门传感器工作原理的论文
“villain”通过精心收集,向本站投稿了11篇门传感器工作原理的论文,以下是小编收集整理后的门传感器工作原理的论文,欢迎阅读与借鉴。
篇1:门传感器工作原理的论文
1三端式磁通门传感器工作原理
三端式磁通门传感器采用双探头结构,即将两个绕有相同匝数线圈的磁通门传感器平行对称放置,将其并联后一端作为激励信号的输入端,另一端相互连接后中间引出抽头作为信号的输出端.
主要是为了抵消由于变压器效应产生的感应电动势.
这种结构相对普通磁通门传感器具有噪声低、基波分量小、灵敏度高和性能好等优点[9-10].
先对三端式磁通门上半轴进行分析,上半轴上磁场强度总和为外界磁场强度H0和两个激励线圈在磁芯轴向上产生的磁场强度He之和.
其中:He=He1+He2,He1=H1sinωt,He2=H2sinωt.
根据法拉第电磁感应定律,当磁芯远未饱和状态时,这时磁导率μ视为常数,产生的感应电动势为U1=-10-8NμSωcosωt(H1+H2),(1)式中:μ为铁芯磁导率;S为横截面积;N为感应线圈匝数.
当在交流激励的作用下,磁芯充磁达到饱和状态,磁导率μ成为随时间变化的一个变量,这时线圈产生的感应电动势U1=-10-8Nμ(t)Sωcosωt(H1+H2)-10-8NS[sinωt(H1+H2)+H0]dμ(t)dt.
(2)同理,对于下半轴铁心,由于下半轴激励方向和上半轴相反,其线圈产生的感应电动势U2=-10-8Nμ(t)Sωcosωt(H1+H2)+10-8NS[sinωt(H1+H2)-H0]dμ(t)dt.
(3)由于三端式磁通门传感器结构为差分输出,总感应电动势为上下半轴磁芯感应电动势之和,如式(4)U=U1+U2=-2×10-8NS×H0×dμ(t)dt,(4)式中:μ(t)为时变函数,将μ(t)傅立叶展开,代入式(4)可以得出U=-2×10-8NS×H0×(2ωμ2msin2ωt+4ωμ4msin4ωt+…).
(5)通过式(5)得出,三端式磁通门传感器的输出信号为与外界磁场变化成正比的偶次谐波,奇次谐波分量得到有效抑制.
2磁通门探头结构
本设计中磁通门传感器探头采用三端式结构,即将一对高磁导率、低矫顽力的铁芯(选取型号为1J86的坡莫合金)平行放置,其磁芯的饱和磁通为Bs=0.
6T,最大磁导率为100000.
磁芯截面积约为6mm2,假设探头激励电压幅值为24V,频率为4kHz,根据文献[2]中公式,利用磁芯磁通达到饱和确定线圈匝数,经计算线圈匝数为149.
实验中在磁芯上各绕一组匝数为150的线圈,这种结构主要是为了相互抑制由于变压器效应而引起的感应电动势.
为了使传感器探头具有较高的灵敏度,设计中适当加大了磁芯探头与横截面直径的比值,设计的磁芯探头长度为20mm,横截面直径为7.
5mm.
3系统设计
铁磁体探测系统主要包括激励电路、磁通门探头、信号调理电路、数据采集模块、上位机几部分,如图2所示.
通过这个模块得到的'信号就是与外界磁场强度成正比的电信号.
3.
1激励电路磁通门探头激励电路对系统的性能和测量结果有较大影响,为了提高测量系统的稳定性,需要激励信号在频率、幅值、相位等方面具有较高的稳定度.
设计中采用8M晶振经分频器SN74HC4060分别输出4kHz,8kHz的方波信号,使其分别作为激励信号源和相敏检波的基准信号.
将激励信号源通过功率放大器和二阶带通滤波器,目的是为了得到波形稳定的输出信号,并且可以使磁芯处于周期性饱和状态.
为了减小激励信号对探头的干扰,在探头前端加装隔离变压器.
3.
2信号调理电路磁通门信号的调理电路一般采用二次谐波法,由LC并联谐振电路、低噪声放大电路、带通滤波器、积分器和反馈电路几个环节构成.
由于磁通门探头阻抗特性以电感为主,通过并联电容使二次谐波频率达到谐振状态.
