欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 作文 > 作文大全>圆柱的体积作文

圆柱的体积作文

2024-09-10 07:44:24 收藏本文 下载本文

“keorge”通过精心收集,向本站投稿了17篇圆柱的体积作文,以下是小编精心整理后的圆柱的体积作文,供大家参考借鉴,希望可以帮助到有需要的朋友。

圆柱的体积作文

篇1:圆柱的体积作文

数学无处不在,身边就有许许多多的数学,数学在生活中是不可缺少的,让我们一起来寻找数学,探索数学。

某天的数学课上,学的是圆柱的体积。上课前,有一些人已经知道了圆柱的体积是底面积乘高,但是但老师追问为什么是这样算时,大家都愣住了。经过我们的探究,我们知道了圆柱体积的推导有以下几种方法。

方法一:你们应该都知道长方体的体积是长乘宽乘高吧,长乘宽就等于底面积,所以长方体的体积是底面积乘高。然后我们把圆柱平均分成若干份,拼成一个近似的长方体,这个长方体的底面积就相当于圆柱的底面积,这个长方体的高就相当于圆柱的高,所以圆柱的的体积是底面积乘高。

方法二:用硬币,我们在脑海里把硬币想象成平面,然后把硬币叠成圆柱,硬币的一个面就相当于是它的底,把底的`面积乘硬币的个数就是底面积乘高也就是体积了。

方法三:首先我们回忆以下圆面积的推导过程,就是把一个圆平均分成若干份,然后拼成一个近似的长方形。

我们拿很多很多张上图中的圆片都平均分成若干份后,一张张叠加起来,是不是就变成了下面的图形了呢?

根据观察,原来圆柱的底面积与长方体的底面积是相等的,圆柱的高与长方体的高也是相等的。因此得出圆柱的体积与长方体的体积也相等。

生活中处处有数学,只要你认真探索就会发现许多奥秘。只要你认真思考、探索就一定能发现。

篇2:圆柱的体积作文

这段时间,我们学习了圆柱的表面积、体积等,除了简单的应用,我们还遇到了“拦路虎”。究竟是什么呢?

今天的数学考试了,试卷有点难,尤其是一道填空题。题目告诉我们:一个圆柱的侧面积是200平方厘米,底面半径是3厘米,求这个圆柱的表面积和体积。拿到题目先分析,即使不会做,也可以知道直径是6厘米。题目分析好了,表面积都回求,用公式就能求了,但是体积怎么求呢?

用3.14×3×3×200÷3.14×6,就表示圆柱的体积,200÷3.14×6这部分用分数表示,分子分母就可以抵消,最后就等于300立方厘米,许多同学都恍然大悟。

可是,蒋钰焘还有更简单的方法,他说,只要用200÷2×3就可以了,因为把一个圆柱体平均分成若干份,拼成一个近似的长方体,现在200÷2就相当于长方体的前面,由长方体的体积是用底面积乘高,可以想到长方体的体积还可以用正面面积乘高。老师听了,夸他空间想象能力强,我经过他的讲解,也更明白了。回想学圆柱体积的那一节课,老师拿了一个圆柱体的模型,把它平均分成若干份,拼成一个近似的长方体。长方体的前后两个面相当于圆柱的侧面积,所以长方体的体积还可以用正面面积乘高。

他这么一讲,老师又拿了一个长方体演示,我们都弄懂了。

篇3:圆柱的体积六年级作文

圆柱的体积六年级作文

数学无处不在,身边就有许许多多的数学,数学在生活中是不可缺少的,让我们一起来寻找数学,探索数学。

某天的数学课上,学的是圆柱的体积。上课前,有一些人已经知道了圆柱的体积是底面积乘高,但是但老师追问为什么是这样算时,大家都愣住了。经过我们的探究,我们知道了圆柱体积的推导有以下几种方法。

方法一:你们应该都知道长方体的体积是长乘宽乘高吧,长乘宽就等于底面积,所以长方体的体积是底面积乘高。然后我们把圆柱平均分成若干份,拼成一个近似的长方体,这个长方体的底面积就相当于圆柱的底面积,这个长方体的高就相当于圆柱的高,所以圆柱的的体积是底面积乘高。如图:

方法二:用硬币,我们在脑海里把硬币想象成平面,然后把硬币叠成圆柱,硬币的一个面就相当于是它的底,把底的面积乘硬币的个数就是底面积乘高也就是体积了。如图:

方法三:首先我们回忆以下圆面积的推导过程,就是把一个圆平均分成若干份,然后拼成一个近似的长方形,如下图:

我们拿很多很多张上图中的圆片都平均分成若干份后,一张张叠加起来,是不是就变成了下面的.图形了呢?

根据观察,原来圆柱的底面积与长方体的底面积是相等的,圆柱的高与长方体的高也是相等的。因此得出圆柱的体积与长方体的体积也相等。

生活中处处有数学,只要你认真探索就会发现许多奥秘。只要你认真思考、探索就一定能发现。

篇4:圆柱的体积

圆柱体积公式:

V=πrh

π是圆周率,一般取3.14

r是圆柱底面半径

h为圆柱的高

还可以是

v=1/2ch×r

侧面积的一半×半径

篇5:圆柱的体积

15

3

6.4

4

(二)求下面各圆柱的体积.

(三)一个圆柱形水池,半径是10米,深1.5米.这个水池占地面积是多少?水池的容积是多少立方米?

五、课后作业

(一)求下列图形的表面积和体积.(图中单位:厘米)

(二)两个底面积相等的圆柱,一个圆柱的高为4.5分米,体积为81立方分米.另一个圆柱的高为3分米,体积是多少?

