角定理及圆内接四边形定理的题目,因课本后没有相应练习)。
开始的教学非常顺利,习题回顾对学生巩固昨天所学起到很好的作用,说明“圆周角”的内容学生应该基本掌握。而且这道题的图形正好出现“圆与四边形”,顺其自然地,我很自然地提出“圆内接四边形”的概念,并加以讲解。当我提出问题:是否每一个四边形均有外接圆?此时,学生进入到沉思时间,学生们的思想正在高速运行。令我惊讶的是,短时间中就有学生回答:不一定,理由是必须满足“四个顶点到同一个定点的距离相等。”学生的回答让我高兴,说明学生对一个多边形能否有外接圆的要求理解透彻!还说明学生对“圆”的概念理解深刻,还能体现我所教的学生的思维敏捷,反应迅速,综合能力强!
篇4: 《圆内接正多边形》的教学反思
教学手段往往是老师讲学生听,老师示范学生照做,因此造成重难点难突破,学生云里雾里。重复命令是本单元的一大难点,不容易理解。我采用课件展示的方式呈现海龟的画图过程,让学生更好地了解重复命令,通过海龟的运动,位移,旋转等动作将抽象的思维变成生动的动画,加速学生的领悟,做到事半功倍。
本节课通过“观察”——“实践”——“总结”三个环节,锻炼了学生的思维,有增强了他们的操作能力,大大提高了课堂的趣味性。学生通过主动参与课堂教学,积极动手操作练习、自主探究新知识很快掌握了repeat命令的使用,会用这个命令画出自己喜欢的正多边形,这节课效果达到了预期。
当然,本课中出现的问题就是360度外角和这个概念,我认为应该在海龟画图形时总要转360度的这个知识,应该再多讲几次,讲明为什么,以达到加深学生的印象的目的。
篇5: 《圆内接正多边形》的教学反思
为本节课要回顾正多边形的内容,又要学习它和圆的之间的关系,有很多新的概念,对后面圆的有关计算的学习起着关键性作用。
为了更好的让学生学习好本节内容,我将两节课时教学内容进行如下设计:
第1课时在引入时,启发学生探索运用量角器画正多边形,然后介绍基本概念,并探索数量关系。
第2课时巩固有关正多边形和圆的计算,并由此探求特殊正多边形运用尺规方法画图。
整个课堂紧张而有序,付出而有收获,活动而又稳定,学生积极参与并思考,主动性全部被调动起来了,教师完全只是在启发、引导、点评,促使学生一步一步向成功的顶峰前进!
篇6: 《圆内接正多边形》的教学反思
1.由于这一课运用的知识概念较多易混淆,所以设计以下教学流程.
“课前延伸——课内探究——自主探究——课后提升”
2.根据学生实际情况,设计内容和教法:
(1)初三学生面临人生的第一次挑战,容易出现紧张的情绪,紧张的情绪会严重的影响了学生的学习效率.因此,教学过程中创设的问题情境应具有很强的实用性,转移学生的注意力,以期集中学生的注意力,达到高效率地达到本节课学习目的.
(2)初三学生具有一定的概括能力、推理能力,所以在教学时,可让学生先认真思考后充分讨论,以便问题能够研究的更深入.
(3)初三学生已经具备了一定自学能力,所以本节课中,多为学生创造自主学习、合作学习的时间和空间,让他们主动参与、勤于动手、从而乐于探究正多边形和圆中量与量之间关系的应用.再通过不同类型的问题的探讨,使学生深化理解本节课的知识,内化为自己的知识.
3.注重创设教学情境,激活学生思维,力求让生生产生共振:
从认知的角度看,情境可视为人的认知活动的信息来源.数学情境是含有相关数学知识和数学方法的情境,同时也是数学知识产生的背景,它不仅能激发数学问题的提出,也能为数学问题的解决提供相应的信息和依据.本课的教学情境的创设主要表现在:
(1)以问题为导向,设计数学情境.
(2)以数学知识发生为依托,设计数学情境.
(3)借助多媒体.根据本课内容特点,运用色彩斑斓的图片展示及形象生动的小动画,引起学生对所学内容的学习兴趣和改善学习的乏味心理,促进学生的心理由潜伏状态转变为活跃状态.
4.教学效果:
这堂课老师教得轻松,学生学得愉快,每个学生都参与到活动中去,投入到学习中来,使学习的过程充满快乐和成功的体验,促使学生自主学习,勤于思考和勇于探究,形成良好的学习品质.
