欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 实用文>八年级勾股定理压轴题

八年级勾股定理压轴题

2025-01-07 10:01:37 收藏本文 下载本文

“ysysfc1143”通过精心收集,向本站投稿了4篇八年级勾股定理压轴题,下面给大家分享八年级勾股定理压轴题,欢迎阅读!

八年级勾股定理压轴题

篇1:八年级勾股定理压轴题

二、填空题

16.如图是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A,B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是_____米.

【答案】2.5.

17.如图, 中,∠B= ,AB=3㎝,AC=5㎝,将 折叠,使点C与点A重合,折痕为DE,则CE=____㎝.

【答案】

18.如图,在△ABC中,AB=15cm,AC=13cm,BC=14cm,则△ABC的面积为________cm2.

【答案】84

【解析】作CD ,垂足为D,设AD=x,则BD=15-x,根据勾股定理得: ,即 解得: ,则S= .故答案为84.

19.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间的距离为50m,则这辆小汽车的速度是__m/s.

【答案】20

【解析】试题解析:在Rt△ABC中,AC=30m,AB=50m;

据勾股定理可得:BC= =40(m),

故小汽车的速度为v= =20m/s.

20.直角三角形的两边长分别是3和4,则此三角形的面积是______________

【答案】6或

21.△ABC中,AB=AC=9,BC=12,D是线段BC上的动点(不含端点B,C),当线段AD=7时,BD的长为 .

【答案】4或8

【解析】如图,AE⊥BC于点E,则∠AED=90°,

∵AB=AC,BC=12,

∴BE=CE=6,

∴在Rt△ABE中,AE2=AB2-BE2=45.

又∵AD=9,

∴在Rt△ADE中,DE= 2.

∴①当点D在B、E之间时,BD=BE-DE=6-2=4;

②当点D在C、E之间时(图中的D1处),BD=BE+DE=6+2=8.

∴BD的长为4或8.

22.如图是一株美丽的“勾股树”,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为9、4、4、1,则的正方形E的面积是_______.

【答案】18

23.如图阴影部分正方形的面积是_______.

24.若直角三角形中,一斜边比一直角边大2,且另一直角边长为6,则斜边为_______.

25.如图,△ABC为等边三角形,AD为BC边上的高,且AB=2,则正方形ADEF的面积为_______.

26.一长方形门框宽为1.5米,高为2米.安装门框时为了增强稳定性,在门框的对角线处钉上一根木条,这根木条至少_______米长.

27.如图是一等腰三角形状的铁皮△ABC,BC为底边,尺寸如图,单位:cm,根据所给的条件,则该铁皮的面积为_______.

28.如图是连江新华都超市一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,小马虎从点A到点C共走了12 m,电梯上升的高度h为6m,经小马虎测量AB=2 m,则BE=_______.

29.如图,P是正△ABC内一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后,得到△P'AB,则点P与P'之间的距离为PP'=_______,∠APB=_______度.

30.如图,正方形ABDE、CDFI、EFGH的面积分别为25、9、16,△AEH、△BDC、△GFI的面积分别为S1、S2、S3,则S1+S2+S3=_______.

篇2:八年级勾股定理压轴题

三、解答题(共46分)

1.(6分)如图,△ABC中,∠ACB=90°,AC=7,BC=24,CD⊥AB于D.

(1)求AB的长;

(2)求CD的长.

2.(6分)如图,已知AB=13,BC=14,AC=15,AD⊥BC于D,求AD长.

3.(6分)某开发区有一空地ABCD,如图所示,现计划在空地上种草皮,经测量,∠B=90°,AB=3m,BC=4 m,AD=12 m,CD=13 m,若每种植1平方米草皮需要100元,问总共需要投入多少元?

4.(6分)如图,两点A,B都与平面镜相距4米,且A,B两点相距6米,一束光由A点射向平面镜,反射之后恰好经过B点,求B点与入射点间的距离.

5.(6分)如图,一块长方体砖宽AN=5 cm,长ND=10 cm,CD上的点B距地面的高BD=8 cm,地面上A处的一只蚂蚁到B处吃食,需要爬行的最短路径是多少?

