欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>关于9的乘法应用题的(人教版二年级教案设计)

关于9的乘法应用题的(人教版二年级教案设计)

2025-01-01 08:50:18 收藏本文 下载本文

“潇泉璇”通过精心收集,向本站投稿了19篇关于9的乘法应用题的(人教版二年级教案设计),以下是小编帮大家整理后的关于9的乘法应用题的(人教版二年级教案设计),欢迎大家收藏分享。

关于9的乘法应用题的(人教版二年级教案设计)

篇1:关于9的乘法应用题的(人教版二年级教案设计)

教学目标

1.使学生进一步理解和掌握乘法应用题的结构和数量之间的关系.

2.能熟练地解答乘法应用题.

教学重点

理解和掌握乘法应用题的结构和数量关系.

教学难点

通过分析数量关系,口头为乘法应用题补充条件或问题.

教具、学具准备

补充口诀卡片、例3的挂图、投影仪、复合投影片.

教学步骤

一、铺垫孕伏.

1.背诵乘法口诀.

2.把口诀补充完整,说出口诀表示的意思及相应的乘法算式.

二( )十八  ( )九五十四  三( )二十七

( )九三十六  九( )八十一  ( )九六十三

3.填空.

(1)求几个相同加数的和用( )计算.

(2)红花3朵,黄花的朵数是红花的2倍,那么黄花的朵数就是___________ 个3朵.

二、探究新知.

1.教学例3.

(1)出示例3(1):小林买了4支铅笔,每支9分钱,一共用了多少钱?

(2)出示实物挂图,指名同学分析数量关系,确定解题方法.分析后板书:

每支铅笔9分钱,意思是说1支铅笔9分钱,而且哪支铅笔都是9分钱.相同加数就是9,4支铅笔是4个9分,求几个几用乘法计算,在书上做.

(3)学生独立解答,主要纠正两点(列式4×9;得数为36分;)要从算式的含义和日常生活用钱习惯上分别予以说明,教师再巡视,使之及时纠正.

(4)出示例3(2):小林买了4支铅笔,买彩笔的支数是铅笔的3倍.买了多少支彩笔?

(5)先让学生独立解答,指名板演,教师巡视发现有典型错误的,让其写在小黑板上.订正时,请学生说是怎么想的,可出示挂图,具体分析说出解题思路.

(6)纠正时,要紧紧扣住彩笔的支数是铅笔的3倍这个条件,明确这个条件所含的意义,即4的3倍就是3个4的和,所以用乘法计算.

2.观察、比较两题的异同点,重点引导学生明白,条件虽然不同,问题也不相同,但从数量关系上分析,最后都是求几个几(即几个相同加数的和)所以两题的计算方法相同,都有乘法计算.

3.反馈练习.

(1)94页做一做第1题.

食堂每天吃3袋米,每天吃面粉的袋数是大米的4倍._____?(口头提出问题再解答)

读题后,指名请学生说题里告诉了什么,还缺少什么.然后分组讨论应补充什么,为什么补充这样的问题.

引导学生回答:

①告诉了食堂每天吃3袋米,吃面粉的袋数是大米的4倍,缺问题.②已知米的袋数,又给了面粉与米的关系,应求面粉多少袋.③分析出面粉的袋数是大米的4倍,就是说面粉的袋数是4个3袋.④根据乘法算式的含义,求几个几是多少,用乘法计算.

归纳解答不完整应用题的方法:

①读题,找出缺少什么.

②分析题中告诉的数量之间的关系,确定应补充的条件或问题.

③列式解答.

(2)利用归纳的解答不完整应用题的方法,解答做一做第2题.

学生分组讨论缺什么,应怎样补充完整,通过分析数量关系,列式解答,教师巡视,指导.

①学生讨论后分组汇报分析结果.

②引导学生口头补充一个条件:(可以天数不同,在2-9之间)

③无论吃几天,吃一天1个3袋,吃2天2个3袋,吃3天3个3袋,吃6天运来6个3袋……,因此无论填吃了几天,求运来多少袋都是求几个几,都用乘法计算.列式分别为3×2=,3×2=,3×4=……3×9=

(3)最后引导学生对两题进行比较,分析数量关系,使学生进一步理解这两题都是求几个相同加数的和和是多少,所以都用乘法计算.

三、巩固发展.

1.停车场上停着2排小汽车,每排3辆,一共停着多少辆小汽车?摩托车的辆数是小汽车的2倍,停着多少辆摩托车?

指名读题,学生独立解答,遇有困难可向老师提出.

集体订正.指名回答,第

篇2:乘法应用题(人教版二年级教案设计)

教学目标

(一)借助图画,根据乘法的含义,初步掌握乘法应用题数量关系的分析,会解答乘法应用题.

(二)初步培养学生审题习惯和分析问题的能力.

教学重点和难点

重点:分析乘法应用题的数量关系,解答乘法应用题.

难点:准确地找到被乘数和乘数.

教具和学具

教具:准备3张图画,每张上有一个同学正在给4棵树浇水.

学具:3个圆片,20根小棒.

教学过程设计

(一)复习准备

1.列式计算

3个4相加是多少?(4×3=12)

5个 2相加是多少?(2 × 5= 10)

2.看图列式计算

先让学生说一说图的意思,再列式解答.

(每瓶有4朵花, 3瓶一共有几朵花? 3个4是多少?  4×3=12(朵))

(二)学习新课

今天我们学习应用题,板书课题.

1.出示例9

同学们浇树,每个人浇4棵,3个人一共浇多少棵?

指名学生读题.这道题是什么意思呢?

题中的第一个条件是什么?(每人浇4棵树)出示一个女学生提水浇4棵树的图.第二个条件是什么?(有3个人在浇树)贴出第二、第三个学生每人浇4棵树的图.

这道题求的是什么?(3个人一共浇多少棵树)

再把条件和问题联系起来看,指着图:“每人浇  4棵树,  3个人一共浇多少棵树?”也就是求3个4是多少?

求3个4是多少用什么法计算?(乘法)相同加数是几(相同加数是4),4作被乘数,相同加数的个数是几(相同加数的个数是3),3作乘数.

列式是:4×3=12(棵)

口答:一共浇了12棵.

从图上验证一下3个人一共浇了12棵.

2.出示例10

小明买了3个扣子,每个5分钱,一共用了多少钱?

(1)先由学生读题,指名读,每人自己读.

(2)指导学生操作.

第一个已知条件是什么?(小明买了3个扣子)用圆片代表扣子,由学生摆出第一个条件.第二个条件是什么?(每个扣子5分钱)每个扣子5分钱什么意思,在每个圆片上放数字卡片5,表示每个扣子5分钱)如图29.

求的是什么?(3个扣子多少钱)

也就是求图上的哪部分?(3个5是多少?)同时教师在黑板上演示.并在3个图下面画一个括号,并写上“?分”.

求3个5是多少用什么法?谁当被乘数?谁当乘数?(求3个5是多少,用乘法.5是相同加数,当被乘数,3是相同加数的个数,当乘数)

教师列式;5×3=15(分)

口答:一共用了1角5分.

提问学生:15分也就是几角几分,因此,可以口答为:一共用了1角5分.引导学生比较:

提问:

(1)这两道题在解题方法上有什么共同的地方?为什么都用乘法?(这两道题都是求几个几的和,所以都用乘法解答)

(2)这两道题已知条件的叙述顺序有什么不同?

(例9第一个已知条件是相同加数,第二个已知条件是相同加数的个数;而例10的两个已知条件的叙述顺序与例9相反,第一个已知条件是相同加数的个数,第二个已知条件是相同加数)

因此,我们在列乘法算式时,要分清哪是相同加数,哪是相同加数的个数,谁当被乘数,谁当乘数.

(三)巩固反馈

1.尝试性练习

下面两道题是什么意思,有什么共同的地方?试一试画一个示意图,进行小组讨论.

(1)小明做数学题,每行有5道,做了2行,一共做了多少道?

(2)小明做数学题,做了2行,每行有5道,一共做了多少道?

讨论结果,两道题都可以用下面的示意图表示:只不过在叙述时两个条件先后位置不同.

________ ________

________ ________

________ ________

________ ________

________ ________

________ ________

都是求 2个 5是多少,列式是 5 × 2= 10(道).

2.基本练习

课本“做一做”的第1题和第2题.

第1题指名学生说出表格图的意思,怎样想,再全体列式解答.

第2题指名学生读题.每个人自己想一想,怎样分析,再在书上列式解答,做完后,指名学生说一说怎样想的,怎样列式.

3.发展性练习

“做一做”的第3题.

小红买了4米带子,每米2角钱,一共用了几角钱?

指名学生解释一下书中的图什么意思,求一共用了几角钱,也就是求什么.

由学生独立列式解答,指名学生说一说为什么“2”当被乘数,“4”当乘数.

这道题除了用乘法解答:2×4=8(角).

你还能想出另一种算法吗?

(2+2+2+2=8(角))

4.课后作业:练习十第1题和第2题.

课堂教学设计说明

这节课是在学生对乘法有初步认识的基础上进行学习的.因此,在引导学生分析乘法应用题时,紧紧抓住根据乘法的含义来分析.首先帮助学生理解题意,如例9中的“每个人浇4棵”什么意思,把题目中叙述的情境用图表示出来,学生看到形象的图画,很容易联系到乘法的含义,列出乘法算式.例10则要求学生把题意用学具摆出来,目的是培养学生掌握理解题意的方法.例10虽然在叙述顺序上与例9有所不同,但从摆出的图中,一眼看出是求3个5是多少,就能正确列出乘法算式.

为了帮助学生正确选择被乘数和乘数,除了对例9和例10进行对比外,还安排一次尝试性练习.同一件事,叙述顺序不同,意思完全一样,摆出来的是同一幅图,因此,列式是一样的,避免学生认为第一个条件必然是被乘数的错误.