由于这堂课留给学生的时间很足,胆大、性格开朗的学生特别活跃,也容易引起老师的注意,而对那些胆小性格较内向的学生就注意不够.个别理解能力和接受能力慢一些的学生,给予他们的帮助还不到位,这些学生课后作业完成不够好.
篇7: 《圆内接正多边形》的教学反思
在求面积时,学生所使用的方法各种各样,我让所有学生自行探讨,结果有:分成六个等边三角形求解的、有分成梯形求解的、有分成直角三角形求解的、有分成等腰三角形+矩形求解的'等等方法,每一种方法让学生讲解,教师又给予指导,从中又发现很多内容,如:求正六边形的对角线有两个值等。
整个课堂紧张而有序,付出而有收获,活动而又稳定,学生积极参与并思考,主动性全部被调动起来了,教师完全只是在启发、引导、点评,促使学生一步一步向成功的顶峰前进!
课后,来观摩听课的宜春学院数理学院的见习生们齐声说道:老师,您的课真是太精彩的。我们受益匪浅,以后还想来听。
篇8:圆的内接四边形
1. 知识结构
2. 重点、难点分析
重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法.
难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的
外角和它的内对角的相互对应位置.
3. 教法建议
本节内容需要一个课时.
(1)教师的重点是为学生创设一个探究问题的情境(参看教学设计示例),组织学生自主观察、分析和探究;
(2)在教学中以“发现——证明——应用”为主线,以“特殊——一般”的探究方法,引导学生发现与证明的思想方法.
一、教学目标:
(一)知识目标
(1)了解圆内接多边形和多边形外接圆的概念;
(2)掌握圆内接四边形的概念及其性质定理;
(3)熟练运用圆内接四边形的性质进行计算和证明.
(二)能力目标
(1)通过圆的特殊内接四边形到圆的一般内接四边形的性质的探究,培养学生观察、分析、概括的能力;
(2)通过定理的证明探讨过程,促进学生的发散思维;
(3)通过定理的应用,进一步提高学生的应用能力和思维能力.
(三)情感目标
(1)充分发挥学生的主体作用,激发学生的探究的热情;
(2)渗透教学内容中普遍存在的相互联系、相互转化的观点.
二、教学重点和难点:
重点:圆内接四边形的性质定理.
难点:定理的灵活运用.
三、教学过程设计
(一)基本概念
如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.如图中的四边形ABCD叫做⊙O的内接四边形,而⊙O叫做四边形ABCD的外接圆.
(二)创设研究情境
问题:一般的圆内接四边形具有什么性质?
研究:圆的特殊内接四边形(矩形、正方形、等腰梯形)
教师组织、引导学生研究.
1、边的性质:
(1)矩形:对边相等,对边平行.
(2)正方形:对边相等,对边平行,邻边相等.
(3)等腰梯形:两腰相等,有一组对边平行.
归纳:圆内接四边形的边之间看不出存在什么公同的性质.
2、角的关系
猜想:圆内接四边形的对角互补.
第 1 2 页
篇9:数学教案-圆内接四边形
圆内接四边形
执教者:刁正久
一、教学目标 :
掌握圆内接四边形的相关概念以及圆内接四边形的性质定理。
二、教学重点和难点:
重点:圆内接四边形的性质定理。
难点:圆内接四边形性质定理的准确、灵活应用。
三、教学过程 :
1、带领学生复习圆内接三角形和三角形的外接圆的概念。
2、利用几何画板:
①②(1)探索:如图,点D在⊙O上(和A、C不重合)移动,试讨论∠D和∠B的大小关系?
(学生对第一种情况比较熟悉,但对于第二种情况做适当的提示:利用几何画板把D点在圆上移动!)