6.(8分)探索与研究:

方法1:如图(a),对任意的符合条件的直角三角形绕其锐角顶点旋转90°所得,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图示写出证明勾股定理的过程;

方法2:如图(b),是任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写一种证明勾股定理的方法吗?

7.(8分)(1)如图(1),在四边形ABCD中,BC⊥CD,∠ACD=∠ADC.

求证:AB+AC>;

(2)如图(2),在△ABC中,AB上的高为CD,试判断(AC+BC)2与AB2+4CD2之间的大小关系,并证明你的结论.

篇3:八年级勾股定理压轴题

一、单选题

1.下列各组数中,是勾股数的是( )

A. 12,15,18 B. 12,35,36 C. 2,3,4 D. 5,12,13

【答案】D

2.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于( )

A. 1- B. 1- C. D.

【答案】D

【解析】试题分析:设CD与B′C′相交于点O,连接OA.

根据旋转的性质,得∠BAB′=30°,则∠DAB′=60°.

3.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )

A. 5 B. 25 C. 10 +5 D. 35

【答案】B

【解析】试题解析:将长方体展开,连接A、B,

根据两点之间线段最短,

(1)如图,BD=10+5=15,AD=20,

由勾股定理得:AB= .

4.在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=( )

A. 4 B. 5 C. 6 D. 7

【答案】A

【解析】解:由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故选A.

5.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为81,小正方形面积为16,若用x,y表示直角三角形的两直角边(x>y),请观察图案,指出以下关系式中不正确的是( )

A. x2+y2=81 B. x+y=13 C. 2xy+16=81 D. x-y=4

【答案】B

6.如图,带阴影的长方形面积是( )

A. 9 cm2 B. 24 cm2 C. 45 cm2 D. 51 cm2

【答案】C

【解析】试题解析:由图可知,△ABC是直角三角形,

∵AC=8cm,BC=12cm,

∴AB= =15cm,

∴S阴影=15×3=45cm2.

故选C.

7.“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则大正方形与小正方形的面积差是( )

A. 9 B. 36 C. 27 D. 34

【答案】B

【解析】大正方形的面积为32+62=45,小正方形的面积为(6-3)2=9,则面积差为45-9=36.故选B.

8.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为( )

A. B. C. 3 D. 2

【答案】B

故选B.

9.如图,一棵大树在一次强台风中于离地面5m处折断倒下,倒下后树顶落在树根部大约12m处。这棵大树折断前高度估计为 ( )

A. 25cm B. 18m C. 17m D. 13m

【答案】B

10.如图,在△ABC中,CD⊥AB于D,若AD∶BD=5∶2,AC=17,BC=10,则BD的长为( )

A. 4 B. 5 C. 6 D. 8

【答案】C

【解析】根据AD∶BD=5∶2,设AD=5x,BD=2x,根据勾股定理得: ,即

,解得x=3,则BD=2x=6.故选C.

11.已知x,y为正数,且|x-4|+(y-3)2=0,如果以x,y为边长作一个直角三角形,那么以这个直角三角形的斜边长为边长的正方形的面积为( )

A. 5 B. 7 C. 7或25 D. 16或25

【答案】D

12.如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为( )

A. 12 B. 7 C. 5 D. 13

【答案】D

【解析】∵AB⊥CD,

∴∠ABD=∠ABC=90°,

又∵△ABD和△EBC都是等腰三角形,

∴EB=BC=5,AB=BD,

∴AB=BD=DC-BC=17-5=12,

∴在Rt△ABC中,AC= .

故选D.

13.一个直角三角形的两条边分别是6和8,则第三边是( )

A. 10 B. 12 C. 12或 D. 10或

【答案】D

【解析】(1)当长为6和8的两边都是直角边时,第三边是斜边,其长为: ;

(2)当长为8的是斜边是,第三边是直角边,其长为: ;

即第三边的长为10或 .

故选D.

