圆的面积计算公式推导的教学反思
“jameschang”通过精心收集,向本站投稿了19篇圆的面积计算公式推导的教学反思,下面是小编为大家整理后的圆的面积计算公式推导的教学反思,以供大家参考借鉴!
篇1: 《圆柱体积计算公式的推导》教学反思
本节可的教学内容是九年义务教育六年级下册的《圆柱的体积》,“圆柱体积计算公式的推导”是在学生已经学习了“圆的面积计算”、“长方体的体积”、“圆柱的认识”等相关的形体知识的基础上教学的.同时又是为学生今后进一步学习其他形体知识做好充分准备的一堂课.对此,我作如下反思:
一、学生学到了有价值的知识。
学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。
二、培养了学生的科学精神和方法。
新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。
三、促进了学生的.思维发展。
传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。
本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。
篇2:圆柱体积计算公式的推导教学反思
圆柱体积计算公式的推导教学反思
“圆柱体积计算公式的推导”是在学生已经学习了“圆的面积计算”、“长方体的体积”、“圆柱的认识”等相关的形体知识的基础上教学的。同时又是为学生今后进一步学习其他形体知识做好充分准备的一堂课。
课始,教师创设问题情境,不断地引导学生运用已有的生活经验和旧知,探索和解决实际问题,并制造认知冲突,形成了“任务驱动”的探究氛围。
展开部分,教师为学生提供了动手操作、观察以及交流讨论的平台,让学生在体验和探索空间与图形的过程中不断积累几何知识,以帮助学生理解现实的三维世界,逐步发展其空间观念。
练习安排注重密切联系生活实际,让学生运用自己刚推导的`圆柱体积计算公式解决引入环节中的两个问题,使其认识数学的价值,切实体验到数学存在于自己的身边,数学对于了解周围世界和解决实际问题是非常有作用的。
教师无论是导入环节,还是新课部分都恰当地引导学生进行知识迁移,充分地让学生感受和体验“转化”这一解决数学问题重要的思想方法。同时,还合理地运用了多媒体技术,形象生动地展示了“分成的扇形越多,拼成的立体图形就越接近于长方体”,有机地渗透了极限的初步思想。
篇3:《圆柱体积计算公式的推导》的教学反思
《圆柱体积计算公式的推导》的教学反思
本节可的教学内容是九年义务教育六年级下册的《圆柱的体积》,“圆柱体积计算公式的推导”是在学生已经学习了“圆的面积计算”、“长方体的体积”、“圆柱的认识”等相关的形体知识的基础上教学的.同时又是为学生今后进一步学习其他形体知识做好充分准备的一堂课.对此,我作如下反思:
一、学生学到了有价值的知识。
学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。
二、培养了学生的`科学精神和方法。
新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。
三、促进了学生的思维发展。
传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。
本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。
篇4:圆的面积计算公式推导的教学反思
“圆的周长与面积”学完后,我进行了一次“圆的周长与 面积”的单元测试,总体成绩还算比较满意,但从试卷上和平时的作业上来看反 应出来的问题还是比较多,下面就这一单元近来的教学作以如下思考:
一、存在的问题 1、学生对有关圆的概念认识不深刻。 (1)圆周率是圆的周长与直径的关系,学生写成周长与面积或其它的关系,认 识不清;圆的周长除以它的直径,所得的商是( )。有的学生填写的是一个固 定的数,还有的同学填的是3.14,准确答案应是圆周率或∏ 。 (2)半圆的周长总容易理解成圆的周长的一半,其实是圆周长的一半加上它的 一条直径或两条半径。 (3)对圆的周长和面积公式有点混淆。明明知道是求面积,可是却去求周长, 自己还不知道错了。 2、学生对有关圆的生活实际不熟悉。 (1)在实际生活运用中不知道“自动旋转喷灌装置”是什么样的,不能把实际 生活与所学知识联系起来。射程40 米,20 米,10 米,是指喷灌面的半径,不是 直径。安装的位置,是指圆心。 (2)不知道钟面上的分针是圆的半径,常常理解成直径,造成解题错误。 3、学生对组合图形的周长认识不到。 (1)“周长”是指图形一周所有线的长度,小学六年级阶段所认识的“线”只 有两种可以计算长度的线,一是线段,二是圆形的曲线。学生往往会把不在一周 上的线段计入周长,也会不计凹进图形的线,或者减去凹进图形的线的长度。 (2)长方形和其内切圆之间的关系不清楚,看不出长方形的宽就是圆的直径, 找不出长方形的长宽与圆的直径和半径之间的对应关系,求不出长和宽各是多 少,求长方形的周长就无从下手。 4、学生对组合图形的面积掌握情况。 (1)由于学生对图形的平移和旋转比较感兴趣,所以对组合图形的面积掌握较 好,大部分同学都能找到比较简洁的计算方法。 (2)在求半圆的面积时,有些学生总是在求得圆的面积后,忘记乘二分之一或 除以2. 5、学生不愿意动手操作或操作能力不高。 对于没有图形的解答环形面积的应用题,学生不愿动手画草图 来分析,因此找不对两个圆的半径。对动手操作题目不知道怎样下 手,如右图画图形的所有对称轴或多画或少画。 6、两个圆的半径、直径、周长、面积之间的比的关系 两个圆的半径、直径、周长的比是一致的,如果半径比是3:1,则直径和周 长的比都是3:1,也就是长度单位的比相同;两个圆的面积的的倍数关系,是长 度单位的平方倍,长度单位是3 倍,则面积就是9
倍。 7、有关计算方面出现的问题。 (1)有的同学在计算某数的平方时,如3 的平方,应该是3 乘3,可总有同学 却成3 乘2. (2)学生在计算碰到3.14 时,不能灵活计算,一般把3.14 放到最后去乘,比 较容易计算,而不灵活的同学不管那一套,3.14 写在哪里就乘哪,计算花费时 间比较多,也容易出错。 (3)有的同学在解答这部分知识时,列出综合算式,但是解答时步骤省略或没 有计算结束就不计算了,出现问题也比较突出。
