欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 实用文>三角形的认识

三角形的认识

2022-12-28 08:22:43 收藏本文 下载本文

“救心丸”通过精心收集,向本站投稿了4篇三角形的认识,下面是小编为大家整理后的三角形的认识,供大家参考借鉴,希望可以帮助您。

三角形的认识

篇1:认识三角形

教学内容:

p.22、23、24(想想做做)

教材简析:

这部分内容主要让学生认识三角形,包括了解三角形的两边之和大于第三边。第22页的例题主要帮助学生初步形成三角形的概念。第23页的例题着重让学生通过操作活动,体验和了解三角形的两边之和大于第三边。

教学难点:

认识两边之和大于第三边

教学目标:

1、使学生联系实际和利用生活经验,通过观察、操作、测量等学习活动,认识三角形的基本特征,初步形成三角形的概念,了解三角形两边之和大于第三边。

2、使学生体会单侥幸是日常生活中常见的图形,并在学习活动中进一步产生学习图形的兴趣和积极性。

教学准备:

学具盒、尺等

教学过程:

一、导入

出示例题图,问:在图上我们可以找到一种很常见的图形,是什么?(三角形)

生活中的三角形随处可见,说说哪些地方也能看到?

篇2:认识三角形

二、做三角形

1、我们可以用不同的方法来得到一个三角形,利用手边的材料,比比谁的方法多?

交流

(1)用小棒摆。讲评时注意:小棒摆的时候一定要首尾相接,不能有多出来的部分。

(2)在钉子板上围。讲评时注意:只要有三个顶点,如果发现边不够直的话,需要把三角形调整得大一些。

(3)用三角板或尺上的其他三角形直接描画。

(4)在纸上分别画围起来的三条线段,也能得到一个三角形。

2、三角形各部分名称

一起动手画一个三角形,说说各部分的名称:3个顶点、3条边、3个角

三、三边关系

1、是不是所有的三根小棒都能围成一个三角形?

用学具盒里的小棒分别摆一摆,是不是都能围成一个三角形呢?

学生摆完后交流:(1)同一种颜色(一样长)的小棒肯定是能摆成一个三角形的。

(2)一红两绿这三根小棒是不能围成一个三角形的

小结:看来并不是所有的`三根小棒都能围成三角形。那为什么会围不成了呢?

2、探究不能围成三角形的原因

(1)说说你用一红两绿三根小棒怎么就围不成三角形了呢?

(两根绿的太短了,碰不到。)画一画(图略)

在图上分别标出三边为a、b、c,a+b<c不能围成三角形

(2)想象:如果把一根绿的换成长一点的,和原来那根绿的合起来正好和红的一样长,行不行?画一画(图略)

在图上分别标出三边为a、b、c,a+b=c不能围成三角形>

(3)那究竟什么时候能围成三角形呢?

可能会有学生会猜想,a+b>c

再用小棒摆一摆,摆完后再比一比,是不是符合a+b>c?

结合画图,指出:当两条边的长度和小于第三边的时候,这两条边根本就不能碰到,所以不能围成三角形;当两条边的长度和等于第三边的时候,就变成了3条线段重合在一起的一条线段,不是三角形;只有当两边的长度和大于第三边的时候,那它们就会在第三边上面的某一处碰到,就围成了一个三角形。

3、练习巩固

(1)有这样两根小棒,分别是6厘米和8厘米,第三根小棒多长那么它们就能围成一个三角形?说说理由。你发现了什么规律?

(先可考虑最短的,如果是2厘米,那么和6厘米的合起来正好是8厘米,只能重合在一起,变成线段,所以至少要比2厘米长一点,在整数范围里,那至少就得3厘米。再从最长的角度考虑,6厘米和8厘米的合起来要14厘米,不能有14厘米长,那样也是重合后变成了线段,应该要比14厘米稍微短一点,即13厘米。)

(发现:比两边之差多1,比两边之和少1)

(2)继续练习,如:6厘米和6厘米,3厘米和4厘米

四、完成书上的想想做做

1、在点子图上画出两个三角形

指出:画的时候,要把三角形的三个顶点和点子重合。

2、下面哪几组中的三条线段可以围成一个三角形?为什么?

在学生交流完后追问第一种情况:那如果老师把2厘米的加上6厘米的,不就变成大于4厘米,那就可以围成三角形了。这样的判断对不对?为什么?

(6厘米是其中最长的一条边,它单独一条就比别的两条都长,所以,要用比较短的边合起来,然后和最长的比。)

3、从学校到少年宫有几条路线?走哪一条路最近?

请你用今天学得的知识来解释这一现象。

篇3:《认识三角形》课件

《认识三角形》课件

《认识三角形》课件

学习目标:

1.能用不同的方法探索并了解三角形3个内角之间的关系;;

2.会利用三角形的内角和定理解决问题;

3.知道直角三角形的两个锐角互余的关系;

4.通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力。

学习重点:

三角形的内角和定理

学习难点:

三角形内角和定理推理和应用

教学过程:

一、情境创设,感悟新知

1、三角形蓝和三角形红见面了,蓝炫耀的说:“我的面积比你大,所以我的内角和也比你大!”

红不服气的说:“那可不好说噢,你自己量量看!”

蓝用量角器量了量自己和红,就不再说话了!

同学们,你们知道其中的道理吗?