在巩固反馈的最后,安排了一道让学生用两种方法解答的题,其目的是为了沟通乘法和加法之间的联系.

篇3:关于9的除法应用题(人教版二年级教案设计)

教学目标

1.使学生理解和掌握除法应用题的结构和数量关系.

2.能熟练地解答除法应用题.

教学重点

进一步理解除法应用题的结构和数量关系,掌握解题思路

教学难点

分析比较除法应用题之间的联系与区别

教具学具准备

投影和投影片(电脑)、纸条、小黑板、口算卡片

教学步骤

一、铺垫孕伏。

1.口算:

2.根据下面乘法算式,写出两个除法算式,并说一说是怎么想的.

(1)

(2)引导学生想

①三( )十八或( )六十八

②把18平均分成3份,每份是6

③18里有几个6

④18是6的几倍

二、探究新知。

1.导入:大家回忆一下我们都学了哪几种除法应用题(可举例说明)教师板书:

(1)平均分

(2)一个数里有几个另一个数

(3)一个数是另一个数的几倍

这三种类型的应用题,我们都用什么方法计算呢?

引导学生明确都用除法计算

教师说明:这节课我们一起整理和复习除法应用题.

教师板书课题:应用题

2.投影出示(或电脑显示):18筐白菜.同时出示例5

(1)食堂运来18筐白菜,平均分3天吃,每天吃几筐?

(2)食堂运来18筐白菜,每天吃6筐,可以吃几天?

(3)食堂运来18筐白菜,9筐萝卜.白菜的筐数是萝卜的几倍?

引导学生分组讨论,你们知道了什么?(教师巡视,并关照学习有困难的学生)

启发学生汇报:

第(1)题讲的是把18筐白菜,平均分成3天吃,求每天吃几筐,就是把18平均分成3份,求一份是多少,用除法计算,列式为:  (筐)

第(2)题已知18筐白菜,每天吃6筐,可以几天吃,也就是18筐里有几个8筐,就是几天吃完,用  (天)

第(3)题18筐白菜,9筐萝卜,白菜是萝卜的几倍?白菜和萝卜比较,18筐里有几个9筐,就是它的几倍,用

3.进一步引学生讨论:这三道题你们发现了什么?

使学生明确:

这三道题第一个已知条件相同,第二个条件不同,所求的问题不同

这三道题都用除法计算

这三道题第1题数量关系是把18平均分成3份,求1份,用除法计算.

第2题是18筐里有几个6,用除法计算.

第3题是18筐里有几个9,就是9的几倍,用除法计算.

通过讨论我们知道:条件和问题不同,数量关系不同,解答方法相同.

4.反馈练习:

(1)投影出示。

学校乒乓球队有24人,平均分成3组,___________?(口头提出问题,再解答)

学生讨论后,分组汇报.

引导学生口头提出问题:“每组有多少人”,列式计算:24÷3=8(人)

(2)投影出示

学校乒乓球队有24人,________,分成了几组?(口头填一个条件,再解答)

学生讨论,分组汇报。

引导学生口头填一个条件:

①每组有8人     列式24÷8

②每组有6人     列式24÷6

③每组有4人     列式24÷4

④每组有3人     列式24÷3

(3)投影出示

学校乒乓球队有24人, ___________,乒乓球队的人数是篮球队的几倍?(口头填一个条件,再解答)

学生分组讨论,汇报.

引导学生口头填一个条件:

①篮球队有8人      列式:24÷8

②篮球队有3人      列式:24÷3

③篮球队有6人      列式:24÷6

④篮球队有4人      列式:24÷4

(4)投影同时出示:

①学校乒乓球队有24人,平均分成3组,每组有几人?

篇4:9的乘法口诀(人教版二年级教案设计)

教学目的

1.使学生知道9的乘法口诀的来源和9的乘法口诀的特殊规律.

2.初步记住9的乘法口诀,会用口诀计算乘法式题,培养学生的推理能力.

教学重点

掌握9的乘法口诀.

教学难点

运用9的乘法口诀计算乘法式题.

教具、学具准备

1.教师准备教科书第87页例1的教学挂图(图片:例1图),有条件的可以把挂图制成投影片,或准备81个小正方体.

2.把教科书第88页“做一做”第2题的百以内数表制成放大的挂图(图片:百以内数图).

3.准备2-8的乘法口诀卡片若干张,以及10道已学的乘法式题卡片.

教学过程

一、复习.

1.齐背已学的乘法口诀.

2.看卡片把口诀说完全.

二八( )  四六( )  五八( )  六八( )

三七( )  三八( )  六七( )  五七( )

3.看题写得数.

8×4 7×8 8×6 7×5 8×3

4×7 3×7 8×8 4×6 2×8

订正时,可选两道题,让学生说一说用哪句口诀计算.

二、新课.

1.每次加9,把得数填在空格里【演示课件“9的乘法口诀”】.

9

让学生看书,指名读题,说明题意.然后让学生独立在空格里填数.在学生做的同时,教师用小黑板挂出准备题.同时进行行间巡视.

订正时,除了让学生说出每个空格里应该填的数外,还要着重让学习有困难的学生说一说这个数是怎样算出来的.如提问:下一个方格里应该填几?你是怎样算的?也可以问是几个9相加得到的?

2.教学例1【继续演示课件“9的乘法口诀”】.

我们学习7的乘法口诀和8的乘法口诀时,许多乘法口诀是同学们自己编出来的,今天我们学习新的乘法口诀,看哪一位同学会编成乘法口诀.

(1)出示例1挂图中的第一个长方体.(或用9个小正方体摆一个长方体.)先让学生说一说图中画的是什么.使学生明确,图中的长方体是由9个小正方体拼成的.

提问:一个长方体是由几个小正方体拼成的?求1个9是多少,用乘法算式怎样表示?你能根据这个乘法算式编出一句乘法口诀吗?

根据学生的回答,教师在图下面板书乘法算式和乘法口诀.形式如下:

(2)出示第二个长方体.这2个长方体是由多少个小正方体拼成的?有几个9? 2个9相加等于18,用乘法算式怎样表示?你能编出一句乘法口诀吗?让学生自己想,并填在教科书上.教师在“9×1=1和“一九得九”下面板书:

9×1=9   一九得九

9×2=18    二九( )

(3)出示第三个长方体.教师说明依照前面的方法,同学们自己根据图中的条件,写出乘法算式和编出乘法口诀,并填在书上.以下依次出示第四、五、……、九个长方体,让学生独立填算式、编口诀.教师依次板书:

9×3=27 三九( )

9×4=36 四九( )

9×5=45 五九( )

9×6=54 六九( )

9×7=63 七九( )

9×8=72 八九( )

9×9=81 九九( )

(4)学生编完以后,教师指名说自己编的口诀,如有不恰当的,其他同学帮助订正.教师把每句口诀的得数用红粉笔填在括号里.填完后,教师让学生看一看今天共编出几句乘法口诀.然后指出:这些就是我们今天要学习的新内容--9的乘法口诀.在挂图上面板书课题.

(5)齐读两遍9的乘法口诀.然后指出:用9的乘法口诀可以计算9乘以几的乘法式题.让学生对照乘法口诀,读一句口诀,读一个乘法算式.边读教师边把乘法算式中的积擦掉.然后再参照乘法口诀说出每个乘法算式的积.加深学生对乘法算式和乘法口诀关系的认识.

(6)教师说明,乘法要计算得又对又快,必须熟记乘法口诀.引导学生观察每相邻两句口诀之间的关系.提问:9的乘法口诀,在相邻的两句口诀里,后一句的积比前一句的积多几?为什么?前一句的积比后一句的积少几?为什么?并让学生初步背口诀.暂不要求又对又快.

篇5:9的乘法口诀表(人教版二年级教案设计)

教学目标

1.对乘法口诀进行归纳整理,列出乘法口诀,找出规律.

2.熟练地掌握乘法口诀,计算表内乘除法.

3.培养学生的归纳推理能力.

教学重点

乘法口诀表的结构和规律.

教学难点

乘法口诀表的结构和规律.

教具和学具

乘法口诀表.

教学过程

一、整理乘法口诀表.

1.教师谈话:过去我们已整理了1~6的乘法口诀表.出示口诀表.

同学们还记得,第一横排是1的乘法口诀,只有1句;第二横排是2的乘法口诀,有2句;第三横排呢?……第六横排呢,6的乘法口诀有几句?

2.这个阶段我们又学了7、8、9的乘法口诀,7的乘法口诀有几句,应该排在哪里?(7的乘法口诀有7句,应排在第七横排)

8的乘法口诀有几句,应该排在哪里?(8的乘法口诀有8句,应排在第八横排)

9的乘法口诀有几句,应该排在哪里?(9的乘法口诀有9句,应排在第九横排)

整理出完整的乘法口诀.

3.同学们还记得,在整理1~6的乘法口诀时,我们可以横着背,竖着背,还可以拐弯背,由学生横着读一遍,竖着读一遍,谁还记得什么叫拐弯背.(如一二得二,二二得四,二三得六,……,二九十八)

本来1的乘法口诀只有一句,2的乘法口诀有两句,3的乘法口诀有三句,……,9的乘法口诀有九句,拐弯背以后,同学们发现了什么?(每部分乘法口诀都有九句)

由学生拐弯读乘法口诀,两人互相背,指名学生背,争取1分钟内背完全部口诀.

把乘法口诀的得数盖住,任意指一句口诀,由学生很快说出得数.

把乘法口诀里任意一句的乘数或被乘数盖住,指名学生很快背出这句口诀.

二、找规律.

1.斜着看,也就是“一一得一、二二得四、三三得九、……、九九八十一”这九句口诀有什么特点?(每句口诀的被乘数和乘数一样)

以上每句口诀只是计算几道乘法算式和几道除法算式.(只能计算一道乘法算式和一道除法算式,如七七四十九,7×7=49,49÷7=7)

其余的口诀能计算几道乘法算式,几道除法算式?(其余的口诀能计算两道乘法算式和两道除法算式)

在每句口诀的下面,写出两个乘法算式和两个除法算式.