六、板书设计

篇6:圆柱体积公式是什么

圆柱体

1.圆柱的两个圆面叫底面,周围的面叫侧面,一个圆柱体是由两个底面和一个侧面组成的。

2.圆柱体的两个底面是完全相同的两个圆面。两个底面之间的距离是圆柱体的高。

3.圆柱体的侧面是一个曲面,圆柱体的侧面的展开图是一个长方形、正方形或平行四边形(斜着切)。

圆柱的侧面积=底面周长x高,即:

S侧面积=Ch=2πrh;

底面周长C=2πr=πd;

圆柱的.表面积=侧面积+底面积x2=Ch+2πr^2=2πr(r+h)。

4.圆柱的体积=底面积x高

即V=S底面积×h=(π×r×r)h。

5.等底等高的圆柱的体积是圆锥的3倍

6.圆柱体可以用一个平行四边形围成

7.圆柱的表面积=侧面积+底面积x2

8.把圆柱沿底面直径分成两个同样的部分,每一个部分叫半圆柱。这时与原来的圆柱比较,表面积=πr(r+h)+2rh、体积是原来的一半。

9.圆柱的轴截面是直径x高的长方形,横截面是与底面相同的圆。

立体图形体积公式

长方体:V=abc(长方体体积=长×宽×高);

正方体:V=a×a×a(正方体体积=棱长×棱长×棱长);

圆锥体:V=1/3sh(圆锥体体积=1/3底面积×高)。

篇7:圆柱体积公式和表面积公式是什么

圆柱的定义和分类

圆柱是由两个大小相等、相互平行的圆形(底面)以及连接两个底面的一个曲面(侧面)围成的几何体。两个底面之间的距离叫做圆柱的高。当圆柱的轴与圆柱的.底面垂直时,称该圆柱为直圆柱;当圆柱的轴与圆柱底面不垂直时,称该圆柱为斜圆柱。

以上就是圆柱体积公式。等底等高的圆锥与圆柱,圆锥体积是圆柱体积的三分之一,因此掌握圆柱体积公式对圆锥的学习也很重要。

篇8:数学教案-圆柱的体积

教学目标

1.理解圆柱体体积公式的推导过程,掌握计算公式.

2.会运用公式计算圆柱的体积.

教学重点

圆柱体体积的计算.

教学难点

理解圆柱体体积公式的推导过程.

教学过程

一、复习准备

(一)教师提问

1.什么叫体积?怎样求长方体的体积?

2.圆的面积公式是什么?

3.圆的面积公式是怎样推导的?

(二)谈话导入

同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)

二、新授教学

(一)教学圆柱体的体积公式.(演示动画“圆柱体的体积1”)

1.教师演示

把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体.

2.学生利用学具操作.

3.启发学生思考、讨论:

(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)

(2)通过刚才的实验你发现了什么?

①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了.

②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化.

③近似长方体的高就是圆柱的高,没有变化.

4.学生根据圆的面积公式推导过程,进行猜想.

(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?

(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?

(3)如果把圆柱的底面平均分成128份,拼成的.长方体形状怎样?

5.启发学生说出通过以上的观察,发现了什么?

(1)平均分的份数越多,拼起来的形体越近似于长方体.

(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体.

6.推导圆柱的体积公式

(1)学生分组讨论:圆柱体的体积怎样计算?

(2)学生汇报讨论结果,并说明理由.

因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积×高)

(3)用字母表示圆柱的体积公式.(板书:V=Sh)

(二)教学例4.

1.出示例4

例4.一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?

2.1米=210厘米

50×210=10500(立方厘米)

答:它的体积是10500立方厘米.

2.反馈练习

(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?

(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?

(三)教学例5.

1.出示例5

例5.一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?

水桶的底面积:

=3.14×

=3.14×100

=314(平方厘米)

水桶的容积:

314×25

=7850(立方厘米)

=7.8(立方分米)

答:这个水桶的容积大约是7.8立方分米.

三、课堂小结

通过本节课的学习,你有什么收获?

1.圆柱体体积公式的推导方法.

2.公式的应用.

四、课堂练习

(一)填表

底面积S(平方米)

高h(米)

圆柱的体积V(立方米)

15

3

6.4

4

(二)求下面各圆柱的体积.

(三)一个圆柱形水池,半径是10米,深1.5米.这个水池占地面积是多少?水池的容积是多少立方米?

五、课后作业

(一)求下列图形的表面积和体积.(图中单位:厘米)

(二)两个底面积相等的圆柱,一个圆柱的高为4.5分米,体积为81立方分米.另一个圆柱的高为3分米,体积是多少?

六、板书设计

篇9:《圆柱的体积》说课稿

一、教学分析

《圆柱的体积》是北师大版小学数学六年级下册第一单元第3小节的内容,是几何知识的综合运用,内容包括圆柱的体积计算公式的推导和运用公式计算它的体积。学生在学习本课之前已经学过了“圆的面积”、和“长方体和正方体的体积”等知识,而圆柱的体积这一课是学生从圆形的二维度量学习到三维度量学习的一次飞跃,因此本节课至关重要。

二、学情分析

思维层面:六年级学生思想已经开始由具体形象思维过渡到抽象逻辑思维,对周围事物的认识上升了一个层次。已经初步学会用归纳、概括、转化等方法解决问题。

知识层面:这部分内容是在学生已经初步理解了体积和容积的含义,掌握了长方体和正方体体积计算方法的基础上学习的,对探索圆柱的体积计算方法有正迁移作业。学生已经具备了一定的度量知识和度量经验,为学好本节课打下了坚实的基础。

三、学习目标

我确定本节课的学习目标为下面三个方面:

知识目标:掌握圆柱体积公式的推导方法,并会应用圆柱体积公式计算圆柱形物体体积。

能力目标:经历猜测、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。

情感目标:创设情境,激发学生的学习兴趣,让学生在主动学习的基础上,逐步学会转化的数学思想,发展学生的度量意识,培养学生的核心素养。

四、教学重难点

接下来是教学中的重点和难点:

本节课教学重点是掌握圆柱的体积计算公式,学会计算圆柱的体积。

因为圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来推导,推导过程要有一定的逻辑推导能力,因此推导圆柱体积公式的过程是本节课的难点。

五、教法和学法

下面说一说教法和学法。

根据六年级学生年龄特点和心理特征,以及他们现有的认知水平,采用理实一体化教学模式,给学生提供充分从事数学活动的机会;结合小组合作交流的机会,让尽可能多的学生能够主动参与到学习中;利用多媒体课件让学生能够更直观地理解“化曲为直”的转化。通过实例引导学生关注身边的数学,使学生体会到观察、归纳、联想、转化等学习方法,培养学生度量意识。

六、教学过程

下面这个环节,也是本节的的重要环节,说教学过程。

首先说说课前准备。

(1)教师在钉钉群中,提前进行摸底测试,了解学生对基础知识的掌握情况。

1.求下面各圆的面积。

(1)r=1厘米;(2)d=4分米;(3)C=6.28米。

2.想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?

3.什么叫体积?常用的体积单位有哪些?