14.如图,把长方形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处, 已知∠MPN=90°,且PM=3,PN=4,那么矩形纸片ABCD的面积为( )

A. 26 B. 28.8 C. 26.8 D. 28

【答案】B

15.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )

A. 121 B. 120 C. 90 D. 不能确定

【答案】C

【解析】设另一直角边长为 ,则由题意可知斜边长为 ,根据勾股定理可得: ,解得: ,

∴这个直角三角形的周长为:40+41+9=90.故选C.

篇4:八年级数学勾股定理经典例题解析

八年级数学勾股定理经典例题解析

经典例题透析

类型一:勾股定理的直接用法

1、在Rt△ABC中,∠C=90°

(1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a.

思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=

(2) 在△ABC中,∠C=90°,a=40,b=9,c=

(3) 在△ABC中,∠C=90°,c=25,b=15,a=

举一反三

【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?

【答案】∵∠ACD=90°

AD=13, CD=12

∴AC2 =AD2-CD2

=132-122

=25

∴AC=5

又∵∠ABC=90°且BC=3

∴由勾股定理可得

AB2=AC2-BC2

=52-32

=16

∴AB= 4

∴AB的长是4.

类型二:勾股定理的构造应用

2、如图,已知:在 中, , , . 求:BC的长.

思路点拨:由条件 ,想到构造含 角的直角三角形,为此作 于D,则有

, ,再由勾股定理计算出AD、DC的长,进而求出BC的长.

解析:作 于D,则因 ,

∴ ( 的两个锐角互余)

∴ (在 中,如果一个锐角等于 ,

那么它所对的直角边等于斜边的一半).

根据勾股定理,在 中,

.

根据勾股定理,在 中,

.

∴ .

举一反三【变式1】如图,已知: , , 于P. 求证: .

解析:连结BM,根据勾股定理,在 中,

.

而在 中,则根据勾股定理有

.

又∵ (已知),

∴ .

在 中,根据勾股定理有

∴ .

【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。

解析:延长AD、BC交于E。

∵∠A=∠60°,∠B=90°,∴∠E=30°。

∴AE=2AB=8,CE=2CD=4,

∴BE2=AE2-AB2=82-42=48,BE= = 。

∵DE2= CE2-CD2=42-22=12,∴DE= = 。

∴S四边形ABCD=S△ABE-S△CDE= AB•BE- CD•DE=

类型三:勾股定理的实际应用

(一)用勾股定理求两点之间的距离问题

3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。

(1)求A、C两点之间的距离。

(2)确定目的地C在营地A的什么方向。

解析:(1)过B点作BE//AD

∴∠DAB=∠ABE=60°

∵30°+∠CBA+∠ABE=180°

∴∠CBA=90°

即△ABC为直角三角形

由已知可得:BC=500m,AB=

由勾股定理可得:

所以

(2)在Rt△ABC中,

∵BC=500m,AC=1000m

∴∠CAB=30°

∵∠DAB=60°

∴∠DAC=30°

即点C在点A的北偏东30°的方向

举一反三

【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?

【答案】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于CH.如图所示,点D在离厂门中线0.8米处,且CD⊥AB, 与地面交于H.

解:OC=1米 (大门宽度一半),

OD=0.8米 (卡车宽度一半)

在Rt△OCD中,由勾股定理得:

CD= = =0.6米,

CH=0.6+2.3=2.9(米)>2.5(米).

因此高度上有0.4米的余量,所以卡车能通过厂门.

(二)用勾股定理求最短问题

4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.

思路点拨:解答本题的思路是:最省电线就是线路长最短,通过利用勾股定理计算线路长,然后进行比较,得出结论.

解析:设正方形的边长为1,则图(1)、图(2)中的总线路长分别为

AB+BC+CD=3,AB+BC+CD=3

图(3)中,在Rt△ABC中

同理

∴图(3)中的路线长为

图(4)中,延长EF交BC于H,则FH⊥BC,BH=CH

由∠FBH= 及勾股定理得:

EA=ED=FB=FC=

∴EF=1-2FH=1-

∴此图中总线路的长为4EA+EF=

3>2.828>2.732

∴图(4)的连接线路最短,即图(4)的架设方案最省电线.