通过学生的思维,可归纳出∠D和∠B的大小关系是互补。
利用此时的几何图形,由学生模仿圆内接三角形的定义得到圆内接四边形的概念并用电脑加以显示。立即让学生利用给出的圆内接四边形的定义把刚才的结论重新归纳,从而得到定理:
圆内接四边形的对角互补。(书写符号语言)
(2)对定理进行巩固
①如图,四边形ABCD为⊙O的内接四边形,
已知∠BOD=140°,则∠BAD= °∠BCD= °
②如图,已知AB是圆O的直径,∠BAC=40°,D是弧AB上的任意一点,那么∠D的度数是°
(3)外角的引入
紧接着前面的练习,和学生共同研究探索题:
(对于上面的探究性应用题,针对不同层次的学生都可以得到一定的发挥)
当学生最后得到∠E的`度数后,立即提问:
从∠A=70°到求出∠E=110°,在整个过程中,哪个角起了关键的作用?从而把学生的注意力转向外角∠DCF(目的是让学生明白学习定理的原因)并且引导学生讨论∠DCF和∠A的大小关系?从而得到∠DCF=∠A的结论。利用几何画板的优势,隐藏⊙O2和线段DE、EF得到外角的基本图形
再引导学生得出外角和内对角的定义,让学生把刚才的结论归纳成定理即:圆内接四边形的任何一个外角都等于它的内对角。
(书写符号语言)
(4)对定理进行必要的巩固练习
如图,⊙O1和⊙O2都经过A、B两点,图中有两组相等的角,每组有三只角相等,你发现了吗?
(5)讲解例题:
如图,⊙O1和⊙O2都经过A、B两点,经过点A的直线与⊙O1相交于点C,与⊙O2相交于点D,经过点B的直线与⊙O1相交于点E,与⊙O2相交于点F.试猜想CE和DF有何特殊的位置关系?并加以证明。
(突出作辅助线的必要性,并在黑板上书写过程)
3、课堂小结:
通过本节课的学习,你学会了那些知识点?(学生完成)
4、课堂练习:
①②
(1)如图,已知∠BAE=125°,则∠BCD= °∠BOD= °
(2)如图,已知在圆的内接四边形中,AB=AC,E是CD延长线上一点,你能猜想出∠ADE和∠ADB的大小关系吗?并证明。
(3)探索:
圆内接平行四边形是什么特殊的四边形?
(给学生一定的时间思考,然后充分利用几何画板,让学生自己上前去操作电脑拖动鼠标移动平行四边形,调动学生思维的积极性,并且让学生的思维得到了充分的展示)
思考:
你能说出下面图中有几对相似三角形吗?并说出其中一对相似三角形的证明过程。
(4)
5、布置作业 :P86―15、16、17
注:参加12月区评优课比赛并获一等奖
篇10:数学教案-圆的内接四边形
1. 知识结构
2. 重点、难点分析
重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法.
难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的
外角和它的内对角的相互对应位置.
3. 教法建议
本节内容需要一个课时.
(1)教师的重点是为学生创设一个探究问题的情境(参看教学设计示例),组织学生自主观察、分析和探究;
(2)在教学中以“发现――证明――应用”为主线,以“特殊――一般”的探究方法,引导学生发现与证明的思想方法.
一、教学目标 :
(一)知识目标
(1)了解圆内接多边形和多边形外接圆的概念;
(2)掌握圆内接四边形的概念及其性质定理;
(3)熟练运用圆内接四边形的性质进行计算和证明.
(二)能力目标
(1)通过圆的特殊内接四边形到圆的一般内接四边形的性质的探究,培养学生观察、分析、概括的能力;
(2)通过定理的证明探讨过程,促进学生的发散思维;
(3)通过定理的应用,进一步提高学生的应用能力和思维能力.
(三)情感目标
(1)充分发挥学生的`主体作用,激发学生的探究的热情;
(2)渗透教学内容中普遍存在的相互联系、相互转化的观点.
二、教学重点和难点:
重点:圆内接四边形的性质定理.
难点:定理的灵活运用.
三、教学过程 设计
(一)基本概念
如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.如图中的四边形ABCD叫做⊙O的内接四边形,而⊙O叫做四边形ABCD的外接圆.
(二)创设研究情境
问题:一般的圆内接四边形具有什么性质?
研究:圆的特殊内接四边形(矩形、正方形、等腰梯形)
教师组织、引导学生研究.
1、边的性质:
(1)矩形:对边相等,对边平行.
(2)正方形:对边相等,对边平行,邻边相等.
(3)等腰梯形:两腰相等,有一组对边平行.
归纳:圆内接四边形的边之间看不出存在什么公同的性质.
2、角的关系
猜想:圆内接四边形的对角互补.
(三)证明猜想
教师引导学生证明.(参看思路)
思路1:在矩形中,外接圆心即为它的对角线的中点,∠A与∠B均为平角∠BOD的一半,在一般的圆内接四边形中,只要把圆心O与一组对顶点B、D分别相连,能得到什么结果呢?