二、解决办法: 发现了问题,我赶紧要想出方法进行补救,不能让这种状态持续下去,我是 这样做的: 1、重视公式的推导过程,加强公式的记忆,强化不同公式的区别,先从公式上 打好基础。 2、在解决问题时,先把公式写上,然后再根据公式列式,这样的好处是让学生 好好思考到底需要哪个公式,避免出错误。 3、整理出这个单元的所有概念及公式,粘贴在书上,便于学生早读时记忆和做 作业时查找相应信息。 4、让学生记住3.14 的倍数的结果,这样能提高计算的速度和质量。 5、让学生在列式解答时,计算步骤不能省略,一步一步算出结果,这样还能避 免学生出错。 6、从学生的实际生活入手,如出示了圆形花坛的图片,设计了在花坛周围铺一 条小路求小路的面积这样的问题,创设与学生十分贴近的生活情景,这样充分调 动学生学习兴趣。增强学生学好数学的信心。 7、在教学过程中,把对知识梳理过程的主动权交给学生,让学生小组交流,培 养学生的合作意识,同时给学生相互学习提供一个机会,照顾到每一个学生,不 放弃每一个学生。 8、恰当的运用多媒体技术,以形象直观的课件演示,如“圆的面积”一课帮助 学生理解圆的面积的推导过程。特别是圆周长的一半转化成长方形的长,半径就 是长方形的宽这一教学环节,恰当的运用课件演示弥补了语言描述的不足,而且 学生通过观察更容易理解和掌握。 9、分层练习,照顾全面学生。
总之,在今后的教学中,努力实现“人人学有价值的数学、人人都获得必要 的数学,不同的人在数学上得到不同的发展”这一教学目标,在教学过程中,追 求积极的'教学行为,运用先进的教学模式,灵活恰当的运用多媒体技术,树立“为 学习而设计教学”的备课理念、精心设计每一个环节,使教学流程科学、丰富、生动活泼、努力培养学生梳理知识,反思、研究的习惯及创新精神和实践能力。
篇5:圆的面积计算公式推导的教学反思
圆环面积是在圆的面积计算基础上进行教学的,圆的面积计算
学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环 的本质问题。
根据以前的经验,也总是通过实例 ,也就是实际操作,让学生感受到圆环的面积该如何求,但是总有一部分学生不明白为什么要用大圆的面积减去小圆的面积,总有疑问,如何改进呢?看似简单的问题,有人却总不明白,主要问题还是不明白圆环的概念,另外教学进度过快,也是其中原因之一,过高的估计了学生的理解能力,总是认为这类问题很简单不需要有过多的解释,倒致后来无论如何补进,学生总是不会,学生的第一印象特别深刻,不容易忘记,与其后来的反复强调,不如现在改进,因些,我想这样做,首先是一明确概念,.概念的理解,是呈阶梯状,分层次来理解,首先是初步感知生活的圆环,用课件出示,轮胎,光盘,胶带等,使学生有了初步的印象,第二步画圆环, 通过观察或量一量圆 环,你有什么发现?此时的学生已有了深度的理解,在些基础上,剪圆环,并出示一些同心圆和不是同心圆的图片,来让学生分辨,明白圆环是同心圆,第三步则是认识各部分的名称,既大半径和小半径,环宽,并通过练习来巩固认识,练习一些找大圆直径或小圆直径的,半径的等练习,经过上面的一系列的缓慢过程,有实际操 作也有课件濱示,还有练习, 非常的形象和直观,吸引了学生的注意力,激发了学生学习的兴
趣。 也为下面的从而为下面求环形的面积作铺垫,而后是求圆环的面积,自然而然,学生肯定也明白了怎样求圆环的面积.
学生在知识的学习过程中,应有亲身体验,获得“做出来”的数学,而不是给以“现成的”数学。有了亲身的体会,学生很容易求出圆环的面积,但是为提高课堂效率,仅此一点往往是达不到预期的效果,接下来我打破常规,不是在理解的基础上,出示练习题目,进行单纯的练习,这样做学生也会感到枯燥无味,于是我随机提出问题让学生思考,”知道了圆环的面积如何求,如果给出了两个半径可以很简单的求出圆环的面积,但在实际生活是不是只会给出半径,求环形的面积?如果不是,还可能会出现什么?怎样解决这一问题?”要求小组合作,讨论解决,经过这一过程,学生展示出现了各种类型,事实证明让学生尝试计算,分析验证,比较计算学生正确,并应用大半径、小半径、“环宽”之间的关系练习设计了4道对比练习题,使学生在练习中学会处理大半径、小半径、“环宽”的关系。
通过以上的各个环节,本节的课容量大,既有基础又有拓展,学生的积极性也极高,全体参与,使每个人都有不同程度的发展.
篇6:推导圆面积计算公式的三种教法评介
推导圆面积计算公式的三种教法评介
教学圆面积公式的推导,我曾听过三种不同的教法,现分别简介过程及稍作评点。〔第一种教法〕
(1)复习长方形面积计算公式。
(2)让学生自学课本中推导圆面积计算公式的过程。
(3)教师边用教具演示,边要求学生回答:
①拼成的图形近似于什么图形?想一想,如果等分的份数越多,拼成的图形会怎么样?
②拼成的图形与原来圆的面积相等吗?
③这个近似长方形的长相当于圆的什么?它的宽相当于圆的什么?
(4)教师要求学生说出由长方形面积计算公式,推导出圆面积计算公式的方法(可按课本说)。
(5)揭示圆的面积公式。
〔评:这种教法,看起来是引导学生自学,并结合演示让学生回答问题,似乎学生学得较主动,实际上学 生未有实践、思考的过程,只是“依样画葫芦”,对其中的道理不能弄懂、弄通,这属于机械的学习。〕
〔第二种教法〕
1、导入新课。
教师让学生回忆一下,以前学习习近平行四边形、三角形、梯形的面积计算时,是用什么方法推导它们的计算 公式的。(用割、拼法拼成长方形或平行四边形进行计算,教师出示割、拼教具分别作简单的演示。)接着, 出示一张圆形硬纸片,问:“怎样计算它的面积呢?”(揭示课题)教师指出:我们仍可用以前学过的割、拼 法,把圆转化为已学过的图形,运用此图形的面积计算方法,推导出圆面积的计算方法。
2、实际操作。
要求学生拿出圆面积的割拼图形学具,在教师的指导下,边操作,边回答以下问题:
①把一个圆平分成两半,每一个半圆形的哪一部分长度相当于圆周长的1/2?再把每一个半圆形平均分 成8等份(如课本的切割图),那么哪一段的长度相当于圆的半径?
②想一想:能不能把这些等分出的图形,拼成近似于我们以前学过的图形?怎样拼?(要求学生动手实践 ,并指名演示拼出的几种不同的图形。如:长方形、平行四边形、梯形等。)
③所拼出的图形面积与原来圆面积相等吗?