举一反三

【变式】如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.

解:

如图,在Rt△ABC中,BC=底面周长的一半=10cm, 根据勾股定理得

(提问:勾股定理)

∴ AC= = = ≈10.77(cm)(勾股定理).

答:最短路程约为10.77cm.

类型四:利用勾股定理作长为 的线段

5、作长为 、、的线段。

思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于 ,直角边为 和1的直角三角形斜边长就是 ,类似地可作 。

作法:如图所示

(1)作直角边为1(单位长)的等腰直角△ACB,使AB为斜边;

(2)以AB为一条直角边,作另一直角边为1的直角 。斜边为 ;

(3)顺次这样做下去,最后做到直角三角形 ,这样斜边 、、、的长度就是

、、、。

举一反三 【变式】在数轴上表示 的点。

解析:可以把 看作是直角三角形的斜边, ,

为了有利于画图让其他两边的长为整数,

而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

作法:如图所示在数轴上找到A点,使OA=3,作AC⊥OA且截取AC=1,以OC为半径,

以O为圆心做弧,弧与数轴的交点B即为 。

类型五:逆命题与勾股定理逆定理

6、写出下列原命题的逆命题并判断是否正确

1.原命题:猫有四只脚.(正确)

2.原命题:对顶角相等(正确)

3.原命题:线段垂直平分线上的点,到这条线段两端距离相等.(正确)

4.原命题:角平分线上的点,到这个角的两边距离相等.(正确)

思路点拨:掌握原命题与逆命题的关系。

解析:1. 逆命题:有四只脚的是猫(不正确)

2. 逆命题:相等的角是对顶角(不正确)

3. 逆命题:到线段两端距离相等的点,在这条线段的垂直平分线上.(正确)

4. 逆命题:到角两边距离相等的点,在这个角的平分线上.(正确)

总结升华:本题是为了学习勾股定理的逆命题做准备。

7、如果ΔABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断ΔABC的形状。

思路点拨:要判断ΔABC的形状,需要找到a、b、c的关系,而题目中只有条件a2+b2+c2+50=6a+8b+10c,故只有从该条件入手,解决问题。

解析:由a2+b2+c2+50=6a+8b+10c,得 :

a2-6a+9+b2-8b+16+c2-10c+25=0,

∴ (a-3)2+(b-4)2+(c-5)2=0。

∵ (a-3)2≥0, (b-4)2≥0, (c-5)2≥0。

∴ a=3,b=4,c=5。

∵ 32+42=52,

∴ a2+b2=c2。

由勾股定理的逆定理,得ΔABC是直角三角形。

总结升华:勾股定理的逆定理是通过数量关系来研究图形的位置关系的,在证明中也常要用到。

举一反三【变式1】四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。

【答案】:连结AC

∵∠B=90°,AB=3,BC=4

∴AC2=AB2+BC2=25(勾股定理)

∴AC=5

∵AC2+CD2=169,AD2=169

∴AC2+CD2=AD2

∴∠ACD=90°(勾股定理逆定理)

【变式2】已知:△ABC的三边分别为m2-n2,2mn,m2+n2(m,n为正整数,且m>n),判断△ABC是否为直角三角形.

分析:本题是利用勾股定理的的逆定理, 只要证明:a2+b2=c2即可

证明:

所以△ABC是直角三角形.