∠A=,∠C=
∴∠A+∠C=
思路2:在正方形中,外接圆心即为它的对角线的交点.把圆心与各顶点相连,与各边所成的角均方45°的角.在一般的圆内接四边形中,把圆心与各顶点相连,能得到什么结果呢?
这时有2(α+β+γ+δ)=360°
所以 α+β+γ+δ=180°
而 β+γ=∠A,α+δ=∠C,
∴∠A+∠C=180°,可得,圆内接四边形的对角互补.
(四)性质及应用
定理:圆的内接四边形的对角互补,并且任意一个外角等于它的内对角.
(对A层学生应知,逆定理成立, 4点共圆)
例 已知:如图,⊙O1与⊙O2相交于A、B两点,经过A的直线与⊙O1交于点C,与⊙O2交于点D.过B的直线与⊙O1交于点E,与⊙O2交于点F.
求证:CE∥DF.
(分析与证明学生自主完成)
说明:①连结AB这是一种常见的引辅助线的方法.对于这道例题,连结AB以后,可以构造出两个圆内接四边形,然后利用圆内接四边形的关于角的性质解决.
②教师在课堂教学中,善于调动学生对例题、重点习题的剖析,多进行一点一题多变,一题多解的训练,培养学生发散思维,勇于创新.
巩固练习:教材P98中1、2.
(五)小结
知识:圆内接多边形――圆内接四边形――圆内接四边形的性质.
思想方法:①“特殊――一般”研究问题的方法;②构造圆内接四边形;③一题多解,一题多变.
(六)作业 :教材P101中15、16、17题;教材P102中B组5题.
探究活动
问题: 已知,点A在⊙O上,⊙A与⊙O相交于B、C两点,点D是⊙A上(不与B、C重合)一点,直线BD与⊙O相交于点E.试问:当点D在⊙A上运动时,能否判定△CED的形状?说明理由.
分析 要判定△CED的形状,当运动到BD经过⊙A的圆心A时,此时点E与点A重合,可以发现△CED是等腰三角形,从而猜想对一般情况是否也能成立,进一步观察可发现在运动过程中∠D及∠CED的大小保持不变,△CED的形状保持不变.
提示:分两种情况
(1)当点D在⊙O外时.证明△CDE∽△CAD’即可
(2)当点D在⊙O内时. 利用圆内接四边形外角等于内对角可证明△CDE∽△CAD’即可
说明:(1)本题应用同弧所对的圆周角相等,及圆内接四边形外角等于内对角,改变圆周角顶点位置,进行角的转换;
(2)本题为图形形状判定型的探索题,结论的探索同样运用图形运动思想,证明结论将一般位置转化成特殊位置,同时获得添辅助线的方法,这也是添辅助线的常用的思想方法;
(3)一般地,有时对几种不同位置图形探索得到相同结论,但不同位置的证明方法不同时,也要进行分类讨论.本题中,如果将直线BD运动到使点E在BD的反向延长线上时,
△CDE仍然是等腰三角形.
篇11:圆优秀教学反思
圆优秀教学反思
近几天学生开始学习圆的知识,学生最感兴趣的就是用圆和扇形等基本图形设计不同的图案。根据知识特点和教材编排,我利用课件,借助动画清晰地演示了几个组合图案。之后,为了节约时间,我随手在黑板上画了几个不太标准的圆形组合图案草图,然后学生开始练习。
学生的作业交上来以后,我发现不少同学的图形画得不标准,圆形不圆,正方形不正也不方,半圆根本就不是圆的一半……
看着学生的“作品”,我第一反应就是学生顽皮,不认真作图,敷衍了事,完成之后想早点出去玩。于是我让他们再画一遍,但是再次完成的作品仍然好不了多少。
这到底怎么回事呢?