3.推导公式。
先以拼出的近似长方形的图形为例,教师引导学生弄清,若平分的份数越多,拼成的图形越接近长方形。 进而,教师要求学生据图回答:割拼后的长方形的长相当于圆的哪一部分的长度?宽相当于圆的哪一部分的长 度?从而
由 长方形的面积=长×宽
↓ ↓
得 圆的面积 =πr×r=πr[2]。
然后,出示拼出的近似的平行四边形或梯形,再次推导看能否得出上面的圆面积公式(略)。这样就得到 了证实,使学生确信无疑。
〔评:这种教法比第一种教法有很大的改进,教师首先通过复习旧知,提出解决问题的办法,把新旧知识 有机结合起来,明确了本课中心内容,然后让学生亲手操作割拼成几种已学过的图形,引导学生观察、思考、比较、推导,其间不囿于课本中的推导方法,让学生思维得以发散,从而强化了转化思想,多渠道地推得圆面 积计算公式。学生在学习过程中,始终处于积极主动的状态,这种学习是有意义的学习,不仅使他们“学会” ,而且使他们“会学”,且有助于发展学生的智能。〕
〔第三种教法〕
1、引入新课。
教师开导:圆在日常生活、生产实践及科学实验中,有着广泛的应用。上节课我们学习了圆的周长计算, 但仍不够,还要学会计算圆的面积。如计算一个雷达圆形屏幕的面积,一个圆形花圃的面积等。怎样才能算出 它的面积呢?(揭示、板书课题)。
2、创设情境。
教师用几张相等的圆纸片,运用折纸、剪纸的方法,分别折剪成正四边形、正八边形、正十六边形,然后 再分别与原来的图纸片叠在一起,见下图:
(附图 {图})
折四等份剪成 折八等份剪成 折十六等份剪成
正四边形 正八边形 正十六边形
引导学生观察、对比三个内接正多边形与圆的面积差(阴影部分)谁大谁小,并启发学生归结出:折成的 等份数越多,剪成的正多边形边数越多,它就越接近圆。其中正多边形的每等份(三角形)就越接近圆的每等 份。
3、推导公式。
师:同学们现在要计算圆的面积,选用哪种正多边形为好?为什么?
生[,1]:选正十六边形为好,因为它较接近圆。
生[,2]:选边数越多的`正多边形更好,因为它更接近圆。
师:回答得很好,根据现有的右图,怎样计算圆的面积呢?请大家思考以下问题:
(1)圆的面积相当于多少个三角形面积之和?
(2)这些三角形的底边之和相当于圆的什么?
(3)每个三角形的高相当于圆的什么?
学生边回答,教师边板书:
正十六边形的面积=S[,三角形]×16
↓
=底边×高÷2×16
=底边×16×高÷2
↓ ↓
圆的面积=2πr× r÷2
=πr[2]
最后让学生自学课本中的推导方法,质疑解难。进而教师小结:推导圆的面积公式与以前推导有关图形面 积公式一样,把圆转化为已学过的图形进行计算,同学们课后如有兴趣,还可将圆割拼为平行四边形、梯形, 看是否仍能推出S[,圆]=πr[2]。
〔评:这种教法具有以下几个特点:
1、导入新课开门见山,使学生感到学习圆的面积是实际中的需要,从而激发了学生的求知欲望。
2、在推导圆面积公式前,教师创设情境,让学生领悟隐含于直观演示中的初步“极限”思想,有助于发 展学生空间想象力和空间观念,从而为推导公式作好铺垫。这是前两种教法所不及的。
3、运用“整体-部分-整体”,分割求和的方法推导圆面积公式,新颖独特,学生易于接受,又以课本 中的方法及其他方法作验证,使学生加深理解,记忆牢固。
4、小结中能促使新知与原有认知结构中有关观念建立起联系,学生的学习是“有意义”的学习。
总评:教学圆面积公式的推导,要充分运用直观手段,引发学生积极思考,不仅使学生知其然,还要知其 所以然,要把教材本身的内在联系揭示出来,促使学生运用已学知识主动地去获取新知;既使学生“学会”, 又使学生“会学”,让他们在学习中同时学到科学的方法,提高学习能力,这样才能取得较好的教学效果。由 此可见,后两种教法是可取的,且教法三更佳。
篇7:推导圆面积计算公式的三种教法评介
推导圆面积计算公式的三种教法评介
教学圆面积公式的推导,我曾听过三种不同的教法,现分别简介过程及稍作评点。
〔第一种教法〕
(1)复习长方形面积计算公式。
(2)让学生自学课本中推导圆面积计算公式的过程。
(3)教师边用教具演示,边要求学生回答:
①拼成的图形近似于什么图形?想一想,如果等分的份数越多,拼成的图形会怎么样?
②拼成的图形与原来圆的面积相等吗?
③这个近似长方形的长相当于圆的什么?它的宽相当于圆的什么?
(4)教师要求学生说出由长方形面积计算公式,推导出圆面积计算公式的方法(可按课本说)。
(5)揭示圆的面积公式。
〔评:这种教法,看起来是引导学生自学,并结合演示让学生回答问题,似乎学生学得较主动,实际上学 生未有实践、思考的过程,只是“依样画葫芦”,对其中的道理不能弄懂、弄通,这属于机械的学习。〕
〔第二种教法〕
1、导入新课。
教师让学生回忆一下,以前学习习近平行四边形、三角形、梯形的面积计算时,是用什么方法推导它们的计算 公式的。(用割、拼法拼成长方形或平行四边形进行计算,教师出示割、拼教具分别作简单的演示。)接着, 出示一张圆形硬纸片,问:“怎样计算它的面积呢?”(揭示课题)教师指出:我们仍可用以前学过的割、拼 法,把圆转化为已学过的图形,运用此图形的面积计算方法,推导出圆面积的计算方法。
2、实际操作。
要求学生拿出圆面积的割拼图形学具,在教师的指导下,边操作,边回答以下问题:
①把一个圆平分成两半,每一个半圆形的哪一部分长度相当于圆周长的1/2?再把每一个半圆形平均分 成8等份(如课本的切割图),那么哪一段的长度相当于圆的半径?
②想一想:能不能把这些等分出的图形,拼成近似于我们以前学过的`图形?怎样拼?(要求学生动手实践 ,并指名演示拼出的几种不同的图形。如:长方形、平行四边形、梯形等。)
③所拼出的图形面积与原来圆面积相等吗?