【变式3】如图正方形ABCD,E为BC中点,F为AB上一点,且BF= AB。

请问FE与DE是否垂直?请说明。

【答案】答:DE⊥EF。

证明:设BF=a,则BE=EC=2a, AF=3a,AB=4a,

∴ EF2=BF2+BE2=a2+4a2=5a2;

DE2=CE2+CD2=4a2+16a2=20a2。

连接DF(如图)

DF2=AF2+AD2=9a2+16a2=25a2。

∴ DF2=EF2+DE2,

∴ FE⊥DE。

经典例题精析

类型一:勾股定理及其逆定理的基本用法

1、若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。

思路点拨:在直角三角形中知道两边的比值和第三边的长度,求面积,可以先通过比值设未知数,再根据勾股定理列出方程,求出未知数的值进而求面积。

解析:设此直角三角形两直角边分别是3x,4x,根据题意得:

(3x)2+(4x)2=202

化简得x2=16;

∴直角三角形的面积= ×3x×4x=6x2=96

总结升华:直角三角形边的有关计算中,常常要设未知数,然后用勾股定理列方程(组)求解。

举一反三 【变式1】等边三角形的边长为2,求它的面积。

【答案】如图,等边△ABC,作AD⊥BC于D

则:BD= BC(等腰三角形底边上的高与底边上的中线互相重合)

∵AB=AC=BC=2(等边三角形各边都相等)

∴BD=1

在直角三角形ABD中,AB2=AD2+BD2,即:AD2=AB2-BD2=4-1=3

∴AD=

S△ABC= BC•AD=

注:等边三角形面积公式:若等边三角形边长为a,则其面积为 a。

【变式2】直角三角形周长为12cm,斜边长为5cm,求直角三角形的面积。

【答案】设此直角三角形两直角边长分别是x,y,根据题意得:

由(1)得:x+y=7,

(x+y)2=49,x2+2xy+y2=49 (3)

(3)-(2),得:xy=12

∴直角三角形的面积是 xy= ×12=6(cm2)

【变式3】若直角三角形的三边长分别是n+1,n+2,n+3,求n。

思路点拨:首先要确定斜边(最长的边)长n+3,然后利用勾股定理列方程求解。

解:此直角三角形的斜边长为n+3,由勾股定理可得:

(n+1)2+(n+2)2=(n+3)2

化简得:n2=4

∴n=±2,但当n=-2时,n+1=-1<0,∴n=2

总结升华:注意直角三角形中两“直角边”的平方和等于“斜边”的平方,在题目没有给出哪条是直角边哪条是斜边的情况下,首先要先确定斜边,直角边。

【变式4】以下列各组数为边长,能组成直角三角形的是( )

A、8,15,17 B、4,5,6 C、5,8,10 D、8,39,40

解析:此题可直接用勾股定理的逆定理来进行判断,

对数据较大的可以用c2=a2+b2的变形:b2=c2-a2=(c-a)(c+a)来判断。

例如:对于选择D,

∵82≠(40+39)×(40-39),

∴以8,39,40为边长不能组成直角三角形。

同理可以判断其它选项。 【答案】:A

【变式5】四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。

解:连结AC

∵∠B=90°,AB=3,BC=4

∴AC2=AB2+BC2=25(勾股定理)

∴AC=5

∵AC2+CD2=169,AD2=169

∴AC2+CD2=AD2

∴∠ACD=90°(勾股定理逆定理)

∴S四边形ABCD=S△ABC+S△ACD= AB•BC+ AC•CD=36

类型二:勾股定理的应用

2、如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m。假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?

思路点拨:(1)要判断拖拉机的噪音是否影响学校A,实质上是看A到公路的距离是否小于100m, 小于100m则受影响,大于100m则不受影响,故作垂线段AB并计算其长度。(2)要求出学校受影响的时间,实质是要求拖拉机对学校A的影响所行驶的路程。因此必须找到拖拉机行至哪一点开始影响学校,行至哪一点后结束影响学校。

解析:作AB⊥MN,垂足为B。

在 RtΔABP中,∵∠ABP=90°,∠APB=30°, AP=160,

∴ AB= AP=80。 (在直角三角形中,30°所对的直角边等于斜边的一半)