设计意图:通过复习圆的面积公式及其推导过程,渗透“转化”这一数学思想。复习二维度量知识和三维度量知识,建立度量意识。

(2)在钉钉群中上传相关学习资料和微课视频。

(3)根据班级情况把学生分为5个小组,经小组成员共同商议,确定每人在组内的具体任务,发挥每个人的优势。

学生准备:

1.准备圆柱体积的推导学具等材料;

2.复习圆面积公式及长方体体积公式并预习新内容;

3.观看《圆柱的体积》微课视频。

下面是课堂实施步骤:

我设计建造凉亭的柱子需要多少木材和圆柱形的杯子能装多少水这两个问题情境,激发学生学习兴趣,从而引出圆柱体积的意义。

设计意图:学生“摸杯子”活动中,感受圆柱“体积”的存在,通过与柱子对比的感受圆柱“体积”的大小,初步建立体积是用以度量空间大小的概念,感受度量圆柱体积的必要性,激活度量意识。通过长方体和正方体体积的计算公式,引起学生思考圆柱体的体积又该怎样计算呢?由于长方体、正方体和圆柱都是直柱体,学生可能会猜想圆柱体积=底面积×高。

学生猜想对不对我们一块来研究。

演示“积分”的方法:用硬币竖直方向堆成一堆,形成圆柱。让学生观察到,底面积是固定的,每增加一枚硬币,高就增加一些,体积也随之增大。初步感受圆柱的体积=底面积×高。

设计意图:这一环节,学生在活动中主动探索获得圆柱体积计算公式的多种方法,积累度量的直接活动经验,发展学生独立思考、勇于探索的能力。学生在放硬币的过程中体会度量的本质,数起源于数,量起于量。

演示“转化”的方法:

动画演示拼、组的过程,让学生明确:圆柱可以转化为近似的长方体,依次解决三个问题。

①把圆柱拼成长方体后,形状变了,体积不变。

②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。(配合回答,演示课件闪烁相应的部位,并板书相应的内容。)

③圆柱的体积=底面积×高,字母公式是V=Sh(板书公式)小组分工,合作完成。

成果展示,交流总结。

设计意图:让学生在掌握公式的基础上理解公式,学会灵活运用公式解决实际问题,积累度量的经验,实现度量的价值。

多元评价 激励上进

学生说出本课所学的内容,然后教师进行归纳,通过本节课的学习,掌握了圆柱的体积,并懂得了新知识的得来是通过已学的知识来解决的。启发同学们多动脑,勤思考,发现在我们的生活中,还有好多问题需要利用所学知识来解决的,让同学们能学会运用,善于用转化的思想来武装自己的头脑,思考问题。发挥度量的优越性,培养学生的度量能力。

七、板书设计

长方体的体积= 长 ・ 宽 ・ 高

圆柱的体积= 底面积 ・ 高

篇10:《圆柱的体积》说课稿

一、说教材

《圆柱的体积》是学生学会推导圆的面积公式,认识了圆柱的特征,会计算圆柱的侧面积和表面积的基础上,进一步从体积方面丰富学生对圆柱的认识。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。根据本节课的性质特点和六年级学生以形象思维为主、空间观念还比较薄弱的特点,我确定本节课的教学目标为:

1、知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。

2、过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

3、情感、态度、价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。

教学的重点和难点:

由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积的推导和应用是本节课教学重点。其中,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来推导,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。

二、说学情

在学习长方体和正方体的体积时,学生已经初步理解了体积和容积的含义,掌握了长方体和正方体的体积计算方法,特别是长方体和正方体的体积计算公式“底面积・高”对探索圆柱体积计算方法有正迁移作用,所以学生对圆柱的体积的含义将不难理解。但如何化曲为直,将圆柱转化为近似的长方体是学生思维的难点,应当利用多媒体课件和教具演示来突破这一难点。

三、说教法与学法

现代教育心理学认为:小学生思维的发展是从具体形象思维向抽象思维过渡的。因此,按小学认知规律从“具体感知-形成表象-进行抽象”的过程,我打算主要采用观察发现法、实验法,以及分组讨论、合作学习等形式,并运用多媒体课件辅助教学,让学生在观察、感知各种实物的基础上,动手操作,分组讨论、合作学习,教师恰当点拨,适时引导等方法及手段,激发学生的学习兴趣,调动学生的学习积极性,让学生通过动手操作、观察、实验得出结论,体现了以学生为主体、教师为主导的教学原则。使每个学生都能参与到学习中,感受到学习的乐趣,从而突破本课的难点。

四、说教学过程

(一)情景引入:

1、复习:大家还记得长方体、正方体的体积怎样求吗?让学生说出公式。出示圆柱形水杯。

(1)老师在杯子里面装满水,想一想,水水杯里的水是什么形状的?

(2)你能想办法计算出这些水的体积吗?

(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。

2、创设问题情景。

如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。(板书课题:圆柱的体积)通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成“任务驱动”的探究氛围。

(二)、新课教学:

设疑揭题:同学们想一想,我们当初是如何推导出圆的面积计算公式的呢?课件演示推导圆的面积公式的转化过程。我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?引导学生小组合作交流、观察、既而动手操作。沿着圆柱(萝卜)底面把圆柱切开,可以得到大小相等的16块或更多块,启发学生说出转化成我们熟悉的长方体。同时引导学生观察转化前后两种几何形体之间的.内在联系,圆柱的底面与长方体的底面有什么关系?圆柱的高与长方体的高又有什么关系?学生交流、进行验证、自己推导出圆柱体体积计算的公式。教师再用多媒体课件演示验证整个的具体操作过程,最后让学生说一说圆柱体计算公式的整个推导过程。引导学生用字母表示出来。

根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,亲自完成从演示――观察――操作――比较――归纳――推理的认识过程,让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点,化解难点。

关于难点的突破,我主要从以下几个方面着手:

(1) 引导学生自己动手通过观察比较,明确圆柱体的体积与它的底面积和高有关。

(2) 运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。

(3) 充分利用直观教具,师生互动,小组合作,通过演示操作,帮助学生找出两种几何形体转化前后的关系。

(4) 根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。

(三) 运用。出示例1:先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自己来概括总结,通过学生的语言说出:

(1)单位要统一

(2)求出的是体积要用体积单位。在掌握了圆柱体积计算的方法之后,安排例1进行尝试练习,这样既可以调动学生的学习积极性和主动性,又可以培养学生学习新知识的能力,同时把所学知识转化为相应的技能。

(三)巩固练习,检验目标

1.练一练1题:计算各圆柱的体积,目的是让学生进一步理解巩固圆柱的体积公式。

2.完成练习第2题。通过练习,巩固新知识,加深对新知识的理解,把所学知识进一步转化为能力,在练习中发展智力,培养优良的思维品质和学习习惯。

3.变式练习:已知圆柱的体积、底面积,求圆柱的高。

这道题的安排是对所学内容的深化,在掌握基础知识的前提下,培养思维的灵活性,同时深化教学内容,防止思维定式。

4.动手实践:让学生测量自带的圆柱体。

教师提问:如果要知道这个圆柱体积,该用什么方法?让学生说一说是怎样测量的?又是如何计算的?