3.推导公式。
先以拼出的近似长方形的图形为例,教师引导学生弄清,若平分的份数越多,拼成的图形越接近长方形。 进而,教师要求学生据图回答:割拼后的长方形的长相当于圆的哪一部分的长度?宽相当于圆的哪一部分的长 度?从而
由 长方形的面积=长×宽
↓ ↓
得 圆的面积 =πr×r=πr[2]。
然后,出示拼出的近似的平行四边形或梯形,再次推导看能否得出上面的圆面积公式(略)。这样就得到 了证实,使学生确信无疑。
〔评:这种教法比第一种教法有很大的改进,教师首先通过复习旧知,提出解决问题的办法,把新旧知识 有机结合起来,明确了本课中心内容,然后让学生亲手操作割拼成几种已学过的图形,引导学生观察、思考、比较、推导,其间不囿于课本中的推导方法,让学生思维得以发散,从而强化了转化思想,多渠道地推得圆面 积计算公式。学生在学习过程中,始终处于积极主动的状态,这种学习是有意义的学习,不仅使他们“学会” ,而且使他们“会学”,且有助于发展学生的智能。〕
〔第三种教法〕
1、引入新课。
教师开导:圆在
[1] [2]
篇8: 《圆面积公式推导》教学设计
教学设想:
本节课根据新课程的理念和要求,通过创设问题情境,小组合作交流,学法迁移等形式,让学生在动手、动口、动脑中主动探究圆面积公式推导的多种方法。并借助学生的想像,发展学生的空间观念。然后引导学生探究,得出圆面积的两种推导方法,旨在拓展学生的思维。在练习设计时,选用了一些联系生活实际的问题,在于培养学生解决实际问题的能力,使教学内容生活化。
教学过程:
一、创设情景,明确目标
师:(多媒体课件出示照片)同学们,这个地方你们熟悉吗?这是我们校门口内的一个圆形大花坛,学校打算要给这个花坛铺上草坪,需要多少草皮呢?这实际上要我们解决什么数学问题?
生:圆的面积
(板书:圆的面积)
师:今天这节课,我们就来讨论怎样求圆的面积。
二、利用迁移,探究方法
师:下面请同学们回忆一下,我们以前学过哪些平面图形的面积计算?(学生答师板书)
师:它们的面积公式分别是怎样得到的?(学生答略)
师:除了长方形用“面积单位”去量之外,其它几个图形面积推导方法有什么共同特点?
生:都是用转化的方法推导出来的。
师:今天我们要学习的圆形与以上几种图形有什么明显的区别?
生:圆形是由曲线围成的。
师:能不能也用“面积单位”去量呢?
生:不能。
师:那我们该用什么方法解决呢?
生:也可以用转化的方法,把圆转化成我们熟悉的图形。
师:那好,下面请同学们打开课本,看看书上是用什么方法得出圆面积公式的。
生(看书后),师指定一名学生借助教具介绍书上的推导方法,(师板书)从而得出圆面积的计算公式。
三、借助想像,感悟“极限”
师:同学们,你们听了他的介绍后,心里还有什么疑问吗?
生:这个拼成的图形好像真的是长方形吗?
生:既然形状是近似的,那这个图形的计算结果也是近似的。这里的计算公式也不能用等号表示了。
师:那我们得想个办法,把它变直,谁有办法?
生:等分的份数多一点?
师:究竟能分多少份?16份?32份?64份?
生:等分的份数越多,拼成的图形就越接近于长方形。
师:请同学们闭上眼睛想像一下,如果一直这样不断无限地等分下去,这个近似的长方形将会怎样?
生:拼成的图形就真的变成长方形,因为边越来越直了。
四、小组合作,拓展思路
师:同学们,刚才我们发现书上果然利用了转化方法,把我们不熟悉的图形转化成熟悉的长方形,推导出圆的面积公式,那你们猜想一下,还能把圆转化成哪些图形?
(学生回答,师板书)
师:下面,请你们每四人组成一小组,选择其中的一种,拿出事先等分好的圆片,一边讨论,一边操作,写出推导过程。如果你们不选择以上的方法,想出与众不同的方法更好。
上来汇报的小组派出两位代表,一位拿出拼好的图形在投影仪上介绍推导过程,另一位在黑板上写出推导过程。
师:谁还有与众不同的方法吗?
生:我们知道,如果把这个近似长方形无限等分下去,确实就是长方形,其中1份可以看作是三角形,只要算出这1份三角形的面积再乘以份数就是圆的面积了。
师:你真聪明,能不能以16等份为例写出推导过程呢?
(生写出推导过程)
师:刚才一小块可以看面是三角形,那么,如果等分的份数少一点呢,再少一点呢?……因而整个圆其实可以看作什么呢?
生:一个大三角形。
师:真棒,这个大三角形的底就是什么?高就是什么?
生:这个大三角形的底就是圆的周长,高就是圆的半径。
师:同学们真厉害,能不能写出推导过程呢?
(生写出推导过程)
师:大家真了不起,竟然想出了那么多好办法。学习就应该这样,要敢于向书本挑战,要善于探究。
五、联系生活,应用知识
师:现在你们会解决校门口花坛的草坪面积了吗?
生:条件不够,要知道半径是多少?
师:好,半径是5米。
学生计算,师提醒学生注意计算时r2不要算成2×r
师:直径是10米行吗?(指名汇报)
师:不管给你们什么条件,要求圆面积,只要先求出什么就可以了。
生:半径
师出示深化题,学生练习
1.用一根绳子把一只羊拴在一片草地中的木桩上,绳长3米,这只羊吃到草的最大面积是多少?
2.半径是1米的圆,面积是3.14平方米,半径是2米的圆面积是多少平方米?
3.一个圆的直径和正方形的边长相等,圆和正方形哪个面积大?为什么?
4.某县政府部门在规划一条圆形的环城路,要计算这条路所围的面积有多大,你有什么办法?