三七二十一  六八四十八  七八五十六

7×3=21   6×8=48  7×8=56

3×7=21  8×6=48  8×7=56

21÷3=7  48÷6=8  56÷8=7

21÷7=3  48÷8=6  56÷7=8

2.找一找,下面的数是哪些口诀的得数.

4:一四得四,二二得四;

6:一六得六,二三得六;

8:一八得八,二四得八;

12:二六十二,三四十二;

18:二九十八,三六十八;

24:三八二十四,四六二十四;

36:四九三十六,六六三十六.

3.找一找,哪几组口诀的积个位上的数和十位上的数对调.

:三四十二   :三七二十一

:三六十八   :九九八十一

:三八二十四   :六七四十二

:三九二十七   :八九七十二

:四九三十六   :七九六十三

:五九四十五   :六九五十四

三、利用乘法口诀计算乘法.

利用乘法口诀可以计算下面81道乘法,同学们试一试,看谁填得又对又快.

在这些乘法中,同学们是不是觉得有关7的乘法比较难算,下面重点练习有关7的乘法.现在把乘法算式按照积的个位数1~9的顺序排列,请你把乘法算式填完全.

7×□=□1     7×□=□2     7×□=□3

7×□=□4     7×□=□5     7×□=□6

7×□=□7     7×□=□8     7×□=□9

篇6:用9的乘法口诀求商(人教版二年级教案设计)

教学目标

1.掌握用9的乘法口诀求商的方法.

2.能正确运用9的乘法口诀求商.

教学重点

使学生掌握用9的乘法口诀求商的方法.

教学难点

正确运用9的乘法口诀求商.

教具学具准备

游戏卡片、动物头饰、电脑、转动圆片、投影仪.

教学步骤

一、铺垫孕伏.

1.口算:

2.填空:

( )九二十七 八( )七十二 四( )三十六

五( )四十五 ( )九六十三 六( )五十四

3.抢答,并说说你是怎样想的.

引导学生说出求  和  的商的思路.

如:计算“  ”时,想8和几相乘得24,因为8和3相乘得24,所以  的商是3.

计算“  ”时,想(  )七二十一,因为三七二十一,所以  的商是3.

再引导学生说出:“  ”的思路.

想:五( )四十,因为五八四十,所以  的商是8.

让不同层次的学生说一说用7、8乘法口诀求商的思路.

二、探究新知.

1.导入:我们学会了7、8、9的乘法口诀,还会用7、8的乘法口诀求商,这节课我们一起讨论学习怎样用9的乘法口诀求商,比一比,看看谁学得好.

2.出示例4

启发学生想:根据前面学过的用乘法口诀求商的方法,讨论怎样求得  的商.

(1)讨论(教师巡视,关照学习有困难的学生)

(2)交流

启发学生说出:( )乘九得四十五,因为五九四十五,所以  的商是5.

引导学生小结:求  的商,想9乘以几等于45,用乘法口诀想,就是几九四十五.因为五九四十五,所以  的商是5.(学生边说,教师边用投影仪显示想的过程)

3.练习:

27÷9= 54÷9= 36÷9= 72÷9=

45÷9= 63÷9= 9÷9=

引导学生说出是怎么想的.

4.出示例4:

(1)讨论

(2)交流

引导学生说:7乘以几等于63,用乘法口诀想七六十三.

因为七九六十三,所以  的商就是9.(让不同层次的学生说一说,掌握用9的乘法口诀求商的方法,突破重点)

5.练习:

各组互相出用9的乘法口诀求商的题目,并说一说怎么想的.

引导学生小结:用9的乘法口诀求商与前面求商的方法一样,只是用的乘法口诀不同.

6.练习:

(1)9×3= 9×6= 9×4= 9×8=

27÷3= 54÷6= 36÷4= 72÷8=

引导学生说出是怎样想的,再找学生仿照第1题的形式举些例子.

(2)18÷2= 18÷9= 72÷8= 36÷4=

54÷6= 63÷7= 45÷5= 81÷9=

教师出示卡片,指名学生口答,并说一说自己的想法.

三、全课小结.

这节课我们讨论学习了用9的乘法口诀求商的方法,知道了用9的乘法口诀求商与前面求商的方法一样,只是用的口诀不同.

四、随堂练习.

1.在括号里填上适当的数(投影出示)

每一题都说一说是根据哪句口诀想的,对学习有困难的学生注重引导、点拨.

2.在(  )里填上“<”、“>”或“=”(投影出示)

各组讨论,引导学生说一说是怎样想的.

3.用小圆外面的数除以9,很快地说出得数.

教师出示转动圆片.说明小圆中的数是除数,小圆外的数是被除数,一名学生转动圆片,变换小圆外的被除数,其他学生抢答.

4.(1)把72平均分成9份,每份是多少?

(2)63里面有几个7?

(3)54是6的几倍?

投影出示,各组讨论并列式计算.

互相说一说为什么用除法计算.

五、布置作业.

板书设计

用9的乘法口诀求商

例4

探究活动

游戏:你来我往

篇7:乘法应用题和常见的数量关系(人教版二年级教案设计)

课题:乘法应用题和常见的数量关系

教学目标

1.初步培养学生运用数学术语表达数量关系的能力.

2.运用数量关系解决实际问题.

3.引导学生探索知识间的内在联系,激发学生自己探求知识的欲望,培养学生自主学习的精神,促进学生抽象思维的发展.

教学重点

通过实例使学生理解和掌握以及能用术语表达这些数量关系,并在解答应用题的实际问题中加以应用.

教学难点

使学生熟练运用这些术语和关系式.

教学步骤

一、铺垫孕伏.

口算:

30×40= 6×40= 200×20= 80×50=

12×8= 32×20= 150×4= 240÷2=

二、探究新知.

1.导入:在生产和生活中,有各种数量关系.在乘法应用题中有哪些常见的数量关系?板书:乘法应用题和常见的数量关系.

2.数学例1: 认识:单价×数量=总价

(1)例1.铅笔每枝5角,买3枝用:

5×3=15(角)

15角=1元5角

篮球每个70元,买2个用:

70×2=140(元)

鱼每千克9元,买4千克用:

9×4=36(元)

(2)引导学生明确:以上三个问题都是买东西用钱的事.

每件商品的价钱叫单价;买了多少叫数量;一共用多少钱叫总价.

第一个问题里的单价是5角,数量是3枝,总价是1元5角.

第二个问题里的单价是70元,数量是2个,总价是140元.

第三个问题里的单价是9元,数量是4千克,总价是36元.

从例1可以看出,单价、数量和总价之间的关系是:单价×数量=总价

(3)反馈练习:

① 口答:每件商品的价钱叫( ),买多少叫( ),一共用多少钱叫( ),它们之间的关系是( ).

② 请你举出日常生活中符合以上数量关系的实际计算问题.

3.教学例2.认识:单产量×数量=总产量

(1)例2.每棵苹果树平均收苹果25千克,3棵苹果树收:

25×3=75(千克)

菜园每畦产菠菜150千克,4畦产菠菜:

150×4=600(千克)

(2)讨论思考:这两个问题都是说的什么事?这两个问题中单产量、数量、总产量分别是什么?从上面两个问题可以看出单产量、数量和总产量之间有什么关系?

(3)学生汇报:这两个问题都是说有关生产数量的事情.每棵树收多少苹果或每畦菜地产多少菜叫做单产量;有多少棵树或有多少畦菜地叫数量;把一共收多少苹果或产多少菜叫总产量.

第一个问题里的单产量是25千克,数量是3棵,75是总产量.

第二个问题里的单产量是150千克,4畦是数量,600是总产量,

从上面两个问题可以看出单产量、数量和总产量之间的关系是:

单产量×数量=总产量

(4)反馈练习:

① 回答:每棵树收多少苹果或每畦菜地产多少菜叫(单产量),有多少棵树或有多少畦菜地叫(数量).

② 举出日常生活中符合上述数量关系的实际计算问题.

三、全课小结.

这节课你学会了哪两种数量关系?

四、随堂练习.

1.填空:

( )×( )=总价 ( )×数量=总产量

2.判断下面各题的对错.

(1)知道每袋洗衣粉的价钱和买的袋数,求总价应用洗衣粉单价乘袋数.( )

(2)生产队有土地20亩,每亩产粮400公斤,共产粮多少公斤,是求数量的题目( )

五、布置作业.

1.编一道已知单价和数量求总价的应用题.

2.编一道已知单产量和数量求总产量的应用题.

板书设计

探究活动

行程当中学问多

活动目的

l.使学生能利用“速度、时间、路程”的关系,解决日常生活中遇到的问题,感受数学与现实生活的密切联系.

2.培养学生的创新意识,探索精神和解决问题的能力.

篇8:第3册第三章-表内乘法应用题(人教版二年级教案设计)

教学目标

1.知道求几个相同加数和的乘法应用题的结构,初步掌握求相同加数和的乘法应用题的分析思路和解答方法,能正确解答这种类型的应用题.

2.通过乘法应用题的分析解答,培养学生认真审题、动脑分析、比较区别等能力.并使学生们学会简单地分析乘法应用题中的数量关系.

3.在授课过程中,教育学生们养成认真审题、正确解题、仔细检查的习惯.

教学重点

使学生理解求相同加数和的应用题的结构和数量关系.

教学难点

使学生真正掌握此类应用题的结构.

教学过程

复习导入

1.口算.

2×3=      2×5=      4×2=     5×1=

5×3=      4×3=      5×5=      1×4=

2.列式计算.

(1)3个4相加是多少?

(2)5个2相加是多少?

3.师:大家已经学习了1~5的乘法口诀,学会了计算相应的式子题和文字叙述题.今天,我们要一起来研究一些生活中的问题,看谁能够应用前面所学的知识来解决这些问题.