探头二次谐波信号比较微弱,在对其进行滤波前设置前置放大电路,滤波采用二阶有源带通滤波器,中心频率为31.
25kHz,品质因素Q为9.
8,增益为15.
把滤波后的信号与相敏检波的基准信号经过相敏检波电路进行全波整流,消除基波信号和奇次谐波信号的影响,得到信号的幅度大小.
3.
3信号采集电路探测系统采用可编程逻辑器件EP3C10E144型FPGA作为控制芯片来控制AD,实现3路信号采集,将采集后的数据先存入FPGA的RAM中,对数据进行中值滤波和频谱分析.
为了减少脉动的干扰,采集的信号进行中值滤波,其方法为信号采样N次后,对其进行排序取中间值.
本系统采样5次后排序,选取中间值作为有效值.
在FPGA内部对信号进行FFT运算,应用于对不同频率的目标进行识别.
4实验
当有铁磁性目标在一定范围内经过磁通门传感器时,系统就会获取目标的磁场信号.
当目标移动方向和传感器敏感轴方向一致靠近传感器时,首先测到的磁场强度是减小,而后逐渐增大;当目标与传感器在一条线时,寄传感器与目标距离最小时,系统测到的磁场强度为0;当目标继续移动远离传感器时,传感器输出值会先增大后减小为初值,如图3(1)所示.
当目标移动方向和传感器敏感轴方向刚好相反时,信号变化方向也会变反,如图3(2)所示.
实验中选体积约为1cm3的磁铁作为待测磁异目标,将三轴磁通门传感安装于试验台上,磁铁先沿传感器X轴敏感方向反向匀速移动,移动一段距离后改变运动方向,而后读取传感器输出信号值,结果如图4所示.
实验结果显示正向运动与反向运动波形对称,与预期的变化一致.
5结论
本文设计了基于三端式磁通门传感器的铁磁性目标探测系统,系统能感测到铁磁性目标的运动情况,实现了磁性目标的三分量测量.
系统具有功耗低、灵敏度高、稳定性好等优点.
作者:李沅 胡冠华 李凯 吴晓华 单位:中北大学 电子测试技术国家重点实验室 北方自动控制技术研究所 北京交通运输职业学院
篇2:门传感器工作原理的论文
1系统通信
1.
1ZigBee树簇拓扑网络ZigBee网络的自动动态组网功能及数据传输自动路由功能对实现了系统的灵活机动通信。
图2为ZigBee树簇拓扑网络,其中协调器是首个FFD(全功能设备),路由器为FFD,终端设备为RFD(精简功能设备)。
除了RFD互相之间不能通信外,其他组合均能相互通信。
1.
2ZigBee收发器图3为典型ZigBee收发器框图,不同ZigBee收发器的设计都必须包含匹配滤波在内的16个功能模块。
采用的匹配滤波(matchedfiltering)是最佳滤波的一种,对信号的匹配滤波相当于对信号进行自相关运算。
采用匹配滤波器处理,可以对传感器采集的信号中存在的工频信号进行突显,对其他信号或噪声进行抑制[3]。
系统中ZigBee收发器采用的是新一代CC2530片上系统解决方案。
CC2530的内核为单周期8051兼容内核,图4为CC2530最小系统设计电路原理图,也是实际收发器模块电路的核心电路部分。
图中电阻R1、R2、R3和电容C6、C7、C8、C9、C10、C11构成匹配滤波。
2驱鸟终端设计
驱鸟终端的组成框图如图5所示。
供电模块给终端供电,检测模块由多个传感器电路组成,负责将外部环境的模拟量转换为数值量输入,核心控制器MSP430F169按设定要求对采集的信息做出对应处理动作,终端上的是ZigBee收发模块实现近距离通信,语音模块及超声波模块为系统输出。
2.
1MSP430最小系统驱鸟终端的核心控制器采用德州仪器的MSP430F169芯片。
MSP430F169从结构上看,包含一个16位的精简指令计算机CPU,多个外围电路和一个用常见的冯诺依曼内存地址总线和内存数据总线连接的灵活时钟系统。
低频辅助时钟直接由32Hz的晶振驱动,能作为后台实时时钟自我唤醒。
MSP430F169的最小系统电路原理图如图6所示。
2.