篇9:《圆面积公式推导》优秀教学设计
教材分析:
教材首先设计了估算飞标板面积的活动。呈现了两种估算方法:一是先估算每个小三角形的面积,再估算飞标板的面积;二是把飞标板剪开,拼成近似的长方形,然后利用长方形的面积公式计算出飞标板的面积。接着是,小组合作探索圆面积的计算公式,在试一试中,让学生用刚推导出的面积公式计算飞标板的面积。教学中要给学生充分的观察、动手操作和讨论交流的空间,使学生学会转化的数学方法,体会极限的思想。
学情分析:
在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形面积时,已学会了用割、补、移等方法,把把新知识转化为旧知识,探究推导直线平面图形的面积。因此教学本课时,可引导学生用以前学的“转化”的数学思想来推导圆的面积公式,在推导学习中不仅扩大了学生的知识,提高学生分析、解决问题的策略,空间观念也得到进一步的发展,为以后学习圆柱、圆锥等知识打好良好基础。
教学目标:
知识与技能目标:
1、理解圆的面积计算公式的推导,让学生利用已有的知识,运用转化的思考方法,推导出圆面积的`计算公式。
2、初步运用圆面积计算公式进行圆面积的计算。
过程与方法目标:
通过教师设置问题情境————学生猜想————小组合作————表达交流————归纳总结,引导学生通过多次不同的实验,运用转化方法,通过多媒体课件演示,把曲线平面图形转化为直线平面图形,推导圆的。面积计算公式。
情感态度和价值观:
通过圆面的剪拼,境况学生操作、观察、分析的能力,渗透极限思想。
教学重难点:
教学重点:圆面积公式的推导。
教学难点:极限思想的渗透与公式的推导。
教学方法和手段:
教学方法:通过直观教具演示和课件展示,学生通过猜想然后再用合作学习法动手操作验证猜想,得出结论。
教学手段:利用游戏、媒体等手段激发学生思维,让学生亲自动手操作,感受学习的乐趣。
教具准备:多媒体课件一套、圆形纸片。
学具准备:两个完全一样的圆片、透明胶带、刻度尺、量角器、剪刀、小刀。
一、复习引入
1、幻灯片出示复习题目。
2、激趣导入
同学们,今天我请你们欣赏一幅图。请看!(课件出示)在欣赏图的同时,思考右面的问题。学生猜想牛最多吃多少草是什么的图形?(课件出示)是一个圆形,要求牛吃多少草也就是求圆的面积,引出圆的面积(板书课题)
【设计意图:兴趣是最好的老师。在教学过程的伊始就用这个生活中的数学问题来导入新课的学习,既可以激起学生学习的兴趣,又可以为后面面积的学习奠定基础,更可以让学生从课堂上涉猎生活中的数学问题,让学生体验到数学来源于生活。】
二、合作探究,推导公式
1、圆面积定义
2、圆面积公式推导
那么怎样计算圆的面积呢?我们知道圆有大有小,如果用面积单位直接
去度量,显然是行不通的。请同学们回忆一下:平行四边形、三角形、梯形的面积分别是怎样计算的?
教师根据学生说的过程,通过课件演示出转化的过程。
【设计意图:平行四边形、三角形和梯形的公式推导过程是学生迁移的基础。这一环节的设计既为了勾起学生对已有知识的回忆,更是为了让后进生能够掌握新知打下良好的基础。】
想一想:这些图形面积公式的推导过程有什么共同点?(学生回答)
下面请同学们小组合作,动手剪一剪、拼一拼,看可以把圆转化成什么图形?
(小组合作,探究交流。)
谁能告诉老师你们小组把圆转化成了什么图形?(小组汇报并展示所拼图形)
小组1:我们平均分成了8份,拼成的图形非常像平行四边形。
小组2:我们把圆平均分成了16份,拼成的图形也像个平行四边形。
小组3:我们把圆平均分成了16份,拼成的图形很像一个三角形。
小组4:我们拼的图形像个梯形。
小组5:我们平均分成了4份,拼成的图形像平行四边形
大家真了不起!把圆转化成了这么多近似的图形,观察所拼平行四边形的三种情况,请看课件(展示课件),同时请同学们思考,如果把圆平均分的份数越多,拼成的图形会怎样呢?
学生回答:分的份数越多越接近长方形。
下面请同学们仔细观察、分析拼成的长方形与圆的关系,小组讨论并思考以下几个问题:
(1)圆的面积与这个长方形的面积有什么关系?
(2)这个长方形的长与圆的周长有什么关系?
(3)这个长方形的宽与圆的半径有什么关系?
(4)如果圆的半径是r,这个长方形的长和宽各是多少?
(小组合作,探究交流,推导出面积公式)
小组内说一说圆面积计算公式推导过程,师板演。
小组合作推导三角形和梯形的面积公式,并汇报交流,师演示课件。
【设计意图:这节课的重点是圆的面积公式的推导,为了让学生在大脑中烙下深深的印痕,这一环节的设计让学生在课上多动手,去剪、去拼、去贴,多动脑,去思考圆的转化方法,这样学生在课上手脑并用,个个精神十足,根本不可能再出现课上走神的现象。】
小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,老师祝贺大家取得成功!那么,求圆的面积需要什么条件呢?(半径)
三、实践运用,体验生活
那么圆的面积公式到底有什么用呢?
现在我们会求牛最多吃多少草吗?
四、课堂小结
这节课你有什么收获,学到了哪些知识?
五、课外思考。(幻灯片出示)
已知一个圆的周长,你能计算这个圆的面积吗?
板书设计:
圆的面积
圆所占平面的大小叫做圆的面积
圆的面积=近似长方形的面积
圆的面积圆周长的一半圆的半径
长方形的面积长宽
S=c/2×r
=2πr/2×r
=πr×r
=πr2
篇10:圆面积教学反思
圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。因此在教学《圆的面积》时,我力求使学生在获得知识的同时,创新意识、探究能力和实践能力都得到发展,教学中我是这样设计的:
一、导学激趣,以旧促新。
本课开始,我引导学生回忆学过图形面积公式,并结合回忆上学期探究平行四边形、三角形、梯形面积的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。这部分学生在口述过程中对推导的过程说得不是十分到位,许多同学都忘记了,里面具体环节没有说出来。但通过我用课件演示,给学生视觉的刺激,调动了学生原有的知识储备,为新知的“再创造”做好知识的准备。
二、大胆猜测,激发探究。
在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关,让学生进行估测。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。
三、直观演示,加深理解。
当学生通过估测后,让学生来做个实验讨论。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的关系。这样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。