我走进学生身边,看他们画图,寻找原因,反观自己的教学,查阅资料,终于发现,学生之所以出现错误,并不完全是“粗心”,有我随意草图的不规范示范造成的结果,更多是因为感知、技能、思维等方面的缺陷。
画圆其实不仅仅就是画圆,而是通过画圆进一步认识圆,认识圆的特征。学生对于圆的特征认识不清楚,画出的“圆”就不会是同一圆内所有半径都相等。学生虽然通过观察能看出一些组合图形的组合方法,但是并不表示他们一定能举一反三。画圆的技巧也需要学生仔细观察,用心揣摩,通过细心操作才能完成。
于是在接下来的时间,我让学生观察他们的作品,并组织大家评价,一起分析原因,寻找解决问题的'办法。
同学们你一言我一语,总结出了以下注意事项:画图之前先观察和思考,组合图形是由哪些基本图形组合起来的,是通过平移还是旋转得到的,是顺着哪个方向移动,转动的角度是多少?画圆先得确定中心点,这样固定之后,圆的位置就确定了。测量圆的半径,固定圆规两脚尖的长度,确定圆的大小。圆规固定的那只脚不能动,动了位置会变。转动圆规时要轻轻的转,用力过大会使两脚之间的距离改变或者导致铅笔芯折断。铅笔芯的长度要合适,两只脚尖的长度一样。
我也作出承诺:我尽力做到画出标准的图形。
这些总结,有方法也有技巧,最难能可贵的,还是学生通过自己的切身体会得来的。什么是教育?爱因斯坦的回答是“把所学的东西都忘了,剩下的就是教育”。我想,通过画圆的学习,留在学生心中的,应该不仅仅是正确的设计出图案吧?
篇12:《四边形内角和》教学反思
本节课是在学生已有知识经验基础上,设计了一系列探究活动,让学生经历观察、思考、推理、归纳的过程,体会从特殊到一般的探寻规律方法,教师在教学中力图体现以下两点思考。
1.经历“猜想+验证”,体会转化思想的运用。
在探究新知之初,教师鼓励学生猜想任意四边形的内角和,并动手验证。学生很快呈现的方法精彩而有丰富,在辨析的过程中,充分感受到转化的思想在解决问题中的作用。他们收获的不仅是数学知识,更重要的是习得了解决问题的策略和方法。
2.在算术的情境中,发展学生的代数思维。
教学从熟悉的生活情境引入,较好地激发了学生的探究欲望。在学会用转化的思想初步探索四边形内角和之后,教师组织学生继续探究五边形、六边形等的内角和,同时不断引导学生观察和发现:每次分割出的三角形个数与多边形边数之间的关系,并将这一关系符号化、一般化、结构化,从而概括出n边形的内角和计算公式。在探索新知的过程中,发展了学生的代数思维。
正如知名华人数学家、美国特拉华大学数学系和教育学院教授蔡金法说过:“帮助学生在小学阶段形成代数思维的习惯,是更有效减缓或消除日后他们对代数学习的抵制的方法”。如果我们能在平时的教学中,结合算术情境中相关联的素材渗透代数思维,一定能帮助学生积累丰富的代数学习经验,并为他们打通算术和代数思维的学习通道。
篇13:《四边形内角和》教学反思
本节课是在学习三角形内角和的基础上展开的,由于学生有了学习基础,而且验证的过程与三角形的基本相似,所以本节课的教学主要是放手让学生通过小组合作,动手验证。
在教学中我给学生很大的思考空间,如在小组交流,使学生认识到可以通过多种突径来验证一般的四边形内角和,可以运用量一量,剪一剪,分一分等方法进行验证。
探究过程中归纳、猜想和验证的数学思想渗透,使学生感悟到数学的神奇和奥妙,提高了学生学习数学的兴趣,增强了学好数学的信心。在此基础上,再引导学生通过把四边形分割成三角形的方法,理论上再证明这一规律就更加完美。阿探究过程中归纳、猜想和验证的数学思想渗透,使学生感悟到数学的神奇和奥妙,提高了学生学习数学的兴趣,增强了学好数学的信心。在此基础上,再引导学生通过把四边形分割成三角形的方法,理论上再证明这一规律就更加完美。
探究过程中归纳、猜想和验证的数学思想渗透,使学生感悟到数学的神奇和奥妙,提高了学生学习数学的兴趣,增强了学好数学的信心。在此基础上,再引导学生通过把四边形分割成三角形的方法,理论上再证明这一规律就更加完美。阿探究过程中归纳、猜想和验证的数学思想渗透,使学生感悟到数学的神奇和奥妙,提高了学生学习数学的兴趣,增强了学好数学的信心。在此基础上,再引导学生通过把四边形分割成三角形的方法,理论上再证明这一规律就更加完美。
【《圆内接四边形》的优秀教学反思】相关文章:
3.圆教学反思
5.圆周长教学反思
7.反思圆
8.圆的认识教学反思
10.《圆的面积》教学反思






文档为doc格式