2电源模块驱鸟终端装置安装在电力塔杆的横担上,可以充分接受阳光,因此采用太阳能供电方式比较适合。
本模块采用太阳能光伏发电,再由12V蓄电池存储电能并为整个系统提供电能。
电源模块由稳压、滤波电路组成,给驱鸟终端的检测模块和ZigBee收发模块提供3.
3V输入电压,给语音模块、LED模块及超声波模块提供5V输入电压。
2.
3检测电路设计多普勒效应指出,波在波源移向观察者时接收频率变高,而在波源远离观察者时接收频率变低[4]。
观察者(Observe)r和发射源(Source)的频率的表达式为:其中,f'为观察到的频率;f为发射源于该介质中的原始发射频率;ν为波在该介质中的行进速度;νo为观察者移动速度,若接近发射源则前方运算符号为+号,反之则为-号;νs为发射源移动速度,若接近观察者则前方运算符号为-号,反之则为+号。
文中采用的是微波移动物体探测器正是基于多普勒效应设计的GH-719模块。
GH-719微波感应位移模块属于非接触探测型模块,抗射频干扰能力强,不受温度,湿度,光线,气流,尘埃影响[5]。
驱鸟终端的设计除了微波感应位移模块外,辅助有时钟模块与温度模块,可以准确地检测到是否为白天有光情况。
图7为检测电路部分原理图,补充加上模数转换电路即可实现GH-719微波感应位移模块的数字信号输出功能。
2.
4ISD1820P语音录放模块语音模块在动作时筛选出对应鸟类的天敌的声音进行驱鸟。
语音芯片采用ISD1820P,内含振荡器、语音话筒前置放大、自动增益控制、防混淆滤波器、扬声器驱动及Flash阵列。
外接电阻能调整录放音时间,还可以借助专用设备批量拷贝语音信息,不耗电,信息可以保存很长时间(大约1)。
考虑到可靠性和市场的普及性,通过对各种无线传输模块的比较后选择ISD1820P芯片,它能方便的实现语音的录音,用户可以方便地对驱鸟有明显效果的语音进行录音,并能通过微控制模块控制语音芯片播放录音。
其电路如图8所示。
3系统软件设计
驱鸟终端通过微波位移感应传感器采集鸟飞临电力杆塔横担附近的位移信号,经过放大滤波电路处理系统启动后,先初始化系统的各个硬件模块,由软件实现驱鸟方式的选择,判断测量值是否满足预设值,若满足按流程驱鸟,不满足则代表没有鸟飞临杆塔的横担附近则进入休眠的低耗能状态。
检测是否有鸟到来便开启天敌声驱鸟,若同时检测到无太阳光或星辰光,根据鸟类视觉定向的特点,开启LED阵列驱鸟。
过一段时间后,是否还能检测到鸟,若不能则系统进入休眠状态;若能则改为超声波驱鸟,同时采集鸟类鸣叫声音,利用ZigBee无线近距离传输、无线远程传输发送有故障杆塔位置、具体时间、光照强度等信息,以便监控中心观察记录。
图9为系统的软件设计流程图。
4结语
本文所设计的系统着眼于电力系统输电线路管理的结构优化及安全性的重要性,通过ZigBee无线近距离传输和GPRS无线远程传输对采集信息及时有效地传输,对飞临电力杆塔横担附近的鸟类录制其声音并对应发出其天敌的声音进行驱赶,
而当该系统对天敌声音失效下情况下,发出超声波达到相同效果,监控中心收集实时运行状态,可以更及时,更高效维护驱鸟装置,省时省力,大大的降低了定期排查的人力成本,预留的I/O口可以满足后期扩展和开发的需要。
作者:彭龑 戴毓虎 单位:四川理工学院 自动化与电子信息学院
篇3:光电传感器原理及应用的探讨论文
光电传感器原理及应用的探讨论文
光电传感器原理及应用的探讨论文
摘 要在科学技术高度发展的现代社会中,我们主要依靠检测技术获取、筛选和传输信息来实现自动控制。光电传感器本身具有反应快、精度高、可靠性高等优点,而且其在测量速度方面较快,所以在自动测量领域中得到了广泛的应用。本文主要针对光电传感器的原理以及其应用等相关问题进行简要探讨。
关键词光电效应;外光电效应;内光电效应;光电子
在社会和经济快速发展的背景下,信息技术获得了广泛的应用,并在现代社会中发挥着重要的作用。很多人在得到资料后通过一系列科学的分析,加工,处理,才能正确认识和把握规律,促进科技工艺的发展。通过对信息的自动采集和过滤,获取有效的控制信息,可以提升企业的竞争力。