在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。特别是学生在口述推导的过程中,导出的太快,公式推导不明显,怎样出来的结果演示太快,学生不易消化。这个问题在以后的教学过程中要注意细化。总之,这节课上得自我感觉还是比较成功,从始至终思路清晰,教学媒体运用较好,环环相扣,使学生学得活,学得扎实,达到预期的教学效果。
篇11:圆面积教学反思
教学《圆的面积》时,我力求使学生在获得知识的同时,创新意识、探究能力和实践能力都得到发展,设计了以下几个环节:
一、让学生亲身经历知识的形成过程,渗透转换的数学思想
首先引导学生回忆所学过图形面积公式推导的过程,如:回忆上学期探究平行四边形、三角形、梯形面积的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。这部分学生在口述过程中对推导的过程说得不是十分到位,许多同学都忘记了,里面具体环节没有说出来。但通过我用课件演示,给学生视觉的刺激,调动了学生原有的知识储备,为新知的“再创造”做好知识的准备。
二、演示操作,加深理解
在教学中,我让学生通过重叠大小不同的两个圆使他们感受到圆的面积与半径有关系,再放手让学生应用转化的方法进行操作,把一个圆通过分、剪、拼等过程,转化成一个近似的平行四边形,从中发现圆和拼成平行四边形的联系,并根据长方形的面积公式推导出圆的面积的计算公式,在这过程中,不但使学生有效地理解和掌握圆的面积计算公式,而且也使他们获得了转化的数学思想方法,并培养了学生探索问题的能力。
三、练习设计体现了针对性,层次性和实践性
本节课的课堂练习即有对圆的面积计算公式的巩固性练习,也有运用圆的面积解决简单的实际问题的练习,还有综合运用长方形、圆的有关知识解决简单的实际问题的练习。通过这些练习,有助于学生巩固圆的面积的有关知识,形成运用技能,培养学生的数学能力。
在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。特别是学生在口述推导的过程中,导出的太快,公式推导不明显,怎样出来的结果演示太快,学生不易消化。这个问题在以后的教学过程中要注意细化。总之,这节课上得自我感觉还是比较成功,从始至终思路清晰,教学媒体运用较好,环环相扣,使学生学得活,学得扎实,达到预期的教学效果。
篇12:圆面积教学反思
圆的面积公式推导是学生掌握平行四边形、三角形、梯形面积公式推导后的探究。学生有了应用转化的思想来推导面积公式的经验。所以教学设计时,我注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生已有知识出发进行教学设计,为学生的自主探究创造条件。
本节教学主要突出了以下几点:
1.复习旧知识,引入新知。让学生回忆一下以前学过的平面图形的面积公式的推导方法,利用多媒体课件直观再现推导过程,学生在回顾旧知识的过程中领悟到这些平面图形面积的推导都是通过拼摆的方法,把要学的图形转化成已经学过的图形来推导的,从而渗透转化的思想,并为后面自主探究推导圆的面积作好铺垫。
2.引导学生主动参与知识的形成过程。本课时教学的重点是圆的面积计算公式的推导。教学时,教师作为引导者只是给学生指明了探究的方向,而把探究的过程留给学生。在演示前,我要求学生边观察边思考什么变了,什么没变?你能发现什么?再让学生以小组为单位,通过合作剪拼,把圆转化成学过的图形(平行四边形),我把各小组剪拼的图形逐一展示后,又结合课件演示,引导学生通过观察发现“分的份数越多,拼成的图形就越接近于长方形”,并从中发现圆和拼成的长方形之间的关系,从而根据长方形面积的计算公式,推导出圆面积的计算公式。在整个推导过程中,学生始终以积极主动的状态参与学习讨论,共同经历知识的形成过程,体验成功的喜悦。这样的学习方式不仅有利于学生理解和掌握圆的面积的计算公式,而且培养了他们的创新意识、实践能力、探索精神。在掌握数学学习方法的同时,学生的空间观念得到进一步发展。 在发现了圆面积的公式后,再用用数方格的方法来验证,学生觉得既轻松又简单,而且对公式的掌握和理解学得又牢固扎实。
在新课程理念的指导下,特别提出了“让学生经历类比、猜想、验证可探索圆面积的计算方法的过程。”而我在本课中的这些设计符合新课程的理念,使学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、验证等过程,发现了教学问题,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了的思维发展。
篇13:圆面积教学反思
一、本课是在学生学习了圆的认识的基础上进行教学的,力求实现变抽象为直观,化静为动,为学生提供丰富的感性材料,促进学生知识的迁移,帮助学生理解公式的推导过程,激发学生的学习兴趣,渗透数学中的转化思想。
教学导入时,我首先以当前的热点话题20xx奥运会切入主题,学生倍感亲切,紧紧抓住了学生的注意力,学生在教师的适时调控下由奥运会主会场鸟巢自然过渡到怎样求圆的面积呢?力求达到衔接自然的教学效果。
二、新授中首先让学生借助学具的操作,把圆形平均分成若干份,通过观察发现每份是近似的三角形,进而把圆分割成若干个三角形,借助三角形的面积公式推导出圆的面积公式,同时向学生渗透极限的思想,分的份数越多,每一份越接近三角形。之后教师引导学生利用分割后的三角形重新拼组成我们学过的长方形,依据它们之间的联系也能推导出圆的的面积公式。以上两种方法,一种是分割法,一种是拼组法,无论哪一种方法都渗透了转化的思想,引导学生找出新旧知识的衔接点,温故而知新,力求达到有效突破教学难点的目的。
三、练习中首先让学生通过一组口头列式,及时巩固所学新知,力求使学生获得成功的喜悦!在此基础上,将导入时怎样求鸟巢的占地面积,补充上条件,让学生利用所学解决实际问题,首尾呼应,力求取得事半功倍的教学效果。最后给学生一个紧密联系实际的数学问题,求学校花坛的面积,激起学生的兴趣,学生在讨论中明确先测量出周长,然后求出半径,再计算花坛的面积,力求使学生在不断的尝试中逐步提高,升华新知!
篇14: 《圆面积公式推导》优秀的教学设计
学材分析
教学重点:
掌握求圆面积的三种不同情况。
教学难点:
正确地进行简单的有关圆的组合图形的面积。
学情分析
简单的面积计算基本会,但联系实际解决问题的能力还不够强。
学习目标
1.进一步掌握圆面积的计算公式,并能正确地计算圆面积。
2.了解求圆环面积的方法,能计算简单的有关圆的组合图形的面积。
导学策略
导练法、迁移法、例证法
教学准备
投影仪、自制投影片、圆规
教师活动
学生活动
一.引入
1.提问:要求圆的面积,必须知道什么条件?如果已知圆的直径、周长,能求出这个圆的面积吗?那么怎样求半径?根据学生的回答板书:r=、r=。
2.面积呢?[板书:S=πr2=π2=π()2]
3.揭示课题。
二.展开
1.教学补充例1,投影出示
先请学生分析题意,并问:已知什么?要有用哪个面积公式?然后根据学生的回答列式解答。最后。
2.尝试
试一试。指名板演并说说是怎样算的?
三.巩固
四.