这道题的设计,一方面培养了学生解决实际问题的能力,另一方面也加深了对圆柱体积计算公式的理解,同时数学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。

(四)总结全课,深化教学目标

结合板书,引导学生说出本课所学的内容,我是这样设计的:这节课我们学习了哪些内容?圆柱体积的计算公式是怎样推导出来的?你有什么收获?然后教师归纳,通过本节课的学习,我们懂得了新知识的得来是通过已学的知识来解决的,以后希望同学们多动脑,勤思考,在我们的生活中还有好多问题需要利用所学知识来解决的,望同学们能学会运用,善于用转化的思想来丰富自己的头脑,思考问题。

五、板书:

长方体的体积= 长 ・ 宽 ・ 高

圆柱的体积= 底面积 ・ 高

篇11:《圆柱的体积》教案

《圆柱的体积》教案

最近,本人在《小学教学设计》看到一则“圆柱的体积”教学实录精彩片段,它以一种全新的视角诠释了新课标所倡导的理念,给我留下了较为深刻的印象。现把它撷取下来与各位同行共赏。

……

师:圆柱有大有小,你觉得圆柱体积应该怎样计算呢?

生:(绝大部分学生举起了手)底面积乘高。

师:那你们是怎样理解这个计算方法的呢?

生1:我是从书上看到的。

(举起的手放下了一大半。很明显,大部分同学都看到或听到这个结论,并不理解实质的涵义。但仍有几位学生的手高高举起,跃跃欲试,脸上的神情告诉老师:他们有更高明的答案。老师便顺水推舟,让他们来讲。)

生2:我是这样思考的:长方体、正方体和圆柱体它们都是立体图形,体积都是指它们所占空间的大小。而长方体、正方体的体积都可以用底面积乘高来计算,所以我想计算圆柱体的体积时也应该可以用底面积乘高吧!

师:你能迅速地把圆柱体与以前学过的长方体、正方体联系起来,进而联想到圆柱体的体积计算方法。真行!当然这仅是你的猜测,要是再能证明就好了。

生3:我可以证明。推导长方体体积公式时,我们是采用摆体积单位的方法,用每层个数(底面积)×层数(高)现在求圆柱体积我们也可以沿袭这种思路,在圆柱体内部同样摆上合适的体积单位,用每层个数×层数,每层的个数也就是它的底面积,摆的层数也就是高。那不就证明了圆柱体积的计算公式就是用底面积乘高吗?

(教室里立刻响起了热烈的掌声,许多同学被他精彩的发言折服了,理性的思维散发出诱人的魅力。)

师:你真聪明,能用以前学过的知识解决今天的难题!(这时举起的手更多了。)

生4:我有个想法不知是否可行、在推导圆面积计算方法时,我们是把圆转化成了长方形,圆柱的底面就是一个圆,所以我就想是否可以把圆柱体转化成长方体呢?

师:(翘起了大拇指)你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。

生5:我还有一种想法:我们可以把圆柱体看成是无数个同样大小的圆片叠加而成的。那么圆柱体的体积就应该用每个圆片的面积×圆的个数。圆的个数也就相当于圆柱的高。所以我认为圆柱体的体积可以用每个圆的面积(底面积)×高。

师:了不起的一种想法!(师情不自禁的鼓起了掌。)

生6:我看过爸爸妈妈“扎筷子”。把十双同样的筷子扎在一起就变成了一个近似的圆柱体。我们可以把每根筷子看成一个长方体,那么扎成的近似圆柱体的体积应该是这二十个小长方体的体积之和。又因为它们具有同样的高度,运用乘法分配律,就变成了这二十个小长方体的底面积之和×高。

师:你真会思考问题!

生7:我还有一种想法:学习圆的面积时我们知道,当圆的半径和一个正方形的边长相等时,圆的面积约是这个正方形的3.14倍。把叠成这个圆柱体的这无数个圆都这样分割,那么圆柱体的.体积不也大约是这个长方体的体积的3.14倍吗?长方体的体积用它的底面积×高,圆柱体的体积就在这基础上再乘3.14,也就是用圆柱体的底面积×高。

生8:把圆柱体形状的橡皮泥捏成等高长方体形状的橡皮泥,长方体体积用底面积乘高来计算,所以计算圆柱体的体积也是用底面积乘高吧!

师:没想到一块橡皮泥还有这样的作用,你们可真是不简单!

……

整节课不时响起孩子们、听课老师们热烈的掌声。

过去的数学课堂教学,忠诚于学科,却背弃了学生,体现着权利,却忘记了民主,追求着效率,却忘记了意义。而这个片断折射出,新课标理念下的不再是教师一厢情愿的“独白”,而是学生、数学材料、教师之间进行的一次次真情的“对话”。

现从“对话”的视角来赏析这则精彩的片段。

一、“对话”唤发出学习热情。

《新课程标准》指出:有意义的数学学习必须建立在学生的主观愿望和知识经验的基础上,在这样的氛围中,学生的思考才能积极。在当今数字化、信息化非常发达的社会中,学生接受信息获取知识的途径非常多,圆柱体的体积计算方法对学生来说并不陌生,如果教师再按传统的教学程序(创设情境——研究探讨——获得结论)展开,学生易造成这样的错误认识:认为自己已经掌握了这部分知识而失去对学习过程的热情。而本课,教学伊始,教师提问“圆柱体的体积如何计算”,让学生先行呈现已有的知识结论,在通过问题“你是怎样理解这个公式的呢?”把学生的注意引向对公式意义的理解,学生积极主动的投入思维活动,唤发学习热情。

二、“对话”迸发出智慧的火花

“水本无华,相荡而生涟漪;石本无火,相击始发灵光。”思维的激活、灵性的喷发源于对话的启迪和碰撞。本课如果按照教材的设计:通过把圆柱体转化为长方体,研究圆柱体和长方体间的关系,得出计算公式:底面积×高,经历这样的学习过程学生的思维是千篇 一律的,获得的发展也是有限的。而这位教师对教材进行相应的拓展,先呈现公式,后提问“你是怎样理解这个公式的呢?”,使学生的思维沿着各自独特的理解“决堤而出”。