∵点 A到直线MN的距离小于100m,

∴这所中学会受到噪声的影响。

如图,假设拖拉机在公路MN上沿PN方向行驶到点C处学校开始受到影响,那么AC=100(m),

由勾股定理得: BC2=1002-802=3600,∴ BC=60。

同理,拖拉机行驶到点D处学校开始脱离影响,那么,AD=100(m),BD=60(m),

∴CD=120(m)。

拖拉机行驶的速度为 : 18km/h=5m/s

t=120m÷5m/s=24s。

答:拖拉机在公路 MN上沿PN方向行驶时,学校会受到噪声影响,学校受影响的时间为24秒。

总结升华:勾股定理是求线段的长度的很重要的方法,若图形缺少直角条件,则可以通过作辅助垂线的方法,构造直角三角形以便利用勾股定理。

举一反三 【变式1】如图学校有一块长方形花园,有极少数人为了避开拐角而走“捷径”,在花园内走出了一条“路”。他们仅仅少走了__________步路(假设2步为1m),却踩伤了花草。

解析:他们原来走的路为3+4=7(m)

设走“捷径”的路长为xm,则

故少走的路长为7-5=2(m)

又因为2步为1m,所以他们仅仅少走了4步路。【答案】4

【变式2】如图中的虚线网格我们称之为正三角形网格,它的每一个小三角形都是边长为1的正三角形,这样的三角形称为单位正三角形。

(1)直接写出单位正三角形的高与面积。

(2)图中的平行四边形ABCD含有多少个单位正三角形?平行四边形ABCD的面积是多少?

(3)求出图中线段AC的长(可作辅助线)。

【答案】(1)单位正三角形的高为 ,面积是 。

(2)如图可直接得出平行四边形ABCD含有24个单位正三角形,因此其面积 。

(3)过A作AK⊥BC于点K(如图所示),则在Rt△ACK中, ,

,故

类型三:数学思想方法(一)转化的思想方法

我们在求三角形的边或角,或进行推理论证时,常常作垂线,构造直角三角形,将问题转化为直角三角形问题来解决.

3、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长。

思路点拨:现已知BE、CF,要求EF,但这三条线段不在同一三角形中,所以关键是线段的转化,根据直角三角形的特征,三角形的中线有特殊的性质,不妨先连接AD.

解:连接AD.

因为∠BAC=90°,AB=AC. 又因为AD为△ABC的中线,

所以AD=DC=DB.AD⊥BC.

且∠BAD=∠C=45°.

因为∠EDA+∠ADF=90°. 又因为∠CDF+∠ADF=90°.

所以∠EDA=∠CDF. 所以△AED≌△CFD(ASA).

所以AE=FC=5.

同理:AF=BE=12.

在Rt△AEF中,根据勾股定理得:

,所以EF=13。

总结升华:此题考查了等腰直角三角形的性质及勾股定理等知识。通过此题,我们可以了解:当已知的线段和所求的线段不在同一三角形中时,应通过适当的转化把它们放在同一直角三角形中求解。

(二)方程的思想方法

4、如图所示,已知△ABC中,∠C=90°,∠A=60°, ,求 、、的值。

思路点拨:由 ,再找出 、的关系即可求出 和 的值。

解:在Rt△ABC中,∠A=60°,∠B=90°-∠A=30°,

则 ,由勾股定理,得 。

因为 ,所以 ,

, , 。

总结升华:在直角三角形中,30°的锐角的所对的直角边是斜边的一半。

举一反三:【变式】如图所示,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EF的长。

解:因为△ADE与△AFE关于AE对称,所以AD=AF,DE=EF。

因为四边形ABCD是矩形,所以∠B=∠C=90°,

在Rt△ABF中, AF=AD=BC=10cm,AB=8cm,

所以 。 所以 。

设 ,则 。

在Rt△ECF中, ,即 ,解得 。

即EF的长为5cm。

【八年级勾股定理压轴题】相关文章:

1.八年级数学勾股定理教学计划

2.八年级数学下学期《勾股定理》说课稿

3.初中数学压轴题解题思路

4.中考数学压轴题高分技巧

5.压轴造句

6.八年级数学下册《勾股定理》备课教案

7.高考物理压轴题及解题方法

8.勾股定理测试题

9.勾股定理教案

10.勾股定理论文

下载word文档
《八年级勾股定理压轴题.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部