五.作业
学生回答问题。
巩固练习
教学反思
解题思路学生基本能掌握但还须练习。
篇15: 《圆面积公式推导》优秀的教学设计
教学内容
课本第143页例2;练一练第1~6题。
教材分析
这部分内容是学生在学会了求圆的周长与直径、半径的关系以及已知圆的半径求圆面积的基础上,来学习已知圆的.周长。求圆面积的应用题。
学情分析
本班学生计算能力还可以,就是对应用题有一种害怕心理。
教学目标
1、进一步掌握圆面积公式,并能正确地计算圆面积。
2、能运用圆面积计算公式,正确地解决一些简单的实际问题。
教学重点
会熟练运用公式求圆面积。
教学难点
求出需要的条件,即圆的半径。
教学准备
作业纸、课件。
教学过程
一、复习。
课件出示:
(一)求下列各题中圆的半径。
(1)C=6.28分米,r=?;(2)d=30厘米,r=?
(3)C=15.7分米,r=?;(4)d=18.84厘米,r=?
(二)、求下列各圆的面积。
(1)r=2分米,S=?(2)d=6米,S=?
(3)r=10厘米,S=?(4)d=3分米,S=?
只要求学生进行口头表述计算公式(不求计算结果)
二、学生活动:
要求两人一小组,到室外找一个圆形物体的平面,计算出它的面积。
运用学生事先准备的工具(细绳、直尺等)
三、汇报交流
小组把作业纸上交,交流心得
姓名
准备工具
物体名称周长
半径
面积
四、巩固练习
练一练第1~6题。
《作业本》p73。
板书设计:
圆面积公式的应用
R=d÷2
R=c÷π÷2
S=πr
篇16:《梯形面积计算公式的推导》教学设计
转化
(3)布置动手操作要求:
师述:“以组为单位按步骤利用学具一起想办法推导出梯形面积计算公式,要求合理的分工、合作,操作学具要麻利。”
2、学生分组动手操作推导出梯形面积的计算公式
(教师行间巡视和学生一起探究,对学生在探究过程中出现的问题进行指导)
可能遇到的问题:找关系
割补法中:为什么“平行四边形的高=梯形的高÷2”学生理解起来可能出现困难。
3、各小组汇报探究成果,师给予适当补充。
(1) 将两个完全一样的普通梯形转化为平行四边形
1、转化:
梯形平行四边形
2、找关系:
平行四边形面积=2个梯形面积
底=上底+下底
高=高
3、推导公式:
平行四边形面积= 底×高
‖ ‖ ‖
2个梯形面积= (上底+下底)× 高
梯形面积= (上底+下底)× 高 ÷ 2
4、方法:
拼摆法
师问:“其他同学哪儿不懂?”
师问:“为什么要除以 2?”
(2)将两个直角梯形转化为长方形
1、转化:
梯形 长方形
2、找关系:
长方形面积=2个梯形面积
长=上底+下底
宽=高
3、推导公式:
长方形面积= 长 ×宽
‖ ‖ ‖
2个梯形面积= (上底+下底)× 高
梯形面积= (上底+下底)× 高 ÷ 2
4、方法:
拼摆法
(3)将两个直角梯形转化为正方形
1、转化:
梯形 正方形
2、找关系:
正方形面积=2个梯形面积
边长=上底+下底
边长=高
3、推导公式:
正方形面积=边 长× 边长
‖ ‖‖
2个梯形面积= (上底+下底)× 高
梯形面积= (上底+下底)× 高 ÷ 2
4、方法:
拼摆法
(4)将普通梯形转化为三角形
(沿一腰中点和左上角顶点之间的连线剪开,将梯形分成一个四边形和一个三角形,以一腰中点为轴顺时针转动小三角形,最后转化为三角形。)
篇17:《圆面积公式推导》教学设计(西师版六年级上册)
红旗小学 龚宇
教学内容:西师版六年级数学上册20页例2、例3。
教学目标:
1、知识与能力:使学生正确认识圆的面积的含义;理解掌握圆面积的计算公式,并能正确地计算圆的面积。
2、过程与方法:激发学生参与整个课堂教学活动的兴趣,让学生在“提出问题--分析问题--解决问题--应用问题”的研究性学习的模式中推导出圆面积公式。
3、情感、价值观:渗透转化的数学思想和极限思想,同时对学生进行辩证唯物主义思想的初步教育。
教学重点:圆面积计算公式的推导。
教学难点:极限思想的渗透及圆面积公式的推导。
教具学具:剪刀4把,圆纸片,大小不一的两个圆。
教学过程:
一、认识圆面积的内涵--提出问题
你认识圆吗?你已经知道了圆的那些知识?回顾以前学的平面图形,你还想知道圆的什么知识?
圆的面积怎样求呢?请你拿出准备的圆纸片,摸一摸,体验一下圆面。你能比划圆的面积吗?你能说出圆的面积指的是什么吗?
学生说后,老师小结指出:圆的面积,就是圆所围成的平面图形的大小。今天这一课,我们就来研究怎样求圆的面积。揭示课题:圆的面积
二、讨论操作--分析问题
1、积极动脑,讨论推法
师:下面,就请大家来想办法找出求圆的面积的科学方法--面积公式。
如学生想不出方法,就生回忆长方形、平行四边形、三角形的面积公式推导过程。如有学生想出就让学生举手谈设想。①、摆--长方形面积推导就是通过摆面积单位,然后推导出长方形的面积公式。②、剪、拼--平行四边形面积的推导就是先沿高剪开,然后再拼成已学过的长方形来推导出平行四边形的面积公式的。③、旋转、移拼--三角形、梯形面积的推导就是通过旋转,然后再移拼成已学的平行四边形来推导出面积公式的。
师指出:学习总是化未知为已知;求一个新的图形的面积时也是把新图形转化成已知图形来求面积。(板书:转化。)
2、分组操作,反思求悟
把学生分组,根据三种想法去操作,看能不能找出圆面积的求法。如果有困难,困难在那里?为什么求不出圆的面积?
学生汇报研究情况。(圆是曲线围成的,不可以直接用面积单位来摆;旋转也不行转来转去还是圆。)由此让生悟出:摆不行;旋转也不行;只有剪拼有点希望。
3、抓住契机,相机引导
师:摆不行,旋转也不行,只有通过剪,拼转化成已学的图形可以试一试了。
师:那么,能不能随意剪、随意拼呢?请大家比一比:
师出示大小不一的两个圆,哪个面积大?为什么?也就是说圆的面积与什么有关?引导得出:圆的面积与半径有关。
师:既然圆面积与半径有关,那么剪的时候就可以沿什么去剪呢?(半径)对,就应沿半径的方向去把圆剪开;并且,剪开后再拼成一个以半径为边的图形?