光电子和微电子技术的有效结合,形成了新的光电传感信息技术,这一技术的应用,使精度更高,响应速度更快,是具有高可靠性和高精确度的光电传感器,并且能对表格进行更灵活的测量,在自动检测技术当中得到了非常广泛的应用。光电传感器的应用可以实现对光学部件的有效检测。
1 光电效应理论基础
光电效应分为外部和内部光电效应光电效应。外部光电效应指的是表面电子的某些对象的光照射发生逃逸的现象,也称为电光效应以外光电子效应。基于在光电元件上具有光电管,光电倍增管等光学效应的外部光电效应是指光对下一个对象造成影响时,原子的内部电子被释放,但这些电子不会发生表面的逃逸现象,而是仍保持在所述主体的内部,从而使所述被摄体的变化的电阻率或产生电动势。主要包括光敏电阻器,光电二极管,光电池等光电元件。在光电材料的光,电子材料吸收能量,如果电子的表面能吸收足够的,电子将克服逃逸的`束缚到空间,这是光电效应以外的外表面。
因此,如果光电子逃逸面中,w不同的材料具有不同的功函数,入射光具有一定的频率限制,并且仅当入射光的频率大于该频率的限制,将已光电子,否则力度不大,也不会有光电子,这个频率所具有的上限我们一般把它称为“红色极限”。而光在电效应当中,价带与正常情况下的那些半导体材料之间所具有的带隙能量间隔在导带之间,价带电子不会自发如果通过转换到导带,使得导电半导体材料少得多的导电,但是,以某种方式与价带电子提供能量,它可以被激发到导带,形成一个载体,增加的方式的导电性时,光对于入射光的能量的激励。例如,价带电子将吸收这些具有很高能量的光子,并将其过渡到导带之中,从而留下一个介质孔当中的价带,这样也可以形成一对可以用来导电的电子――空穴对。虽然没有相关的逃逸电子或光电子形成,但是显然有电气效应是由于被光电效应中所产生的光。
用于价带到导带的电子跃迁,是有一定限度的入射光的能量,即ey=hv0=eg(v0是低频率)或频率小时石克事件的光比V比波长大于或更小。同时会发生与入射光的能量之间的电子跃迁是比较小的,不能使从价带的光子转变为导带,该带也可以是在子级结构跃迁内的
房间。
2 应用
光电传感器可以检测已被广泛应用于光的变化量而引起的检测技术,工业自动化和智能控制等领域。在这里,我们来说明这种传感器中的应用生产和生活。
2.1 光隔离器
所谓光隔离器一般是由一个发光的二极管或者光电晶体管在同一封套的组合物进行安装而成的。发光二极管的光敏电阻器,发光二极管光电晶体管。其中发光二极管的光电晶体管是被最广泛使用的,经常在隔离一般信号中使用;发光的光敏可控硅电源隔离的驾驶情况下使用二极管;发光二极管或在直接驱动低功率负荷的场合中使用的达林顿复合管。
2.2 文具计量电路
2.3 条码扫描笔
当扫描条形码笔尖上移动,如果遇到黑线,所述发光二极管的光就会由黑线被吸收,光电晶体管不接收反射的光,高阻抗电流干旱,在横截面中比状态由于当由发光二极管发出的光,被反射到光电晶体管的基极的颜色空间满足,光电晶体管导通,整个条码扫描之后,条形码到光电晶体管的电脉冲信号,将信号放大,脉冲列的形成后成形,然后通过计算机处理,以完成的条形码信息的识别。
2.4 光电探纬器
光电探测器在纬纱织机用检测器,以确定是否断裂时在喷射纬纱效果的进步,红外发射红外光,经纬线反射的接收到的光电池,如果没有接收到电池中的光的反射信号,则纬纱已破裂,因此光电池的输出信号,经过随后的电路放大,脉冲整形,并控制机器的正常操作是打开还是关闭报警。
因为纬纱非常薄,并向前摆动,漫射光的生成,减弱了反射光的强度,并伴有背景的杂散光,因此要求塞具有高的灵敏度和分辨率,为此,利用红外线LED高电流小电源脉冲占空比,它将确保发光管的寿命,而且在瞬间射的光,以提高检测灵敏度。
3 结论
一些广泛运用的光电传感器仍等着我们去研究,去探索,如在太阳下,还不能很好看清手机和电脑的显示,那么我们就可以用它来更改手机的感光器件和屏幕亮度,同样的,空调调节,可以红外线检测自动调整到舒适的温度的身体,当温度过高或过低时,打开空调即可调整到人的舒适范围温度,由此可见,光电传感器将会使我们的生活更方便。
参考文献
[1]张梦欣.自动检测与传感器应用[M].中国劳动社会保障出版社.