4.教师板书课题:应用题

新授

1.出示例8(教师板书)

同学们浇树,每个人浇4棵,3个人一共浇多少棵?

2.分析解答例8

(1)读题,找出题目中的已知条件、要求的问题各是什么?用小圆片摆一摆,表示出题目中的意思.

学生可以答出:每个人浇4棵,有了3个人,要求一共浇了多少棵.(一个学生说,另一个学生在黑板上板贴小圆片.)

(2)师:看图思考,要求一共浇了多少棵树应该怎么想?(学生回答:每个人浇4棵,也就是1个4棵,有3个人浇树,就是浇了3个4棵.要求一共浇了多少棵,也就是求3个4是多少.)

(3)问:要求3个4棵是多少,应该用什么方法解答?该怎样列式?说一说为什么要这样列式?

学生边回答教师边板书:4×3=12(棵)

口答:一共浇了12棵.

3.进一步理解例8算式的意义.

师问:谁来说一说,算式中的每个数分别表示什么意思?

(算式中的4表示每个人浇了4棵树,也就是一份是4,算式中的3表示有3个人再浇树,也就是有相同的3份,算式中的12表示3个人一共浇了12棵树,也就是3个4是12.)

4.讲解例9

(1)出示例9(教师板书例9)

小明买了3个扣子,每个5角钱,一共用了多少钱?

(2)师:读题,已知条件是什么?要求的问题是什么?

教师根据学生的叙述板贴:

(3)师:看图思考,要求一共多少分应该怎样想?用什么方法解答?怎样列式?说说为什么? (分小组讨论)

(4)汇报解答方法.(小组同伴分工完成下面的任务:一人负责口头列式,一人负责板书列式,一人负责说为什么这样列式.)

(5)再次说明列式中每个数表示的意义.(算式里的5表示每个扣子5角,3表示买3个扣子,一共是3个5角,要求3个5角是多少应该用乘法计算)

巩固练习

教师要求:

(1)在规定的时间里,根据个人的不同情况,能完成几道题就完成几道题.

(2)如果在规定时间里,完成了所有的题目后,可以思考以下问题:

这几道题有什么共同的特点?(都是用乘法解答的;这几道题都是求几个几是多少.)

这几道题还可以用什么方法解答?

如果每一道题都能用两种方法解答,你更喜欢哪一种方法,为什么?

归纳质疑

师:通过这节课的学习,大家有什么收获?

1、乘法算式可以用乘法口诀来迅速的计算.

2、求几个几用乘法计算.

篇9:乘法应用题和常见的数量关系(二)(人教版二年级教案设计)

教学目标

(一)使学生初步理解并掌握速度、时间和路程及工效、工时和工作总量之间的关系,并能解答有关的应用题.

(二)初步培养学生运用数学语言的能力,促进学生抽象思维的发展.

教学重点和难点

重点:掌握用术语表达数量关系并能解答应用题和在实际问题中加以应用.

难点:明确速度、时间和路程及工效、工时和工作总量三种数量的含义和它们之间的关系.

教学过程设计

(一)复习准备

1.口算:(口算卡片)

20×40  5×30  24×20  12×5

42×10  60×50  200×30 240÷2

2.复习上节课有关三量关系.

提问:我们在购买商品时,常用到哪几种量?它们之间的关系是什么?请举一例.

(单价、数量、总价)

(单价×数量=总价)

(每张课桌45元,4张课桌多少元?)

提问:单产量、数量、总产量之间有什么关系?

(单产量×数量=总产量)

(二)学习新课

在日常生活中,除了上节课学习的数量关系,还有一些常见的数量关系,今天我们一起来继续学习.(板书课题)

投影出示:

例题  1.汽车每分行750米,4分行多少米?

750×4=3000(米)

2.小强每分步行66米,5分步行多少米?

66×5=330(米)

3.一艘轮船每小时行18千米,3小时行多少千米?

18×3=54(千米)

4.一列火车每小时行120千米,2小时行多少千米?

120×2=240(千米)

以上四道题由学生独立完成,然后请同学口述解题过程,老师板书.

老师引导学生观察以上四小题,讲的是哪方面的事情,有什么特点?

(四个小题讲的是同一类事情,都是行车、走路的问题.特点是已知条件都是每分、每小时走多少路,所求问题都是求一共走多少路)

老师根据学生的回答,进行概括.以上每小题已知条件都是每分,每小时行的路程,我们叫它速度.(同学们互相说一说什么是速度,举出几例说明)

请用一句话概括一下什么叫速度.(每分、每小时行的路程叫速度)

教师给予肯定,并补充说明:根据物体实际运动的快慢,可以按秒、分、时、天、周、月、年等单位时间所行的路程叫速度.(还可以再让同学举一些平时生活中的实例,说明一下什么叫速度)

提问:那么题目中4分、5分、3时、2时又叫做什么呢?(回答是时间)(板书)

再问:我们计算出的结果(也就是题目中的问题)3000米、330米、54千米、240千米表示的是什么呢?(回答是共走的路程)

老师归纳:我们把一共走的路叫路程.从题目中可以看出速度和路程都用米、千米等不同的长度单位表示.想一想速度和路程有什么不同?各表示什么?

速度:单位时间内行的路程.

路程:一共所走的路.

根据上面的四个算式,分别指出速度、时间、路程三种量之间的关系.并引导学生总结出关系式:速度×时间=路程.

小组同学互相说说每道题里速度是多少,时间是多少,路程是多少.然后根据速度×时间=路程三量关系式,编一道应用题,再请其他同学说一说,速度、时间、路程各是多少.

师:我们掌握了数量之间的关系,可以应用这些数量关系解答相应的应用题.下面我们继续研究一些常见的数量关系.

出示例题:

1.一台织布机每小时织布3米,8小时织布多少米?

3×8=24(米)

2.修路队每天修路240米,5天修路多少米?

240×5=1200(米)

3.某机床厂每月生产机床450台,一年生产机床多少台?

450×12=5400(台)

师:引导学生观察上面三个小题,讲的是哪方面的事情?(生产、工作的事情)

说出各小题的已知条件是什么?有什么共同的特点?

(已知每小时、每天、每月干多少活)

师:在日常工作中,我们把每小时、每天或每月的产量多少叫做工作效率,简称工效.

(两个同学互相说一说你知道的一些与工作效率有关的问题)

引导学生归纳出“工效”的概念.每分、每时、每天、每月……生产的数量叫工效.

那么8小时、5天、1年又表示什么呢?

(学生很容易说出是“时间”)

师:对,我们把它叫工时.

老师指每题的结果,问: 24米, 1200米, 5400台表示什么?(共完成的数量)

师:我们把一共完成的数量叫做工作总量.请你用一个关系式概括出工效、工时、工作总量之间的关系.

板书:工效×工时=工作总量

师:请你编一道已知工效和工时求工作总量的应用题.(先给一定的时间让学生独立思考,然后小组同学互相说自己编的题,进行交流,教师巡视指导)

(三)巩固反馈

关于乘法应用题常见的数量关系,同学们掌握的怎么样,我们来检查一下,看看哪些同学学得最好.

1.把已知条件和可以求出的问题用线连接起来.(出示投影)

先让学生独立思考,然后请同学回答.

已知单价和数量  可以求出工作总量

已知速度和时间  可以求出总产量

已知工效和工时  可以求出总价

已知单产量和数量 可以求出路程

2.填空.(投影)

(  )×数量=总产量

(  )×数量=总价

速度×(  )=路程

工效×工时=(  )

3.先补充已知条件,再解答.

要求:先读题,说出已知条件是什么?求什么?应补充什么条件?

(1)李刚每小时能走4500米,(  ),一共走了多少米?

(2)每本《东方少年》5元,(  ),共用了多少元?

(3)一台织布机,(  ).8小时可以织布多少米?

(4)每棵苹果树收苹果45千克,(  ),一共收苹果多少千克?

下面的练习由小组讨论,在练习本上只列式,然后互相交换检查.

4.说出下面各题的数量关系,再列式.

(1)每包毛巾有24条,50包共有毛巾多少条?

(2)学校买了360张课桌,每张课桌48元,一共花了多少元?

(3)挖一条水渠,每天挖280米,20天挖了多少米?

(4)一列火车每小时行140千米,8小时行多少千米?

作业:看书第27,28页.第29页第8题.

小资料

乘法应用题的数量关系,都可以归结为求b个相同加数a的和c是多少.即

ab=c

主要有两种情况:一是直接求b个相同加数a的和;二是求已知数a的b倍是多少,实际上也是求b个a的和.

课堂教学设计说明

教学例3,例4是在学生掌握了单价×数量=总价和单产量×数量=总产量的基础上进行教学的,对于行程问题和工作问题,学生是接触过,会解答简单的题目,只是没有加以概括,形成规律性的认识,没有系统建立这些概念.速度、时间、路程及工效、工时、工作总量这些数量关系是学生进一步学习物理、化学等知识的基础,因此,本节课教学重点是将这些常见的数量关系加以整理概括,加深对常见数量关系的认识,加强运用术语能力的培养,使学生更好地掌握这些概念.教学过程中注意给学生创设环境,通过自己独立思考、同学之间互相交流、讨论,加深对常见数量关系的理解.为了巩固已学的知识,设计了形式多样的、大量的、有层次有梯度的练习.通过反馈,教师能准确掌握学生学习的情况.

板书设计

篇10:应用题(二年级)(人教版二年级教案设计)

教学目标

(一)使学生初步了解连续两问的应用题的结构,初步学会分析应用题中的数量关系.

(二)能够解答比较容易的连续两问的应用题.

(三)初步培养学生有条理的思考问题的能力.

教学重点和难点

重点:了解连续两问应用题的结构,分析应用题中的数量关系.

难点:解答第二问时,找出所需要的条件.

教学过程设计

(一)复习准备

把应用题补充完整,再解答出来.