三角形三个内角的和等于180°

2、你有什么方法可以验证呢?

方法一:度量法.

方法二:剪拼法.

3、你还有其他说明方法吗?

二、探索规律,揭示新知

1、议一议:如,3根木条相交得∠1、∠2.若a∥b,则∠1+∠2=.

理由:.

2、操作:把木条a绕点A转动,使它与木条b相交于点C.根据形,你能说明“三角形3个内角的和等于1800”的理由吗?

3、说理:

(补充说明:也可以转化为平角进行说明。)

4、方法小结:在这里,为了说明的需要,在原来的形上添画的线叫做辅助线。在平面几何里,辅助线通常画成虚线。

5、你还有其他方法说明“三角形3个内角的和等于1800”吗?

(1)

(2)

6、思路总结:为了说明三个角的和为1800,转化为一个平角或同旁内角互补,这种转化思想是数学中的.常用思想方法.

三、尝试反馈,领悟新知

例1:如,AC、BD相交于点O,∠A与∠B的和等于∠C与∠D的和吗?为什么?

例2.如右,在△ABC中,∠A=3∠C,∠B=2∠C求三个内角的度数。

若将条件改为∠A:∠B:∠C=2:3:4,又如何解呢?

四、拓展延伸,运用新知

1、随堂练习

2.结论:直角三角形的两个锐角互余.

3、巩固练习:

①、△ABC中,若∠A+∠B=∠C,则△ABC是

A、锐角三角形 B、直角三角形

C、钝角三角形 D、等腰三角形

②、在一个三角形的3个内角中,最多能有几个直角?最多能有几个钝角呢?为什么?

③、如△ABC中,CD平分∠ACB,∠A=70度,∠B=50度,求∠BDC的度数。

五、课堂小结,内化新知

1本节课你有哪些收获?

2你还有什么疑问?

六、布置作业,巩固新知

1、必做题:

习题7.5第1、2、3、4题。

2、选做题。

如右:试求出中∠1+∠2+∠3的度数

七、教学寄语,拓宽课堂

老师寄语:

If you wish to learn swimming,you have to gointo the water,and if you wish to become a problem solver,you have to solve problems.

如果你想学会游泳,你必须下水;

如果你想成为解题能手,你必须解题。

篇4:三角形的认识

孟州市南庄镇田寺小学   范希建 【教学目标】(一)使学生理解三角形的意义,掌握三角形的特征.(二)利于学具培养学生动手能力、观察能力和归纳概括能力.【教学重点和难点】通过动手实践学生自己领悟三角形的意义和特征,既是教学的重点,也是学习的难点.【教学过程】(一)复习准备1. 下面各是什么角?

说出什么叫直角、锐角、钝角?组成角的两条边是什么线?2. 家在本子上画出直角(用三角板)、锐角、钝角各一个.小结:我们已经学习了线段和角,如果把角的两条边改为线段,把角的两个端点连起来会出现什么图形?(三角形)我们今天就来研究和认识三角形.(板书课题:三角形的认识)(二)学习新课1.理解三角形的意义.(1)我们已学过三角形,你能举例说出哪些物体的面是三角形吗?(红领巾等)(2)利于学具,动手做三角形,小组内比一比有什么不同?(3)结合复习题,思考讨论:①三角形是几条线段围成的?②什么样的图形叫三角形?在讨论的基础上,引导学生概括:三角形是由三条线段围成的,由三条线段围成的图形叫做三角形.(4)巩固概念. ①找一找,哪些是三角形?(投影)

②用三条线段组成的图形叫做三角形.这句话对不对?为什么?在学生回答的基础上,教师强调,看一个图形是不是三角形,要从两方面看:一是看只有三条线段,二是要看是否围成的封闭图形.2.掌握三角形的特征.刚才大家找出这么多三角形,它们的形状各不相同,进一步观察一下,这些三角形有没有共同的地方?启发学生明确:它们都是三条线段围成的,它们都有三个角,都有三个顶点.再引导学生概括:围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点.3.教学三角形的特性.我们学习的三角形在日常生活中有很多地方要用到,像自行车的车架、房梁架等.为什么要用三角形的呢?我们来做一次实验.教师用事先准备好的木框,让同学们拉一拉.先拉五边形木框.(变形)再拉四边形木框.(变形)后拉三角形木框.(拉不动,三角形不变).提问:通过三角形木框拉不动,你明白了什么道理?可以得出什么结论?学生动手实践,老师引导学生明确:三角形的三条边长度固定,三角形的形状和大小就固定不变了.因而三角形具有稳定性.这就是三角形的特征.你能举出生活中有哪些用到三角形的特性吗?(椅子腿松动了,可以固定一个三角形铁架) (三)巩固反馈1.说说三角形的意义、特征.2.三角形有什么特性? 板书设计

三角形的认识(一)

定义:由三条线段围成的图形叫做三角形.特性:三条边、三个角、三个顶点性质:稳定性

【三角形的认识】相关文章:

1.小班教案《认识三角形》

2.认识三角形人教版教学设计

3.幼儿园小班数学教案:认识三角形

4.认识三角形优质课教学设计

5.《三角形认识》案例与反思

6.三角形的认识教学设计

7.人教版认识三角形教学设计

8.认识三角形小班数学说课稿

9.三角形的认识教案的教学设计

10.新人教版认识三角形教学设计

下载word文档
《三角形的认识.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部