[2]李科杰.自动检测与光电传感器的应用[J].现代传感技术.
篇4:传感器及其工作原理的教学设计
一.【教材分析】:
《6.1 传感器及其工作》是新人教版高中物理选修3-2第六章第一节的教学内容,主要学习一些简单传感器,以介绍为主,课程内容比较简单。
二.【教学目标】
一、知识与技能:
(1)、了解什么是传感器,知道非电学量转化为电学量的技术意义;
(2)、知道传感器中常见的三种敏感元件光敏电阻、热敏电阻和霍尔元件及其它们的工作原理。
(3)、了解传感器的应用。
二、过程与方法:
通过对实验的观察、思考和探究,让学生在了解传感器、熟悉传感器工作原理的同时,经历科学探究过程,学习科学研究方法,培养学生的观察能力、实践能力和创新思维能力。
三、情感、态度与价值观:
(1)、体会传感器在生活、生产、科技领域的种种益处,激发学生的学习兴趣,拓展学生的知识视野,并加强物理与STS的联系。
(2)、通过动手实验,培养学生实事求是的科学态度、团队合作精神和创新意识。
三.【教学重点】:理解并掌握传感器的三种常见敏感元件的工作原理。
【教学难点】:分析并设计传感器的应用电路。
四.学情分析:
从上世纪八十年代起,国际上出现了“传感器热”,传感器在当今科技发展中有着十分重要的地位。本课的设计思路是通过对实验的观察、思考和探究,了解什么是传感器,传感器是如何将非电学量转换成电学量的,传感器在生产、生活中有哪些具体应用,为学生利用传感器制作简单的自控装置作一铺垫。学生对传感器了解较少,教学时力避深奥的理论,侧重于联系实际,让学生感受传感器的巨大作用,进而提高学生的学习兴趣,培养学生热爱科学的情感和崇尚科学的精神。
五.【教学方法】:实验、探究、讨论
六.【教学用具】:干簧管,磁铁,光敏电阻、热敏电阻演示仪、传感器简单应用实验盒、万用表。
七.【课时安排】1课时
八.【教学过程】
预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性
一、引入新课:
今天我们生活中常用的电视、空调的遥控器是如何实现远距离操纵的?楼梯上的电灯如何能人来就开,人走就熄的?工业生产中所用的自动报警器、恒温烘箱是如何工作的?“非典”病毒肆虐华夏大地时,机场、车站、港口又是如何实现快速而准确的体温检测的?所有这些,都离不开一个核心,那就是本堂课将要学习的传感器。
二、新课教学
1.什么是传感器
演示实验1:如图1所示,小盒子的侧面露出一个小灯泡,盒外没有开关,当把磁铁放到盒子上面,灯泡就会发光,把磁铁移开,灯泡熄灭。
提问:盒子里有怎样的装置,才能实现这样的控制?
学生猜测:盒子里有弹性铁质开关。
师生探究:打开盒子,用实物投影仪展示盒内的电路图(图2),了解元件“干簧管”的结构。探明原因:当磁体靠近干簧管时,两个由软磁性材料制成的簧片因磁化而相互吸引,电路导通,干簧管起到了开关的作用。
教师点拨:这个装置反过来还可以让我们通过灯泡的发光情况,感知干簧管周围是否存在着磁场。
演示实验2:教师出示一只音乐茶杯,茶杯平放桌上时,无声无息,提起茶杯,茶杯边播放悦耳的音乐,边闪烁着五彩的光芒。
教师提问: 音乐茶杯的工作开关又在哪里?开启的条件是什么?