1.________,用了4张,还剩多少张?

2.________,又跑来5只,一共有多少只?

教师谈话:我们学习的应用题,都是由两个条件和一个问题组成的,如果缺少一个条件就无法解答,必须根据所求问题和其中一个条件,找到所需要的另一个条件.今天我们继续学习应用题.(板书课题)

(二)学习新知

1.出示例5

学校有15只白兔,7只黑兔,一共有多少只兔?

由学生读题、分析,列式并解答.

15+7=22(只)

口答:一共有22只兔.

这是同学们学过的旧知识,把两种兔子的只数合并在一起,就是一共有多少只兔了.下面还有第二问.接着出示第二问.

又生了8只小兔,学校现在有多少只兔?

启发性提问:

(1)要想求学校现在共有多少只兔,问题中的“现在”指的是什么时候?

(2)第二问只有一个条件能解答吗?缺少的条件往哪里去找?

(3)怎样列式解答?

相邻的两名同学互相讨论,全班交流,三个问题分三次讨论.

通过讨论,明确以下问题:

(1)要求“现在”有多少只兔,指的是在学校原有小兔总只数的基础上,再添上又生的8只.(2)第二问只有一个条件不能解答,根据所求问题及知道的又生了8只,需要找到学校原来有多少只兔,而原来小兔的总只数通过第一问已经求出来了,是22只.(3)用22只再加上8只,就是所要求的现在小兔的只数.

列式:  22+8=30(只)

口答:现在有30只.

指若干名学生把解答第二问怎样想的说一说.

2.出示例6

一辆公共汽车里有30人,到胜利街车站有7人下车,车上还剩多少人?又上来9人,现在车上有多少人?

指名学生读题.

提问:这道题有几个问题?咱们先解答第一问.

指名学生解答第一问,并说一说是怎样想的.

(从30人中去掉 7人,就是车上还剩的人数)

30-7=23(人)

口答:车上还剩23人.

再解答第二问.

提问:现在已经求出车上还剩23人,还知道又上来9人,能不能求出现在车上有多少人?指名学生列式解答,并说一说是怎样想的.

(用车上还剩的 23人,和上来的 9人合在一起,就是现在车上有的人数)

23+9=32(人)

口答:现在车上有32人.教师小结:

今天我们学习有两个问题的应用题,这两个问题间有联系,在解答第二问时,其中一个条件要用上第一问求出的结果,所以叫做连续两问应用题.在解答时,要把题目看清楚,不要把第二问漏掉.

(三)巩固反馈

1.半独立性练习

课本中“做一做”的第1题:

商店有8辆自行车,又运来25辆,一共有多少辆?

全体学生在书上独立解答,订正后,老师稍加提示,解答第二问.

已经求出一共有33辆,卖出10辆,还剩多少辆?

全体学生在书上独立解答.

课本中“做一做”的第2题:

小华有25张动物邮票,送给同学8张,小华还剩多少张邮票?

王叔叔送给他7张,小华现在有多少张邮票?

第一问由学生独立解答,第二问指名学生说出条件和问题,再独立解答.

2.课堂独立练习

练习二第1题:

商店里运来45筐芹菜,运来的菠菜比芹菜多3筐.运来多少筐菠菜?卖出50筐菠菜,还剩多少筐菠菜?

由学生独立做在练习本上.

3.课后练习 练习二:第2,4题.

课堂教学设计说明

本节课是在学生已学过一步应用题的基础上进行的,它是为今后学习两步应用题做准备.所以课堂设计时,把教学的重点放在解答第二问时,怎样从第一问中找出所需要的条件.

本节课的各个环节,都是围绕这一重点进行的.例如,教学一开始,安排了两道给应用题补充条件的练习,就是为本节课的重点打下基础.在学习新课时,重点放在怎样解答第二问,组织学生讨论,在全班交流.巩固练习环节中,在半独立练习时,由学生说出解答第二问的两个条件,再过渡到由学生独立解答.这样步步深入,逐步使学生初步了解连续两问应用题的结构,了解两个问题之间的联系,从而掌握先解答什么,再解答什么的解题思路.

篇11:分数乘法应用题(人教版六年级教案设计)

教学目标

1.进一步掌握分数乘法应用题的数量关系.

2.学会用一个数乘分数的意义解答两步分数乘法应用题.

教学重点

1.掌握两步分数应用题的解题思路和方法.

2.画线段图分析应用题的能力.

教学难点

分析两次单位“1”的不同之处.

教学过程

一、复习、质疑、引新

(一)指出下面分率句中的单位“1” .

1.乙是甲的

2.小红的身高是小明的

3.参加合唱队的同学占全班同学的

4.乙的  相当于甲

5.1个篮球的价钱是一个排球价钱的  倍

(二)口头分析并列式解答

1.小亮的储蓄箱中有18元,小华储蓄的钱是小亮的  ,小华储蓄了多少元?

2.小华储蓄了15元,小新储蓄的是小华的  ,小新储蓄了多少元?

(三)引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?这就是本节课要学习的新内容.

(出示课题--分数应用题)

二、探索、悟理

(一)出示组编的例题

例2.小亮储蓄箱中有18元,小华储蓄的钱是小亮的  ,小新储蓄的是小华的  ,小新储蓄了多少元?

1.思考讨论

(1)小华储蓄的钱是小亮的  ,是什么意思?谁是单位“1”?

(2)小新储蓄的是小华的  ,又是什么意思?谁是单位“1”?

2.汇报思路讲方法

根据“小华储蓄的钱是小亮的  ”,把小亮的钱看作单位“1”,可以求出小华储蓄的钱:  .根据“小新储蓄的是小华的  ”,把小华的钱看作单位“1”,再标出小新的储蓄钱:  .

由此基础上试列综合算式:

(二)巩固练习

小华有36张邮票,小新的邮票是小华的  ,小明的邮票是小新的  ,小明有多少张邮票?

1.分析数量关系,独立画图并列式解答.

2.学生板演.

(张)

(张)

答:小明有40张.

3.综合算式

三、归纳、明理

用连乘解答的题有什么特点?”“解题思路是什么?”

1.认真读题弄清条件和问题

2.确定单位“1”找准数量关系

根据分数乘法的意义,找准“量”、“率”对应关系,即谁是谁的几分之几.

3.列式解答

板书:抓住分率句,找准单位“1”,

画图来分析,列式不用急.

四、训练、深化

(一)联想练习根据下面的每句话,你能想到什么?

1.苹果的个数是梨的  .(如,梨是单位“1”;苹果少,梨多;苹果比梨少  等)

2.修了全长的

3.现在的售价比原来降低了

(二)先口头分析数量关系,再列式解答.

1.鹅的孵化期是30天,鸭的孵化期是鹅的  ,鸡的孵化期是鸭的  ,鸡的孵化期是多少天?

2.3个同学跳绳,小明跳了120下,小强跳的是小明的  ,小亮跳的是小强的  倍,小亮跳了多少下?

(三)提高题.

六年级有三个班参加植树,___________,二班植树棵数是一班的  ,三班植树棵数是二班的  倍,___________?

五、课后作业

(一)六年级同学收集了180个易拉罐,其中  是一班收集的,  是二班收集的.两班各收集多少个?

(二)长跑锻炼,小雄跑了3千米,小雄跑的  等于小刚跑的,小勇跑的是小雄的  .小刚和小勇各跑多少千米?

六、板书设计

分数乘法应用题

小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的  ,小新储蓄的钱是小华的  .小新储蓄了多少钱?

教案点评:

解答分数应用题的关键是弄清题中的数量关系,谁和谁比,把谁看作单位“1”,求的是谁的几分之几。这也正是课堂教学的重点和难点,是学生分析能力的体现。是我们课堂的叫目标之一。

这节课是分数应用题的第二节。学生已具备初步分析已知和找单位“1”的能力,但是增加了一个条件,并增加了一个数量。要利用已有的分析方法分步分析,才能化难为易,教学中采用小组合作的形式,发挥集体的智慧,在共同讨论中理解已知条件,有利于学生排除思维障碍。教师再配以线段图加深强化学生理解题意,以实现旧知识向新知识的迁移和飞跃。练习的设计,由易到难、变换条件,有助于学生灵活分析,防止定势。

篇12:归总应用题(人教版二年级教案设计)

教学目标

1.使学生掌握两步应用题(归总)的结构特点和解答方法,能正确迅速地找到中间问题(先求什么).

2.使学生学会列综合算式解答,初步掌握这类应用题的解题规律.

3.训练学生有条理地分析数量关系,培养学生分析、解答应用题的能力.

教学重点

使学生掌握乘、除法应用题的数量关系、结构特征和解答方法.

教学难点

学画线段图,并借助线段图分析题中数量关系.

教学过程

一、联系生活实际,以旧引新.

1.请你根据学过的乘除法数量关系,联系自己的生活实际举例提问.

①单价×数量=总价

②路程÷时间=速度

③工作总量÷工效=工时

学生可能举例:

①一个足球50元,3个足球多少元?

②我家到姥姥家相距大约120千米,坐汽车行了2小时,这辆汽车每小时行多少千米?

③王师傅用小推车为食堂运菜,每小时运80千克,240千克的菜要几小时运完?

2.改编:工人们修一条路,每天修12米,10天修完.________?求什么?(求这条路长多少米?)为什么?如果去掉这个问题,改成“如果每天修15米,几天修完?”应该如何解答呢?

此时,学生可能会答也可能答不出.如果有答对的,请他说说是怎样算的;如果没有,教师提问:要想知道“如果每天修15米,几天修完?”,就要先求出什么?(工作总量)根据哪一数量关系求工作总量?

教师导入:生活中这样的问题还有很多,今天我们就一起来研究这样的问题.

二、尝试探索,学习新知.

1.(1)出示例5:工人们修一条路,每天修12米,10天修完.如果每天修15米,几天修完?