三、“对话”赢得心灵的敞亮和沟通

“真行!当然这仅是你的猜测,要是再能证明就好了。”“你真聪明!能用以前学过的知识解决今天的难题!”“你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。”……教师不断地肯定着学生的每一种观点,引燃学生的每一丝发现的火花;同时象一位节目主持人一样,平和、真诚,倾听、接纳着学生的声音,在课堂上,学生真是神了、奇了,说出一种又一种的方法,连听课老师也情不自禁的鼓起掌来。此情此景,我们不难看出,老师能注意蹲下身来与学生交流,注意寻求学生的声音,让学生在一种“零距离”的、活跃的心理状态下敞亮心扉,放飞思想,进行着师生“视界融合”的真情对话,赢得心灵的敞亮和沟通。

数学教学在对话中进行,展示着民主与平等,凸现着创造与生成。有效的对话中不仅有信息的传输,更有思维的升华;不仅能增进学生的理解,更能促进教师的反思;不仅有继承的喜悦,更有创造的激情。这则教学片断,有很多的精彩值得我们欣赏与赞叹。我想说:我的内心很受鼓舞,我会向这位老师学习,让自己的课堂也能成就精彩的时刻!

篇12:圆柱体积的教案

圆柱体积的教案

教学内容: 课程标准江苏教育版《数学》六年级下册第25-26页例4、试一试、练一练。 教学目标: 1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。 2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。 3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。 教学重点:掌握和运用圆柱体积计算公式。 教学难点:理解圆柱体积公式的推导过程。 教学用具:多媒体 教学过程: 一、创设情景提出问题 情境引入:某玩具厂厂长,他们厂新近开发了一种积木玩具,这三个积木的底面积和高都相等,他想比较一下这三个积木的体积的大小,同学们有什么方法? 课件出示例4中长方体、正方体和圆柱的直观图 提问:长方体、正方体的体积你会求吗?请说说分别是怎样计算的?(暂停)(依次出示公式)   引入:圆柱的体积是怎样计算的?可能跟圆柱的哪些条件有关呢?今天我们就一起来探索圆柱体积的计算方法。(出示课题:圆柱的体积)   二、动手实验, 探索公式 1、观察、比较,建立猜想 出示:三个几何体的底面和高 师:同学们来观察这三个几何体,它们的底面积都相等,高也都相等。 想一想,长方体和正方体的体积相等吗?为什么?(暂停) 体积相等,都可以用底面积乘高来计算。(出示:V=Sh)       猜一猜,圆柱的体积与长方体和正方体的体积相等吗?(暂停)   师:大家都认为圆柱的体积与长方体和正方体的体积可能相等,也就是都可能等于底面积乘高。那用什么办法验证呢?(暂停)你还记得圆的面积公式是怎么推导出来的吗?(演示课件)边叙述:把一个圆平均分成16份、32份、64份或更多,剪开后可以拼成近似的长方形,圆的面积就可以转化成长方形的面积进行计算。那我们能不能将圆柱转化成长方体来计算体积呢? 2、实验操作,验证猜想 实物出示:圆柱切拼的.过程 师:请看老师带来的圆柱模型。把圆柱的底面平均分成16份,切开后可以拼成一个近似的长方体。如果把圆柱的底面平均分的份数再多一些,那又会怎样呢?闭着眼睛在头脑里想象一下。 师:是呀!把圆柱的底面平均分的份数越多,拼成的几何体会越来越接近长方体。 师:让我们再来看一看,拼成的长方体与原来的圆柱有什么关系?请与同学交流一下。(暂停) 3、观察比较,推导公式 师:圆柱拼成长方体,那么长方体的体积就等于圆柱的体积,通过观察与讨论,我们还知道长方体的底面积等于圆柱的底面积;长方体的高等于圆柱的高;(课件出示)根据长方体的体积=底面积×高,想一想,圆柱的体积怎样计算?对,圆柱的体积也=底面积×高。如果用V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高,圆柱的体积公式可以写成:V=Sh。(课件出示) 师:厂长想比较一下这三个积木的体积的大小,你能比较出来吗?大小怎么样?为什么相等? 师:根据我们刚才讨论的情况,要计算圆柱的体积一般要知道哪些条件?(暂停)是呀,知道了圆柱的底面积和高,就能用底面积×高来计算圆柱的体积了。 4、讨论: (1)已知圆的半径和高,怎样求圆柱的体积? (2)已知圆的直径和高,怎样求圆柱的体积? (3)已知圆的周长和高,怎样求圆柱的体积? 三、运用公式,进行计算 出示第26页试一试,学生理解题意,独立完成。 师:根据圆柱的底面半径,我们先求出圆柱的底面积,3.14×5=78.5(平方厘米),再用底面积乘高算出圆柱的体积,78.5×8=628(立方厘米)。这个圆柱零件的体积是628立方厘米。你做对了吗?(课件出示) 四、运用知识,发展思维 1、判断正误,对的画“√”,错误的画“×”。 (1)圆柱体的底面积越大,它的体积越大。( ) (2)圆柱体的高越长,它的体积越大。( ) (3)圆柱体的体积与长方体的体积相等。( ) (4)圆柱体的底面直径和高可以相等。( ) (5)一个圆柱形的水桶能装水15升,我们就说水桶的体积是15立方分米。  (  ) 2、求圆柱的体积。(单位:厘米) 师:下面请同学们先看图说说每个圆柱中的已知条件,再动笔算一算。(暂停) 师:同学们,在计算圆柱的体积时,一般要先算出它们的底面积,然后再用底面积×高来计算圆柱的体积。    d=6  h=4  c=12.56 h=3   3、完成第26页的“练一练”的第2题。 师:利用我们学到的这些知识,我们还能来解决一些实际问题。请看练一练第2题,自己读题,如果有什么不明白可以向老师提出来。(暂停) 师:电饭煲的“容积”是什么意思?为什么要从里面量电饭煲的底面直径和高?弄清了这两个问题,我们再来动手解答。(暂停) 4、下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的。)    圆柱   d=8cm h=10cm   奶的含量   498ml  五、总结回顾评价反思 师:我们来总结一下,这节课学习了什么内容?你能再把圆柱体积公式的推导过程说给同桌听听吗?你还有什么疑问吗? 六、动手操作,体验知识 把直尺绕着它的一条边旋转一圈得到了一个什么图形?它的体积你会计算吗?先想象,再计算。

篇13:《圆柱的体积》数学教案

设计说明

1.创设问题情境,激发学习兴趣。

兴趣是最好的老师。新课伊始,为学生创设“圆柱形橡皮泥的体积你会求吗?”的问题情境,引导学生经过思考、讨论、交流,找到解决的方法。这样的设计不仅自然渗透了圆柱(新问题)和长方体(已知)的知识联系,还让学生体会到可以有许多方法去解决生活中的实际问题,激发了学生的学习兴趣和探究新知的欲望。