学生猜测:在茶杯底部,所受压力发生改变。
实验探究:提起茶杯,用手压杯的底部,音乐并没有停止。
学生猜测:是由于光照强度的改变。
实验探究:用书挡住底部(不与底部接触),音乐停止,可见音乐茶杯受光照强度的控制。
师生总结:现代技术中,我们可以利用一些元件设计电路,它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转换为电路的通断。我们把这种元件叫做传感器。它的优点是:把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了。
教师提问:实验1中的干簧管是怎样的传感器,实验2音乐茶杯中所用的元件又是怎样的传感器?
学生回答:干簧管是一个能感受磁场的传感器,音乐茶杯中所用的元件是能感受光照强度的传感器。
传感器的工作原理如下图所示:
2、认识一些制作传感器的元器件
(1)探究光敏电阻的特性
学生实验1:学生五人一组,用万用电表的欧姆挡测量一只光敏电阻的阻值,实验分别在暗环境和强光照射下进行。
①、将光敏电阻与万用表的欧姆档按右图所示连成电路
②、将光敏电阻受光面置于有光线照射的地方,观察万用表的读数,把光敏电阻的阻值填入现表中。
光敏电阻光照情况较亮稍暗较暗黑暗
光敏电阻的阻值(Ω)
③、用黑纸片将光敏电阻的透光窗口的遮住,移动黑纸片,使光敏电阻受到的光线出现较亮、稍暗、较暗、黑暗几种情况,观察几种情况下光敏电阻的阻值变化,并把相应的阻值填入下表。
④、结论:光敏电阻在暗环境下电阻值很大,强光照射下电阻值很小。
师生总结:光敏电阻能够把光照强弱这个光学量转换为电阻这个电学量。
简单介绍:光敏电阻在光照射下电阻变化的原因。有些物质,例如硫化镉,是一种半导体材料,无光照时,载流子极少,导电性能不好;随着光照的增强,载流子增多,导电性变好。
(2)探究金属热电阻和热敏电阻的特性
提问:金属导体的导电性能与温度有关吗?关系如何?
回答:金属导体的电阻随温度的升高而增大,如白炽灯钨丝的电阻在正常工作情况下比常温下的电阻大得多。
演示实验4:如图6所示,AB间接有一段钨丝(从旧日光灯管中取出),闭合开关,灯泡正常发光,当用打火机给钨丝加热时,灯泡亮度明显变暗。
学生探究:钨丝的电阻随温度的升高而增大。
师生总结:用金属丝可以制作温度传感器,称为热电阻。如前面已经学过的用金属铂可制作精密的电阻温度计。
学生实验2:学生五人一组,探究热敏电阻的阻值大小与温度的关系。
实验器材:NTC热敏电阻,万用表,温度计,水杯,凉水和热水。
实验方案:按照如图所示的电路将热敏电阻接入电路,将万用表选择开关置于欧姆档,用温度计测量温度,用万用表测量不同温度下的电阻。
实验步骤:
①、按上述电路连接电路
②、取半杯热水,将热敏电阻及温度计放入热水中
③、同时测量并记录水温和电阻值
④、倒入少许冷水,改变杯中的水温,在同时测量水温和电阻值,填入下表:
实验数据:
次数12345
温度(℃)
电阻(Ω)
实验结论:热敏电阻的阻值随温度的升高而减小,且阻值随温度变化非常明显。
师生总结:半导体热敏电阻也可以用作温度传感器。
师生总结比较:金属热电阻与热敏电阻都能够把温度这个热学量转换为电阻这个电学量,金属热电阻的化学稳定性好,测温范围大,但灵敏度较差。
(3)霍尔元件
教师介绍:霍尔元件是在一个很小的矩形半导体(例如砷化铟)薄片上,制作4个电极E、F、M、N而成(如图7所示)。若在E、F间通入恒定的电流I,同时外加与薄片垂直的匀强磁场B,薄片中的载流子就在洛伦兹力的作用下发生偏转,使M、N间出现电压U。
师生讨论:霍尔元件的上的电压U与电流I、磁感应强度B的`关系,设霍尔元件长为a,宽为b,厚为d,则当薄片中载流子达到稳定状态时, ,即 ,又因 ,所以 ,即 ( 为霍尔系数)。因此,我们就可以根据电压U的变化得知磁感应强度的变化。
师生共析:霍尔元件能够把磁感应强度这个磁学量转换为电压这个电学量。
【课堂总结】
传感器是指一些能把光、力、温度、磁感应强度等非电学量转化为电学量或转换为电路的通断的元器件,它在生活、生产和科技领域有着非常广泛的应用。日本把传感器技术列为上世纪八十年代十大技术之首,美国把传感器技术列为九十年代的关键技术,而我国有关传感器的研究和应用正方兴未艾……
【布置作业】
1.观察与思考:日常生活中哪些地方用到了传感器,它们分别属于哪种类型的传感器,它们的工作原理如何?