请大家再来试试剪和拼。
4、学生尝试,研究转化过程
学生在小组内进行,师巡视指导,若学生有困难,师可引导:首先,在剪的时候,不能随意剪,要沿半径剪,并且要等分。我们先从最少的情况来研究:把圆两等分再拼。(生操作)怎样?能不能拼成已经学过的图形?(不能。)那就在此基础上继续等分再拼--试试四等分。让学生认识到如果这样无限等分下去,再对插,最终将会把圆转化成平行四边形(三角形、梯形等)。
三、以转化成平行四边形为例,研究推导出圆面积公式--解决问题
1、设疑:很好,刚才的研究,同学们表现得很不错。根据尝试操作,我们把圆转化成了平行四边形,现在大家能够找到圆面积的计算方法吗?
2、学生小组或同桌合作探究,推导公式。
(1)、讨论探究,出示提示语:
平行四边形的长相当于圆的( ),宽相当于圆的( )?
让学生讨论之后动笔试一试,看能否推导出圆的面积公式。
(2)、指名学生上台演示公式推导过程
3、揭示公式,验证猜想。让学生齐读公式。
4、用字母表示公式。
提问:要求圆的面积只要知道什么就行?(半径)
四、在实践中巩固--应用问题
1、教学例3:修建一个半径是30米的圆形鱼池,它的占地面积是多少平方米?
学生自做,指名学生板演,老师巡视,了解学生完成作业情况,后集体订正。
2、完成教材21页“课堂活动”第1题。
学生自做,后同桌交流,交流时介绍一下思路及结果。
五、课堂总结,渗透学法--研究性学习
今天这一堂课,通过同学们自己的猜测、讨论、操作、思考,把圆转化成已经学的平行四边形来研究探讨得出了圆的面积公式,很不简单,希望同学们今后继续发扬这种对学习的研究精神,在研究中去学习数学。
六、巩固、拓展知识。
1、从自己身边找一个圆形物体,请你想办法求出它的面积。
2、把圆分成若干等份后,拼成近似的梯形或三角形,推算出圆面积计算公式。
七、板书略。
篇18:圆柱体积公式推导的教学反思
教学圆柱的体积前,我先和学生一起温习了长方体和正方体的体积公式,重点引导学生认识到长方体和正方体都可以用底面积乘高进行计算。
对于圆柱的体积的计算公式,有很多学生在课前已经看过书本了,很明确的知道了是用底面积去乘高进行计算。对于老师来说,学生已经轻而易举的知道了最终的结论,而且结论也相当的好记,在这样的情况下如何去进行新课的教学。
所以,一开始,我并没有让学生去猜测圆柱的体积计算公式,而且凭空猜测圆柱的体积公式也是无意义的。基于这样理解教材的角度出发,我按照了书上的例题直接展开教学。
出示了三个等低等高的长方体、正方体和圆柱图形,提出问题:长方体与正方体的体积相等吗?为什么?通过第一问进一步让学生认识到长方体和正方体的体积都可以用底面积乘高来计算。
提出问题:猜一猜,圆柱的体积与长方体、正方体的体积相等吗?用什么方法可以验证?
学生通过小组讨论交流,有几种方法:溢水法,还有的是把圆柱体进行分割。
教师提示:圆可以转化成长方形进行计算面积,圆柱可以转化成长方体计算体积吗?
这时,我请学生将准备好的萝卜(近圆柱形)进行分割,拼接。将圆柱转化成了一个近似的长方体。
通过交流指出圆柱体变成了近似的长方体,形状发生了变化,但是体积并没有变化,即拼成的'近似长方体的体积等于圆柱的体积。
引导学生观察:在转化的过程中,拼成的近似长方体与圆柱体的各个量之间的关系。
通过讨论和交流,让学生充分谈谈,在转化中,哪些量发生了变化,哪些没有发生变化。
最后归纳出圆柱的体积公式。
学生通过实践、探索、发现,完成将未知的知识利用知识经验转化为熟悉的知识。这样得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。
篇19:《三角形的面积公式推导》的教学反思
《三角形的面积公式推导》的教学反思
学了三角形面积的计算公式后,很多学生在作业中经常在计算三角形面积时,总是忘记除以2。订正作业时,大部分同学都知道自己是忘除以2了,可是这样的情况还是时常出现。我很是困惑,难道是我的教学在哪里出了问题?我反思我的课堂教学。
我回忆了自己的教学过程,在探究三角形面积计算前,先让学生用书上剪下的几对完全一样的三角形进行探究,再进行班级交流。学生顺理成章地用两个完全一样的`三角形拼出了平行四边形,用平行四边形的面积公式轻松地推导出三角形的面积公式:S=ah÷2。从表面上看,学生动手操作了,实际上学生只是根据教师的设计机械地拼一拼。“为什么会想用两个完全一样的三角形来拼?还有其他推导方法吗?”学生根本就没有主动地思考,更谈不上猜想和创造。这样的操作是肤浅的,因此学生的记忆也是不深刻的。这样想来,学生作业时会忘记除以2也是情有可原。
反思整个教学过程,教师用一条无形的线牢牢地捆住了学生,让学生用2个完全一样的三角形拼成一个平形四边形,老师预先设置了一个“坑”,让学生往下跳,这怎么还叫探究呢?我想,在探究学习的过程中,我们为学生提供的探究性的学习材料要有一定的思维含量,要有利于展现知识的生成过程,要为促进学生的发展服务。要让学生自己跳着摘到果子,而不是为学生架好了梯子让他们去摘。现行教材直接为学生提供两个完全一样的三角形,让他们尝试拼成已学会面积计算的图形,这样的材料,其思维含量明显偏低,这样的探究,缺失了学生主动寻找材料的过程,就会影响学生解决问题策略意识的培养。
基于以上思考,我给学生留了这样一个回家作业:
你还能用其他的方法推导三角形的面积计算公式吗?结合你的推导方法说一说为什么计算三角形面积时要除以2。
第二天,在交流时,学生兴致很高。有的把三角形拦腰截断,拼成平行四边形,并作了说明:因为这里的高是原来三角形高的一半,所以用三角形的底乘高后要除以2;还有的把三角形转化成长方形(同教科书P16上“你知道吗?”半广以乘正从的做法),并说明:这里的底是原来的一半了,所以要除以2。这里,由于三角形的面积计算是学生自己想办法探索发现的,他们对计算方法的理解就非常深刻。我想,这种探究不是依靠教师一厢情愿的暗示、授意,而是一种真正意义上的探究。探究中,学生经历了主动建构的过程,这才是有价值的探究。
【圆的面积计算公式推导的教学反思】相关文章:
1.圆面积公式推导
9.反思教学
10.四棱台体积公式及推导过程






文档为doc格式