2.实践操作,促进知识迁移。

知识和经验的积累来源于大量的实践活动。动手操作不但能使学生获得感性的体验,更能加深学生对知识的理解。本设计为学生创设动手操作的情境,使学生通过动手拼摆,充分感知图形之间的关系,深刻理解圆柱的体积公式的合理性,充分认识到图形转化过程中形变而质不变的辩证关系,使学生在把旧知迁移、发展、转化、构建为新知的同时,动手操作、观察及归纳能力也得到极大的提高。

课前准备

教师准备 圆柱的体积公式演示教具 多媒体课件

学生准备 圆柱的体积公式演示学具

教学过程

第1课时 圆柱的体积(1)

创设情境,导入新课

1.出示一块圆柱形橡皮泥。

师:同学们,我们以前学过长方体和正方体体积的计算方法,现在我想知道这块圆柱形橡皮泥的体积是多少,你有好的办法吗?

2.学生小组讨论交流并汇报。

预设

生1:可以把这块橡皮泥捏成长方体,利用长方体的体积公式来解决。

生2:可以把它放到量杯中,计算上升的水的体积。

3.引入新课。

解决生活中的问题有很多方法,需要我们去发现、去探究。这节课我们就共同去探究圆柱体积的计算方法。

设计意图:通过创设问题情境,引发学生思考,进一步体会“转化”思想。

新知探究

1.利用知识的迁移,猜想圆柱体积的计算方法。

(1)提出猜想。

师:在刚才的问题中同学们提出可以将圆柱形橡皮泥捏成长方体,这时会有什么变化?

(形状变了,体积没变)

师:我们已经掌握了长方体、正方体的体积计算方法,大家猜一猜:圆柱体积可能等于底面积×高吗?

(2)学生讨论、交流。

2.探究算法。

(1)提出问题:能不能借鉴把圆转化为长方形的方法,把手中的圆柱形学具转化为长方体?

(2)动手操作:把圆柱转化为长方体。

(3)汇报交流:介绍自己的转化方法。

(结合学生回答,课件演示转化过程:先沿圆柱底面的半径把圆柱平均分成16份,然后拼成一个近似的长方体)

(4)引导学生明确:由于我们分得不够细,所以看起来还不太像长方体;分得越多,拼成的立体图形就越接近长方体。(课件演示将圆柱分成更多等份并拼成一个近似的长方体的过程)

(5)汇报发现。

①拼成的长方体的体积与圆柱的体积有什么关系?

②长方体的底面积、高分别与圆柱的底面积、高有什么关系?

③长方体的体积等于什么?圆柱呢?

3.总结公式。

(1)圆柱的体积怎样计算?为什么?

(圆柱通过分割、拼组,可以转化成近似的长方体。这个近似的长方体的底面积与圆柱的底面积相等,高与圆柱的高相等。因为长方体的体积等于底面积乘高,所以圆柱的体积=底面积×高)

(2)说一说,怎样用字母表示圆柱的体积公式?

(学生反馈:V=sh)

(3)如果已知d、r、c和h,怎样求圆柱的体积?

求圆柱体积的直接条件是s、h,间接条件是d、r和c,所以圆柱的体积公式也可以表示为V=πr2h、V=πh、V=πh。

(4)圆柱和长方体、正方体一样,都是直柱体,你能总结出求它们的体积的统一计算方法吗?

(直柱体的体积都等于底面积×高)

篇14:《圆柱的体积》数学教案

探究目标:

1、组织学生开展测量、计算、估测等数学实践活动,使学生进一步掌握圆柱体积计算公式,并能运用公式正确地计算圆柱的体积。

2、在探索空间与图形的过程中,培养学生初步的空间观念及实践能力,同时结合具体的情境培养其估测意识。

3、使学生学会与他人合作,并能比较清楚地表达和交流解决问题的过程和结果。

4、让学生体验解决策略的多样性,不断激发其对数学的好奇心和求知欲,使其积极地参与数学学习活动。

教学重难点:

学生会应用圆柱体积公式解决实际问题。

探究过程:

一、迁移引入

提问:一个圆柱的底面积是80平方厘米,高是20厘米,求它的体积。

提问:如果已知的是底面半径和高,该怎么求呢?

二、自主探究

1、出示长方体鱼缸。

要计算这个长方体鱼缸能装多少水,就是求什么?

怎样求这个长方体的容积呢?

2、出示圆柱形鱼缸。

⑴估测。这个圆柱形鱼缸的容积大约是多少?

⑵操作、汇报。如果忽略容器的壁厚,这个圆柱形鱼缸的容积到底是多少呢?学生分小组进行操作计算,各小组派代表演示操作过程,并展示计算过程。

学生可能的回答有:

生1:这个圆柱的底面周长是94.5厘米,它的高是12厘米,计算过程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)

生2:我们小组测量的是底面直径和高。底面直径长30厘米,高是12厘米,计算过程如下:3.14×(30÷2)2×12=8478(立方厘米)

生3:我们测量的是底面半径和高。3.14×152×12=8478(立方厘米)

⑷评价。

组织学生间进行评价。你最喜欢哪个小组的操作方案?为什么?每一步列式的意义是什么?使学生进一步掌握圆柱体积的计算方法。

⑸反思。引导学生将实际计算结果与自己的估测结果进行对比。自己矫正偏差。

⑹延伸。如果每立方分米水重1千克,这个鱼缸大约能装水多少千克?

3、自学例题。

组织学生自学课本例5。同桌的两名同学结合例5的解答过程提出相关的数学问题,进行互问互答。

三、巩固练习

做教科书第80页“做一做”中的第2题、练习二十一的第5题。

学生独立完成,指名板演,集体评讲。

四、创意作业

学生综合运用所学的知识,进行计算、绘图、裁剪、粘贴等多项操作活动。

在一张长30厘米,宽20厘米的长方形纸上进行合理的裁剪,做一个无盖的圆柱形笔筒。比一比,谁做的笔筒容积最大?

篇15:《圆柱的体积》教案

最近,本人在《小学教学设计》看到一则“圆柱的体积”教学实录精彩片段,它以一种全新的视角诠释了新课标所倡导的理念,给我留下了较为深刻的印象。现把它撷取下来与各位同行共赏。

……

师:圆柱有大有小,你觉得圆柱体积应该怎样计算呢?

生:(绝大部分学生举起了手)底面积乘高。

师:那你们是怎样理解这个计算方法的呢?