2.实验设计:用热敏电阻、继电器等器材设计一个火警报警器。
3.P55,思考与练习2题完成填表。
九.【板书设计】
篇5:传感器及其工作原理的教学设计
1、传感器:能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转换为电路的通断的元件。
2、传感器的优点:把非电学量转换为电学量,很方便地进行测量、传输、处理和控制。
3、传感器的工作原理:
4、认识一些制作传感器的元器件
(1)、光敏电阻:光敏电阻在暗环境下电阻值很大,强光照射下电阻值很小。作用:光敏电阻能够把光照强弱这个光学量转换为电阻这个电学量。
(2)、热敏电阻:热敏电阻的阻值随温度的升高而减小,且阻值随温度变化非常明显。作用:半导体热敏电阻也可以用作温度传感器。
(3)、霍尔元件:霍尔元件能够把磁感应强度这个磁学量转换为电压这个电学量。
十.【教学反思】
本节课依据学生的认知规律组织教学,引入新课从生活实例入手,设置悬念,提出问题,激发学生兴趣,增强学生的求知欲;在进行“什么是传感器”的教学中注重实验探究,引导学生从两个实验的探究中加以归纳,并通过DISLab系统显示传感器的优越性,让学生了解把非电学量转化为电学量的技术意义;在对光敏电阻、热敏电阻和热电阻、霍尔元件这些制作传感器的元器件教学中,注重将教师演示实验与学生动手实验相结合,注重理论与实践相结合。整个教学过程符合新课程的三维目标,体现新课程的理念,注意培养学生的自主、合作、探究能力,注意从生活走向物理,从物理走向生活,以此增进学生的学习能力和科学素养。
篇6:μPD3575DCCD图像传感器的原理及应用论文
μPD3575DCCD图像传感器的原理及应用论文
摘要:μPD3575D是NEC公司生产的一种高灵敏度、低暗电流、1024像元的内置采样保持电路和放大电路的线阵CCD图像传感器。文章介绍了μPD3575D的主要特点、结构原理、引脚功能、光学/电子特性、驱动时序以及驱动电路。
关键词:μPD3575DCCD驱动脉冲图像传感器
1概述
μPD3575D是NEC公司生产的一种高灵敏度、低暗电流、1024像元的内置采样保持电路和放大电路的线阵CCD图像传感器。该传感器可用于传真、图像扫描和OCR。它内部包含一列1024像元的光敏二极管和两列525位CCD电荷转移寄存器。该器件可工作在5V驱动(脉冲)和12V电源条件下。
μPD3575D的主要特性如下:
*像敏单元数目:1024像元;
*像敏单元大小:14μm×14μm×14μm(相邻像元中心距为14μm);
*光敏区域:采用高灵敏度和低暗电流PN结作为光敏单元;
*时钟:二相(5V);
*内部电路:采样保持电路,输出放大电路;
*封装形式:20脚DIP封装。
2内部原理和引脚功能
μPD3575D的封装形式为20脚DIP封装,其引脚排列如图1所示,引脚功能如表1所列。图2为μPD3575D的内部结构原理图,中间一排是由多个光敏二极管构成的光敏阵列,有效单元为1024位,它们的作用是接收照射到CCD硅片的光,并将之转化成电荷信号,光敏阵列的两侧为转移栅和模拟寄存器。在传输门时钟φTG的作用下,像元的光电信号分别转移到两侧的CCD转移栅。然后CCD的MOS电容中的电荷信号在φIO的作用下串行从输出端口输出。上述驱动脉冲由专门的驱动电路产生。
表1μPD3575D的引脚功能
引脚名功能IO时钟TG转移时钟RO复位时钟SHO采样保持时钟G1测试端G2测试端ID测试端OV测试端VOUT信号输出RD复位漏极电压OD输出漏极电压VGC电源电压GND地NC未连接
3光电特性参数
μPD3575D的光学/电子特性参数如表2所列。表中的工作条件为:温度在25℃左右,工作电压VOD=VRD=VGC=12V,频率fSHO为0.5MHz,tint(积分时间)=10ms,光源为2856K的钨丝灯。