学生们自由读题,理解题意.

教师谈话:通过读题,你想到了那些问题,提出来供同学们思考.

学生可能提出:

题目中已知几个条件,它们各是什么?要求什么问题?线段图应该怎么画?

这道题可以先求什么?(中间问题)为什么?

求出总数量后,再求什么?为什么?

经同学们思考(也可以小组讨论),师生共同解决.

全班重点讨论下面的问题:

a.线段图怎样画?题中什么数量变了,什么没变?

使学生明确:为了清楚地反映数量关系,最好画两条线段,两条线段要同样长,表示同一条路(说明工作总量是固定不变的).

b.要求几天修完,必须先求什么?为什么?

[看图分析:可以从条件出发,已知每天修12米(工效),又知道修了10天(工时),就可以求出这条路全长多少米?(工作总量)还可以从最后的问题出发,要求每天修15米,几天修完?必须知道这条路全长是多少米,题目里没有给工作总量,所以要先求出工作总量.]

共同解题,说出解题方法.

(学生边回答教师边板书: 这条路全长多少米?

12 × 10 = 120(米)

几天修完?

120 ÷ 15 = 8(天)

综合算式: 12 × 10 ÷ 15

⑤请学生说一说怎样检验?

(2)教师提问:如果将第三个条件改成“每天修20米、每天修30米、每天修4 0米”,问题不变,仍求几天修完?应该怎样列式?

12×10÷20=6(天) 12×10÷30=4(天)

12×10÷40=3(天)

(3)教师提问:如果将第三个条件和问题改成“如果要求6天修完,每天应修多少米?”应该怎样解答呢?

订正:这条路长多少米? 12 × 10 = 120(米).

每天应修多少米? 120 ÷ 6 = 20(米).

综合算式:12×10÷6

全班共同订正,说说你的解题思路,每一步算式的含义.

(4)教师提问:再将第三个条件改成“要求5天修完、2天修完”,问题不变,仍求每天应修多少米?怎样列式?

12×10÷5=24(米) 12×10÷2=60(米)

2.对比质疑,归纳概括.

篇13:连除应用题(人教版二年级教案设计)

课题:连除应用题

教学目标

1.使学生掌握连除应用题的基本结构和数量关系,学会列综合算式用两种方法解答连乘应用题.

2.培养学生分析解决实际问题和灵活应用所学知识的能力,学会有条理地叙述思维过程.

3.培养学生主动探索的学习热情,感受数学与生活的密切联系.

教学重点

认识连除应用题的数量关系,初步学会两种解答方法.

教学难点

理解连除应用题的两种解题思路.

教学过程

一、提出问题 激疑诱趣.

1.出示【图片“参观农业展览”】

三年级同学去参观农业展览.他们平均分成2队,每队分成3组,每组15人,一共有多少人?(用两种方法列综合算式解答)

答:一共90人. 2.改变复习题的一个条件和问题后,出示例2.

例2:三年级同学去参观农业展览.把90人平均分成2队,每队平均分成3组,每组有多少人?

教师提问:例题与复习题在条件和问题上有什么变化?

教师导入:已知条件和问题发生了变化,还能用原来的方法解答吗?这就是我们今天要共同研究的新知识.(板书:应用题)

二、师生共同参与探索.

1.学习两种分析、解答应用题的方法.

出示例2:三年级同学去参观农业展览.把90人平均分成2队,每队平均分成3组,每组有多少人?

(1)自由提问,思考讨论.

教师提问:看到这道题,你想到了什么?有哪些问题?

学生可能提出如下问题,教师可以进行简记:

①这道题已知什么条件,要求什么问题?用线段图如何表示?

②要求每组多少人?必须先求出什么?

③分步列式如何解答?

(2)汇报结果,共同探索.

①教师提问:谁能回答第①个问题?

根据学生回答,出示线段图

②教师提问:谁能解决第②个问题?

结合学生讨论,教学两种解法,并列出综合算式.

第一种解法:要求每组有多少人?必须先求出每队多少人?(借助线段图帮助学生理解)已知条件中告诉我们共有90人,平均分成2队,求每队多少人?就是把90人平均分成2份,每份是多少?用除法计算.知道每队45人,又知道每队分3组,就能求出每组有多少人?

板书:

每队多少人? 综合算式:90÷2÷3

90÷2=45(人) =45÷3

每组有多少人? =15(人)

45÷3=15(人)

第二种解法:(借助线段图)要想求每组多少人?必须先求出一共多少组?知道每队分3组,分成2队,就是求2个3是多少?用乘法计算.6组对应90人,要求出每组多少人?就是把90平均分成6份,求每份是多少?

板书:

一共多少组? 综合算式: 90÷(2×3)

3×2=6(组) =90÷6

每组多少人? =15(人)

90÷6=15(人)

2.观察比较,归纳概括.

教师提问:观察两种解法在思路上有什么异同?

引导学生说出:相同点是所求的问题一样.不同点是先求的不一样,第一种解法先求的是每组多少人,第二种解法先求一共多少组,所以第一步的解法也就不一样.

3.引发思考,掌握检验方法.

教师提问:同学们,我们已经知道两种解法可以互相检验,除了这种方法外,还可以怎么检验应用题?(小组讨论)

引导学生发现:把已经计算出的结果作为已知条件,进行逆运算,如果最后算出的结果与题目的已知条件相同,说明解答正确.

15×3×2

=45×2

=90(人)

三、分层练习反馈矫正.

1.独立用两种方法解答,口头检验.

(1)图书馆买来新书240本,平均放在3个书架上,每个书架上放4层,平均每层放多少本?

订正:

答:平均每层放20本.

(2)商店卖出7箱保温杯,每箱12个,一共收入336元,每个保温杯多少元?

篇14:9加几-应用题(人教版一年级教案设计)

教学目标

1.了解什么是应用题的已知条件和问题,初步理解一步应用题的结构.

2.会联系加减法的含义解答有图有文字的一步计算应用题.

3.培养初步的分析、判断和推理能力.

教学重点

有图有文字应用题的解答.

教学难点

解答有图有文字的减法应用题.

教具学具准备

教师准备教科书第88页例5的两幅图的图画,独立作业的投影片.

学生准备教科书第88页数学游戏的口算卡片和得数卡片.

教学步骤

一、铺垫孕伏.

6+2=    9+4=    9+9=

9+3=    3+5=    4+6=

9+7=    9+6=    9+5=

2+7=    9+2=    9+8=

统计2分钟以内做完的人数及正确率.指名说一说计算9+3和9+7应该怎样想.

二、探究新知.

1.导入.

(1)教师出示例5的左图(小鸟图),3只小鸟落在树枝上,再出示一幅图,上面画有6只小鸟.

师:图中先告诉我们什么?又告诉我们什么?

引导学生回答:图中先告诉我们树上有3只鸟,又告诉我们又飞来6只.

师:求一共是多少只该怎样算呢?

引导学生回答:求一共是多少只,就是把树上的3只鸟和又飞来的6只合起来,把3和6合起来是9,列式为:3+6=9.

教师取下后贴上的第二幅图,在第一幅图的下面贴上用文字写出的条件和问题,成为例5左边的题.

(2)揭示课题.

像这样有图有文字的应用题应当怎样解答呢?今天我们就学习有图有文字的应用题.板书课题:应用题.

2.教学例5左边的加法应用题.

(1)学生讨论:题里告诉了什么?还告诉了什么?让我们求什么?

引导学生明确,题里告诉了树上有3只小鸟,还告诉了又飞来6只,让我们求一共是多少只?

教师说明,已经告诉我们的树上有3只小鸟和又飞来6只都叫已知条件,让我们求的一共是几只叫做问题.在这道题中,第一个已知条件是用图画表示的,第二个已知条件是用文字表示的,问题也是用文字表示的.我们学过的应用题一般都有2个已知条件和1个问题.让学生自己小声说一说题中的两个已知条件和1个问题,指名让学生到前边指一指.

(2)求一共是多少只怎样计算呢?

引导学生说出,求一共是多少只,就是把树上的3只小鸟和又飞来的6只合起来,把3和6合起来是9,列式为3+6=9

(3)让学生把教科书第88页例5左题的算式补充完整.

(4)反馈练习.

完成“做一做”左边的加法题(小兔图).

先让学生说一说题中的条件和问题分别是什么,怎样计算,然后让学生填书上的空.

3.教学例5右边的减法应用题.

(1)出示例5右边的图(梨图),盘子里有10个梨,再用纸盖住其中的4个,并在原来位置用虚线画出4个形状.看图,你知道了什么?怎样计算?

引导学生说出,盘子里有10个梨,吃了4个,求还剩几个?也就是从10个梨中去掉4个,从10中去掉4剩下6,列式为10-4=6

(2)拿走盖着4个梨的纸,出示例5右题的用文字叙述的第二个条件和问题,成为例5右边的减法应用题.

让学生自由读一读题,找出题中的两个已知条件和1个问题.

引导学生说出:第一个已知条件是,盘子里有10个梨,是用图画表示的.第二个已知条件是,吃了4个梨,是用文字叙述的.问题是:还剩几个?也是用文字叙述的.

师:求还剩几个应该怎样想,怎样列式呢?

引导学生说出,求还剩几个,就是从盘中的10个梨里面去掉吃了的4个,也就是从10里面去掉4还剩6,列式为10-4=6

(3)让学生把教科书第88页例5右边的减法应用题的算式补充完整.

篇15:分数乘法应用题(一)(人教版六年级教案设计)

教学目标

1.使学生理解、掌握题中的数量关系。根据一个数乘以分数的意义掌握求一个数的几分之几是多少的一步计算的分数乘法应用题的解题方法。

2.渗透事物之间普遍联系的思想,培养学生利用已有知识迁移到新知识的能力。

教学重点和难点

1.使学生能够用线段图正确表达题意,并在此基础上进一步理解题中的数量关系。

2.在搞清数量关系的前提下,根据一个数乘以分数的意义,正确解答求一个数的几分之几是多少的一步分数乘法应用题。

教学过程

(一)复习准备

1.谈话、提问。

我们已经学习了分数乘法的计算方法,这两道题你能否不计算就比较出哪个算式的乘积大?