生1:我是从书上看到的。

(举起的手放下了一大半。很明显,大部分同学都看到或听到这个结论,并不理解实质的涵义。但仍有几位学生的手高高举起,跃跃欲试,脸上的神情告诉老师:他们有更高明的答案。老师便顺水推舟,让他们来讲。)

生2:我是这样思考的:长方体、正方体和圆柱体它们都是立体图形,体积都是指它们所占空间的大小。而长方体、正方体的体积都可以用底面积乘高来计算,所以我想计算圆柱体的体积时也应该可以用底面积乘高吧!

师:你能迅速地把圆柱体与以前学过的长方体、正方体联系起来,进而联想到圆柱体的体积计算方法。真行!当然这仅是你的猜测,要是再能证明就好了。

生3:我可以证明。推导长方体体积公式时,我们是采用摆体积单位的方法,用每层个数(底面积)×层数(高)现在求圆柱体积我们也可以沿袭这种思路,在圆柱体内部同样摆上合适的体积单位,用每层个数×层数,每层的个数也就是它的底面积,摆的层数也就是高。那不就证明了圆柱体积的计算公式就是用底面积乘高吗?

(教室里立刻响起了热烈的掌声,许多同学被他精彩的发言折服了,理性的思维散发出诱人的魅力。)

师:你真聪明,能用以前学过的知识解决今天的难题!(这时举起的手更多了。)

生4:我有个想法不知是否可行、在推导圆面积计算方法时,我们是把圆转化成了长方形,圆柱的底面就是一个圆,所以我就想是否可以把圆柱体转化成长方体呢?

师:(翘起了大拇指)你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。

生5:我还有一种想法:我们可以把圆柱体看成是无数个同样大小的圆片叠加而成的。那么圆柱体的体积就应该用每个圆片的面积×圆的个数。圆的个数也就相当于圆柱的高。所以我认为圆柱体的体积可以用每个圆的面积(底面积)×高。

师:了不起的一种想法!(师情不自禁的鼓起了掌。)

生6:我看过爸爸妈妈“扎筷子”。把十双同样的筷子扎在一起就变成了一个近似的圆柱体。我们可以把每根筷子看成一个长方体,那么扎成的近似圆柱体的体积应该是这二十个小长方体的体积之和。又因为它们具有同样的高度,运用乘法分配律,就变成了这二十个小长方体的底面积之和×高。

师:你真会思考问题!

生7:我还有一种想法:学习圆的面积时我们知道,当圆的半径和一个正方形的边长相等时,圆的面积约是这个正方形的3.14倍。把叠成这个圆柱体的这无数个圆都这样分割,那么圆柱体的体积不也大约是这个长方体的体积的3.14倍吗?长方体的体积用它的底面积×高,圆柱体的体积就在这基础上再乘3.14,也就是用圆柱体的底面积×高。

生8:把圆柱体形状的橡皮泥捏成等高长方体形状的橡皮泥,长方体体积用底面积乘高来计算,所以计算圆柱体的体积也是用底面积乘高吧!

师:没想到一块橡皮泥还有这样的作用,你们可真是不简单!

……

整节课不时响起孩子们、听课老师们热烈的掌声。

过去的数学课堂教学,忠诚于学科,却背弃了学生,体现着权利,却忘记了民主,追求着效率,却忘记了意义。而这个片断折射出,新课标理念下的不再是教师一厢情愿的“独白”,而是学生、数学材料、教师之间进行的一次次真情的“对话”。

现从“对话”的视角来赏析这则精彩的片段。

一、“对话”唤发出学习热情。

《新课程标准》指出:有意义的数学学习必须建立在学生的主观愿望和知识经验的基础上,在这样的氛围中,学生的思考才能积极。在当今数字化、信息化非常发达的社会中,学生接受信息获取知识的途径非常多,圆柱体的体积计算方法对学生来说并不陌生,如果教师再按传统的教学程序(创设情境――研究探讨――获得结论)展开,学生易造成这样的错误认识:认为自己已经掌握了这部分知识而失去对学习过程的热情。而本课,教学伊始,教师提问“圆柱体的体积如何计算”,让学生先行呈现已有的知识结论,在通过问题“你是怎样理解这个公式的呢?”把学生的注意引向对公式意义的理解,学生积极主动的投入思维活动,唤发学习热情。

二、“对话”迸发出智慧的火花

“水本无华,相荡而生涟漪;石本无火,相击始发灵光。”思维的激活、灵性的喷发源于对话的启迪和碰撞。本课如果按照教材的设计:通过把圆柱体转化为长方体,研究圆柱体和长方体间的关系,得出计算公式:底面积×高,经历这样的学习过程学生的思维是千篇 一律的,获得的发展也是有限的。而这位教师对教材进行相应的拓展,先呈现公式,后提问“你是怎样理解这个公式的呢?”,使学生的思维沿着各自独特的理解“决堤而出”。

三、“对话”赢得心灵的敞亮和沟通

“真行!当然这仅是你的猜测,要是再能证明就好了。”“你真聪明!能用以前学过的知识解决今天的难题!”“你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。”……教师不断地肯定着学生的每一种观点,引燃学生的每一丝发现的火花;同时象一位节目主持人一样,平和、真诚,倾听、接纳着学生的声音,在课堂上,学生真是神了、奇了,说出一种又一种的方法,连听课老师也情不自禁的鼓起掌来。此情此景,我们不难看出,老师能注意蹲下身来与学生交流,注意寻求学生的声音,让学生在一种“零距离”的、活跃的心理状态下敞亮心扉,放飞思想,进行着师生“视界融合”的真情对话,赢得心灵的敞亮和沟通。

数学教学在对话中进行,展示着民主与平等,凸现着创造与生成。有效的`对话中不仅有信息的传输,更有思维的升华;不仅能增进学生的理解,更能促进教师的反思;不仅有继承的喜悦,更有创造的激情。这则教学片断,有很多的精彩值得我们欣赏与赞叹。我想说:我的内心很受鼓舞,我会向这位老师学习,让自己的课堂也能成就精彩的时刻!

篇16:《圆柱的体积》教案

教学目标:

1、知识与技能:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程能够运用公式正确地计算圆柱的体积。

2、过程与方法:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究法。

3、情感态度与价值观:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:掌握和运用圆柱体积计算公式进行正确计算。

教学难点:理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。

教学过程:

一、情景导入:

1、教师:(出示)多么温馨的场面,今天是亮亮和爷爷的生日,幸福的一家人围坐在饭桌前享用着美酒佳肴,你能观察到今天的饭菜比平时多了什么吗?