为什么呢?

分5份后取其中的2份是多少。)

当一个数乘以分数时求的是什么?

(一个数乘以分数就是求这个数的几分之几是多少。)

2.口述下列算式的意义。

求一个数的几分之几是多少怎样列式呢?

3.列式。

(二)学习新课

1.出示例1。

2.分析题意。

(1)读题,找出已知条件和所求问题。

(2)分析已知条件。

①谈话提问:

题中有两个已知条件,其中学校买来100千克白菜是已知学校买来

那么它表示什么呢?请你们以小组为单位通过讨论下面的问题得出结论。

③汇报讨论结果。

均分成5份,吃了的占其中的4份。)

④那么我们应把谁看作单位“1”?(100千克)

⑤怎样用线段图表示?先画什么?再画什么?求吃了多少千克,是求哪部分?

3.列式解答。

(1)根据刚才的分析,你能用已学过的整数乘除法来解答吗?

100÷5×4=80(千克)

100÷5求的是什么?再乘以4呢?

(2)刚才是用了整数乘除法的解答方法,怎样直接用分数计算呢?

所以把谁看作单位“1”?(100千克)

根据一个数乘以分数的意义应怎样列式?

答:吃了80千克。

4.课堂练习。

队的有多少人?

(1)读题,找出已知条件和问题。

(3)请你们以小组为单位进行分析,并画出线段图,解答出来。

(4)反馈。

说一说你们小组的分析思路及解答方法。

是多少。)

5.小结。

刚才我们解答的两道题,都是已知单位“1”是多少,求它其中的一部分即求它的几分之几是多少。解答这类应用题的关键是什么?

(分析含有分率的句子,找准单位“1”,再根据一个数乘以分数的意义列式解答。)

6.下面我们来看这样一道题,看看它与上面的题有什么不同?

(1)出示例2。

(2)读题,找出已知条件和问题,并确定从哪儿入手分析。(小强身高

(3)分析、画图。

①你怎样理解这个条件?(把小林身高看作单位“1”,平均分成8份,小强的身高是这样的7份。)

②这道题中涉及到几个数量?哪几个数量?(小林的身高、小强的身高。)

③为了区别,画图时要用两条线段来表示。先画谁呢?(小林的身高)再画谁呢?(小强的身高)怎样表示?

(4)看图列式。

少。)

②怎样列式解答?

7.改动上题,你能独立分析吗?

米?

(2)画图分析解答。

(3)提问反馈:

①把谁看作单位“1”?

②小林身高怎样用线段图表示?

③求小林身高就是求什么?

求一个数的几倍,我们也可以理解成求这个数的几分之几是多少。

(三)课堂总结

例1、例2有什么相同点和不同点?

(四)巩固反馈

(画图,解答)

球价格多少元?

3.对比练习:

少元?

(五)布置作业

20页第1~5题。

课堂教学设计说明

本节教案的设计着重让学生掌握分析方法,解题思路。培养学生分析问题的能力。

例1的讲授,通过让学生分析已知条件,以线段图为手段找到题中的数量关系。在明确数量关系的基础上得出,求问题就是在求一个数的几分之几是多少。从而很自然的由旧知识迁移到新知识。

例2的讲授,既要让学生明确两例题的区别,又要让学生统一到都是求一个数的几分之几是多少。为了防止学生出现思维定势,在练习的设计上,通过变换关键句使学生灵活分析解答,易于学生把握解题的关键。

篇16:分数乘法应用题2(人教版六年级教案设计)

教学目标

1.理解和掌握“求一个数的几分之几是多少”的分数应用题的结构和解题方法.

2.渗透对应思想.

教学重点

理解应用题中的单位“1”和问题的关系.

教学难点

1.理解“求一个数的几分之几是多少”的应用题的解题方法.

2.正确灵活的判断单位“1”.

教学过程

一、复习、质疑、引新

1.说出  、  、  米  的意义.

2.列式计算

20的  是多少?6的  是多少?

学生完成后,可请同学说一说这两个题为什么用乘法计算?

3.谈话:同学们,我们知道,已知一个数求它的几分之几是多少,用乘法计算.这是乘

法意义的扩展出现的新问题,那么这一意义还可以解决什么问题呢?今天我们就来一起研究(出示课题:分数应用题)

二、探索、质疑、悟理

(一)教学例1(也可以结合学生的实际自编)

学校买来100千克白菜,吃了  ,吃了多少千克?

1.读题.理解题意,知道题中已知条件和所求问题;搞清数量间的关系.

2.分析.

教师提问:重点分析哪句话呢?“吃了  ”这句话是分率句.是什么意思呢?

(就是把100千克白菜平均分成5份,吃了这样的4份).

3.画图.(演示课件:分数乘法应用题1)

画图说明:a.量在下,率在上,先画单位“1”

b.十份以里分份,十份以上画示意图.

c.画图用尺子,用铅笔.

4.尝试解答.

解法一:用自己学过的整数乘法做

(千克)

解法二:

5.小结:知道一个数是多少,求它的几分之几是多少,像这样的应用题,就可以根据分数乘法的意义用乘法解答.

(二)巩固练习

六年级一班有学生44人,参加合唱队的占全班学生的  ,参加合唱队有多少人?

1.把哪个数量看作单位“1”?

2.为什么用乘法计算?

(三)教学例2

例2.小林身高  米,小强身高是小林的  ,小强身高多少米?

1.演示课件:分数乘法应用题2

2.求参加合唱队有多少人实际上就是求  米的  是多少。

3.列式:  (米)

答:小强身高  米.

(四)变式练习

小强身高  米,小林身高是小强的  倍,小林身高多少米?

三、归纳、总结

1.今天所学题目为什么用乘法计算

2.用分数乘法解答的题的条件和问题上有什么共同的特点?从哪里入手分析?

共同点:都是已知单位“1”和分率,求单位“1”的几分之几是多少。

从分率可入手分析

四、训练、深化

(一)先分析数量关系,再列式解答

1.一只鸭重  千克,一只鸡的重量是鸭的  ,这只鸡重多少千克?

2.一个排球定价36元,一个篮球的价格是一个排球的  ,一个蓝球多少元?

(二)提高题

1.一桶油400千克,用去  ,用去多少千克?还剩多少千克?

2.一桶油400千克,用去  吨,用去多少千克?还剩多少千克?

五、课后作业

(一)修路队计划修路4千米,已经修了  。修了多少千米?

(二)一头鲸长7米,头部长占  。这头鲸的头部长多少米?

(三)成昆铁路全长1100千米,桥梁和隧道约占全长的  。桥梁和隧道约长多少千米?

六、板书设计

教案点评:

本节教案的设计着重让学生掌握分析方法,解题思路。培养学生分析问题的能力。例1的讲授,通过让学生分析已知条件,以线段图为手段找到题中的数量关系。在明确数量关系的基础上得出,求问题就是求一个数的几分之几是多少。从而很自然的由旧知识迁移到新知识。

探究活动

活动目的

1.使学生掌握求一个数的几分之几是多少的应用题的数量关系和解答方法.

2.熟练判断单位“1”,并能根据实际情况灵活选择单位“1”的量.

活动题目

篇17:分数乘法应用题(三)(人教版六年级教案设计)

分数应用题

教学目标

抓住分数应用题的核心--倍数关系和等量对应,通过“一例多用”、“一题多变”,把各类应用题构成一个整体,帮助学生从本质上理解分数应用题的数量关系,提高学生的分析能力和解题能力.

教学过程

一、引入

根据条件列出对应关系.

1.青砖的块数比红砖多

2.青砖的块数比红砖少

3.红砖的块数比青砖多

4.红砖的块数比青砖少

上面各题哪一个量是单位“1”的量,占几份?另一个量所对应的分率是什么,占几份?

二、展开

(一)将上列各条件补充一个共同的条件和问题,出示例1.

红砖2100块  有青砖多少块?

1.学生独立解答;

2.大组交流;

3.列表归纳.

题号 1 2

对应

关系 红砖2100-5

青砖□-(5+2) 红砖2100-5

青砖□-(5-2)

解一 设青砖x块

设青砖x块

解二

题号 3 4

对应关系 青砖□-5

5

红砖2100-(5+2) 青砖□-5

5

红砖2100-(5-2)

解一 设青砖x块

设青砖x块

解二

(二)出示例2

电视机厂今年生产电视机3600台,____________________,去年生产多少台?

1.根据已知的一个条件和问题,对照下列含有分率的条件,找出相应的式子.

(1)相当于去年的25%

(2)比去年少25%

(3)比去年多25%

(4)去年生产的是今年的25%

(5)去年比今年少25%

(6)去年比今年多25%

2.将应选择的条件填入下列各式后的括号内.

(    )

(    )

(    )

(    )

(    )

(    )

3.师生共同分析

(1)按照补充的条件,找相应的式子,如(1)相当于去年的25%.

分析:去年的生产量是单位1的量,占100份,今年的生产量相当于去年的25%,占25份,对应关系是:

去年的产量□--100

今年的产量3600--25

设去年生产x台,得到的式子:

在第六个式子的括号里填(1).

(2)按照式子找应补充的条件.

如:

分析:100份与3600台相对应,也就是今年的生产量3600台是单位“1”的量,占100份,去年的生产量是未知数,比今年多25份,即去年比今年多25%.括号里应填(6).

三、巩固

(一)根据题意列式解答:

果园里有梨树168棵  苹果树有多少棵?

(二)机床厂现在制造一台机器的成本是1200元,比原来的成本降低25%.原来制造一

台机器要多少元?

(三)工厂去年生产换气扇6220台,今年比去年增产20%,今年计划生产多少台?