学生:1、比平日多了两个蛋糕。

2、两个蛋糕一个大一个小。

3、蛋糕都是圆柱形的。

2、教师:同学们观察的很仔细,那你能根据刚学过的知识说一说爷爷蛋糕较大意味着什么吗?

学生:蛋糕大,意味着圆柱的体积大。

3、教师:那你还知道什么是圆柱的体积吗?

学生:圆柱的体积就是圆柱体占空间的大小。

4、教师:两个蛋糕的体积相差较多,我们容易比较出那个体积大,如果体积相差较小我们怎么比较呢?

学生:拿出准备的圆柱体进行比较,讨论,各小组分别说明比较的方法并展示。

教师:板书:圆柱的体积

二、课上探究

1、教师:同学们回忆一下我们还学过那些立体图形?

学生:还学过正方体和长方体。

教师:它们的体积怎样计算?(多媒体出示长方体)有什么共同点?

学生:长方体的体积=长×宽×高,长×宽=底面积,V=sh;正方体的体积=棱长×棱长×棱长,棱长×棱长=底面积,V=sh;共同点都是底面积乘高。

2、猜测圆柱的体积与什么有关

师:拿出圆柱体,让学生猜想圆柱体积与什么有关。

生1、圆柱的体积与圆柱的高有关。

生2、圆柱的体积与圆柱的底面积有关。

生3、圆柱的体积与圆柱的底面周长有关。

生4、圆柱的体积与圆柱的底面半径有关。

3、推导圆柱体积公式

①师: 同学们观察圆柱的底面是一个圆,学习圆面积时,我们是把圆转化成哪种图形来求面积的?

生: 把圆转化成近似长方形来求面积的。

②师:我们一起来回忆把圆转化成近似长方形的过程,

师: 你发现了什么?

生:我发现把圆平均分成的份数越多,拼成的图形越接近长方形。

③师:圆柱可以看成多个圆片摞在一起,把圆剪拼成的每个近似长方形也摞在一起。我们就把圆柱转化成我们以前学过的哪种立体图形呢?

生:把圆柱转化成近似的长方体。

④师用圆柱体演示转换过程,让学生说怎样转换的。

生:把圆柱平均分成16份拼成一个近似的长方体。

⑤师: 为了让大家看的更清楚,我们再演示一下这个转化过程。

再次演示把圆柱等分16等份,拼成近似的长方体。

再出示32等份的圆柱体拼成的近似的长方体,让学生观察,发现了什么?

生:分成的份数越多,拼成的图形越接近长方体。

⑥师:出示圆柱体和拼成的长方体,让学生观察,拼好的长方体与原来的圆柱比较,发现了什么?

学生分组讨论,汇报:

生:长方体的高和圆柱的高相等。

生:长方体的底面积和圆柱的底面积相等。

⑦师:你是怎么想的?

生:刚才我们复习了把圆转化成长方形,所以圆柱的底面积和长方体的底面积相等。

⑧师:再次用圆柱拼成近似长方体的过程,让学生仔细观察圆转化成长方形后,面积相等。

生:长方体的长是圆柱底面周长的一半,宽是圆柱底面半径

师:演示 长方体的体积=底面积×高

⑨师:那么圆柱的体积等于什么呢?

生:圆柱的体积=底面积×高

⑩下面我们再一起回忆一下转化的过程,()

让学生独立填答案,汇报:

三、我们知道了圆柱的体积公式,下面我们就来解决一些实际问题。

篇17:圆柱体积教学课件

教学目标:

1.知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。

2.方法与过程:经历猜测、验证、合作、等过程,体验和理解圆柱体体积公式的推导过程。

3情感、态度、价值观:创设情境,激发学生学习的积极性。让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。

教学重点和难点:

圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。

教 具:

圆柱的体积公式演示教具,圆柱的体积公式演示课件

教学过程:

一、教学回顾

1、交代任务:我们认识了圆柱,学习了圆柱的表面积,这节课我们来学习《圆柱的体积》。

2、回忆导入

(1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?

(2)、我们都学过那些立体图形的体积公式。

二、学习目标:

1、理解圆柱体积的含义。

2、通过操作活动,探索圆柱体积的计算方法,感受转化的`数学思想。

3、能运用圆柱的体积公式正确进行计算。

三、积极参与 探究感受

1、利用圆面积的推导,猜测圆柱的体积和那些条件有关。自学课本19页并思考以下3个问题

1、你想把圆柱转化成我们以前学过的什么立体图形?

2、你是怎样转化成这个立体图形的?

3、转化后的立体图形和圆柱之间有什么关系?

2、.探究推导圆柱的体积计算公式。(电脑演示)

小组合作讨论:

(1)将圆柱体切割拼成我们学过的什么立体图形?

(2)切拼前后的两个物体什么变了?什么没变?

(3)切拼前后的两个物体有什么联系?

课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。

①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)

②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)

③圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)

2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?

3、要用这个公式计算圆柱的体积必须知道什么条件?

4、汇总:长方体、正方体、圆柱的体积都可以用底面积乘高来计算。

5、试一试:填表

6、讨论:(1)已知圆柱底面的半径和高,怎样求圆柱的体积

V= 兀r2 × h

(2)已知圆柱底面的直径和高,怎样求圆柱的体积

V=兀(d÷2)2×h

(3)已知圆柱底面的周长和高,怎样求圆柱的体积

V=兀(C÷兀÷2) ×h

三、巩固练习

1、填空

(1)、圆柱体通过切拼转化成近似的 ( ) 体。这个长方体的底面积等于圆柱体的( ),这个长方体的高等于圆柱体( ) 。因为长方体的体积等于( ),所以,圆柱体的体积等于( )用字母表示( ) 。

(2)、判断。

(3)、已知圆柱底面的半径和高,怎样求圆柱的体积

已知圆柱底面的直径和高,怎样求圆柱的体积

(3)已知圆柱底面的周长和高,怎样求圆柱的体积

四、小结或质疑

五、五、作业

六、板书设计:

圆柱的体积

长方体的体积=底面积x高

圆柱的体积=底面积x高

V=Sh

【圆柱的体积作文】相关文章:

1.圆柱的体积公式

2.圆柱的体积练习题

3.圆柱的体积说课稿

4.圆柱的体积课件

5.圆柱体积怎么算

6.圆柱的体积教学设计

7.圆柱的体积教学反思

8.圆柱体积公式教学反思

9.圆柱的体积说课稿一等奖

10.圆柱的体积教学设计人教版

下载word文档
《圆柱的体积作文.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部