(四)某印染厂原来印花需要60人,制造自动印花机后,印花人数减少了40%,现在印花需要多少人?

教案点评

这节课所出现的分数两步应用题的四种类型,在通常情况下是在几节课中出现,采用“一例一类题”的教学方法。这样的教法,学生学起来似乎轻松一些,但对数量关系的理解往往不够深刻。这节课摆脱了常规的教学方法抓住了分数应用题的核心--倍数关系和量率对应,采用了“一例多用”,“一题多变”的教学方法,把四种题型构成一个整体,把分数所表示的两个量的倍数关系作为教材的基本结构,揭示数量的具体和抽象的矛盾,把分析具体的数量与抽象的数之间的关系作为基本的教学方法。这样,使学生能在较高的水平上来理解分数应用题的数量关系,既提高了教学质量,又减轻了负担。整节课的设计,体现了在简明的结构中包含较大的知识容量。简明的结构,主要指再生能力较强的基本结构。这节课把分数所表示的两个量的倍数关系作为基本结构。这样的结构,具有数量关系之间的联结和转换功能,具有认知结构的同化和调整功能,它必须包含较大的知识容量,能将所包含的内容统筹兼顾,有主有从。这种简便而大容量的知识结构,还为学生提供了多层次的训练材料,使不同认知水平的学生在原有基础上得到不同程度的提高。

篇18:分数乘法应用题(二)(人教版六年级教案设计)

教学目标

1.使学生掌握求一个数的几分之几是多少的两步分数乘法应用题的解题思路和解答方法。

2.在画图、分析的过程中培养学生的分析能力、推理能力等初步的逻辑思维能力。

教学重点和难点

1.正确分析关键句,找准单位“1”。

2.掌握分析思路,弄清所求问题是求谁的几分之几是多少。

教学过程

(一)复习准备

1.口算,并口述第二组算式的意义。

2.列式。

这些算式求的是什么?(求一个数的几分之几或几倍是多少。)

这里的b,a,x就是什么?(单位“1”)

3.找出下列各句子中的单位“1”,再说明另一个数量与单位“1”的关系。

提问:(3)题中怎样求甲?(4)题中怎样求乙?

今天我们继续学习分数乘法应用题。

(二)讲授新课

1.出示例3。

2.理解题意,画出线段图。

(1)读题,找出已知条件和所求问题。

(2)提问:你认为应着重分析哪些已知条件?(小华储蓄的钱是小亮的

(3)分组讨论这两个已知条件应怎样理解。

(4)学生口述已知条件的意义,老师板演线段图,加深学生对题意的理解。

18元看作单位“1”,平均分成6份,小华储蓄的钱数相当于这样的5份。

师板演:

数看作单位“1”,平均分成3份,小新储蓄的钱数相当于这样的2份。

所以小新储蓄的钱数是以谁为单位“1”?(以小华储蓄的钱数为单位“1”。)

怎样用线段表示小新的钱数?

生口述,师继续板演:

(把小华储蓄的钱数平均分成3份,小新储蓄的钱数相当于这样的2份。)

求什么?(小新的钱数)

3.分析数量关系,列式解答。

(1)根据刚才的分析,再结合线段图想一想,能不能一步求出小新储蓄的钱数?(不能)

必须先求什么?再求什么?(先求小华储蓄的钱数,再求小新储蓄的钱数。)

因此这道题要分两步解答。

根据哪两个条件能求出小华的钱数?

元。)

求出小华的钱数,又怎样求小新的钱数?

(2)以小组为单位共同完成列式解答。

(3)口述列式,并说明理由。

求什么?为什么这样列式?(求小华储蓄的钱数。因为小华储蓄的钱

求什么?根据什么列式?(求小新储蓄的钱数,因为小新储蓄的钱数

(4)你能列综合算式解答吗?

答:小新储蓄了10元。

(三)巩固反馈

1.出示“做一做”。

小明有多少枚邮票?

(1)读题,找出已知条件和问题。

(2)请你确定从哪些条件入手分析。

(3)小组讨论:分析已知条件并画线段图。

(4)反馈:请代表分析,并出示该小组的线段图。

作单位“1”,平均分成6份,小新的邮票数量是这样的5份。

均分成3份,小明的邮票是这样的4份。求小明有多少邮票。

应先求什么?再求什么?

(6)列式解答,做在练习本上。

2.出示21页的9题。

要求学生独立画图,分析解答。再互查。

3.变换条件和问题进行对比练习。

(1)找出已知条件中的相同处和不同处。

(2)画图分析并列式解答。

4.选择正确列式。(小组讨论完成)

第二天看了多少页?

(四)布置作业

课本20页第6题,21页第10,12题。

课堂教学设计说明

解答分数应用题的关键是弄清题中的数量关系,谁和谁比,把谁看作单位“1”,求的是谁的几分之几。这也正是课堂教学的重点与难点,是学生分析能力的体现。是我们课堂的教学目标之一。

这节课是分数乘法应用题的第二节。学生已具备初步分析已知和找单位“1”的能力,但是例3增加了一个条件,并增加了一个数量。要利用已有的分析方法分步分析,才能化难为易。

教学中采用小组合作的形式,发挥集体智慧,在共同讨论中理解已知条件,有利于学生排除思维障碍。教师再配以线段图加深强化学生理解题意,以实现旧知识向新知识的迁移和飞跃。练习的设计,由易到难、变换条件,有助于学生灵活分析,防止定势。

篇19:归一应用题(人教版二年级教案设计)

教学目标

1.使学生在理解的基础上认识归一应用题的结构特点,能正确地分析归一应用题的数量关系,掌握这类应用题的解答规律;学会列综合算式解答归一应用题.

2.培养学生学会有条理有根据的进行思考,提高分析、解答实际问题的能力.

3.使学生感受数学与生活的密切联系,激发学习兴趣;训练学生养成认真审题、动脑分析、仔细检验的好习惯.

教学重点

使学生了解归一应用题的基本结构和数量关系,会解答此类应用题.

教学难点

线段图的画法及检验方法.

教学过程

一、联系生活,激趣引入.

(课前,可以布置任务:让学生调查各自所用的学习用品的价钱)

1.教师:我想买些学习用品做奖品,但是不知道哪种好,价钱又合适.正好同学们做了调查,谁愿意介绍一下.

学生介绍,如:这种钢笔很好用,每支8元.

师问:我要卖6支,需要多少钱?用到了我们学过的哪一数量关系?

列式:8×6=48(元)单价×数量=总价

2.教师:刚才我看到××的铅笔很好看,他告诉我买这3支铅笔共花了4元5角,我想买这样的10支,要花多少钱呢?

此时,学生可能会答出也可能答不出.如果有答对的,请他说说是怎样算的;如果没有,教师则问:要想知道10支这样的铅笔要花多少钱,就要先求出什么?(单价)

根据哪一数量关系求单价?(总价 ÷ 数量 = 单价)

3.教师导入:生活中这样的问题还有很多,今天我们就一起来研究这样的问题.

二、尝试讨论,学习新知.

1.出示例3:学校买3个书架,一共用75元.照这样计算,买5个要用多少元?

(1)请学生自由出声读题,找出已知条件和问题

(2)小组讨论:尝试用线段图表示题目的条件和问题并分析题里的数量关系.

(3)教师提问:“照这样计算”是什么意思?按照题目的意思应该先算什么?再算什么?

(4)各组汇报,全班重点围绕“线段图的画法”、“照这样计算”的含义展开讨论:

“照这样计算”即按照3个书架是75元这样的单价去计算5个书架的价钱.每个书架就是75÷3=25(元),

(5)按照刚才的思路解题.

a.每个书架多少元?

75 ÷ 3 = 25(元)

b.买5个要用多少元?

25 × 5 = 125(元)

教师让学生独立列出综合算式并订正:75÷3×5

教师提问:这道题怎样检验?请检验这道题.

教师指名完整地说说这道题的解题思路.

引导学生思考:如果把第三个条件改为“ 6个、9个、 12个”,问题不变,仍求要用多少元?怎样列式?为什么?

2.将第三个条件改为“200元”,问题改为“可以买多少个书架?”成为例4.

出示例4:学校买了3个书架,一共用7 5元.照这样计算,200元可以买多少个书架?

让学生独立画线段图,理解题意.

重点讨论:线段图应该怎样改?这道题要先求什么?

③学生独立解题. a.每个书架多少元?

75÷3=25(元)

b.200元可以买多少个书架?

200÷25=8(个)

④共同讨论:怎样列综合算式?为什么要给75+3加上小括号?

200 ÷(75 ÷ 3)

⑤教师提问:这道题怎样检验?

⑥引导学生说说自己的解题思路是什么?改为“400元”、“800元”、“1000元”,问题不变,应该怎样列式?

3.请同学们自己试做下面两道题.

①一辆汽车2小时行70千米.照这样计算,7小时行多少千米?

②一台磨面机5小时磨小麦250千克.照这样计算,磨1750千克小麦,需要几小时?

订正:

①a.每小时行多少千米?

70 ÷ 2 = 35(千米)

b.7小时行多少千米?

35 × 7 = 245(千米) 70 ÷ 2 × 7

②a.每小时磨小麦多少千克?

【关于9的乘法应用题的(人教版二年级教案设计)】相关文章:

1.9的乘法口诀(人教版二年级教案设计)

2.分数乘法应用题2(人教版六年级教案设计)

3.乘法初步认识(人教版二年级教案设计)

4.应用题对比练习课(人教版二年级教案设计)

5.应用题(三)(五年级)(人教版五年级教案设计)

6.应用题(二)(人教版三年级教案设计)

7.应用题(三)(人教版三年级教案设计)

8.两步计算的应用题(二)(人教版二年级教案设计)

9.分数乘法应用题练习题

10.分数乘法一步应用题

下载word文档
《关于9的乘法应用题的(人教版二年级教案设计).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部