表2光/电子特性参数
特性符号最小值典型值最大值单位注释饱和输出电压VOUT1.52.3-V饱和曝光量SE-0.45-Ix·s白色荧光灯光响应非均匀性PRNU-510%VOUT=500mV白色荧光灯平均暗信号ADS-0.510mV遮光光响应不均匀性DSNU-0.510mV遮光功耗PN-100-mW输出阻抗Zo0.518Ω响应度R9.81418.2V/Ix·s钨丝灯R3.556.5V/Ix·s白色荧光灯峰值响应波长-550-nm输出偏移电压Vos-7.0-V转移栅输入电容CφIO-510pF复位端输入电容CφRO-510pF采样保护端输入电容CφSHO-510pF传输门输入电容CφTG-510pF反馈通过电压VR-100200mV输出上升延迟时间t3-50100ns输出上升时间t2-50100ns输出下降时间t1-50100ns
其中,饱和输出电压Vout为响应曲线失支直线形时的输出信号电压;饱和曝光量SE为输出饱和时的照度(lx)和积累时间的乘积。
输出电压不均匀性PRNU是取全部有效位输出电压的峰、谷之比值。平均暗电流ADS指的是遮光时的平均输出电流。暗信号不均匀性DSNU是遮光时的全部有效像元的输出电压最大或最小值与ADS的差。输出阻抗Zo为从外部看时输出端子的阻抗。响应度R是曝光量除以输出电压的值。值得注意的是:使用其它光源时,器件的响应度会有所变化。
4驱动时序
CCD的驱动需要四路脉冲,分别为转移栅时钟φIO、复位时钟φRO、采样保持时钟φSHO和传输门时钟φTG,将它们分别输入到CCD芯片的2脚、3脚、4脚和8脚,并在相应的管脚接上相应的电压就可以实现对CCD的驱动。
实现对CCD驱动的关键工作是如何产生以上的四路波形。图3是该四路时序波形图。
四路脉冲的作用描述如下:当传输门时钟φTG脉冲高电平到来时,正遇到φIO电极下形成深势阱,同时φTG的高电平使φIO电极下的深势阱与CMOS电容存储势阱(存储栅)沟通。于是CMS电容中的信号电荷包全部转移到φIO电极下的势阱中。当φTG变低时,φTG低电平形式的浅势阱将存储栅下势阱与φIO电极下的势阱离开,存储栅势阱进入光积分状态,而转移栅则在转移栅时钟φIO脉冲作用下使转移到φIO电极下势阱中的信号电荷逐位转称,并经过输出电路输出。采样保持时钟φSHO的作用是去掉输出信号中的调幅脉冲成分,使输出脉冲的幅度直接反映像敏单元的照度。
从以上描述和对波形的分析可以看出,复位脉冲φRO每触发一次,φIO脉冲翻转一次,并转移一个像元的信号电荷,因此φIO脉冲的周期为φRO的2倍。采样保持时间φSHO的周期和φRO的周期相同,但相位有一定的时间延迟。传输门时钟φTG脉冲控制线阵CCD整行的转移时间间隔,可作为行同步脉冲,其低电平持续的时间为φIO的整数倍,倍数由CCD的像元数决定。图4给出了μPD3575D的脉冲时序关系图,该图中为负极性逻辑,与前边图3的正极性逻辑正好相反,在编程过程中,我们可以先实现正极性逻辑,然后通过反向器将极性反过来。
从波形图可以看出,当转移时钟φIO变化(人“1”变到“0”或从“0”变到“1”)后,经过t1时间(最小值200ns,典型值300ns),采样保持时钟φSHO从高电平变低电平,低电平维持时间为t2(最小值100ns,典型值300ns),当φRO翻转,使之由高电平变为低电平,触发的间隔时间为t3(最小值3ns,典型值100ns)。复位脉冲φRO翻转后维持的.时间为t4(最小值30ns,典型值100ns),当它由低电平变回高电平时,触发转移时钟φIO翻转,其触发间隔为t5(最小值0ns,典型值50ns)。这样,一个循环结束,输出一个像元。如此不断循环,直至完全输出所有的像元。
那么,如何控制循五泊开始和结束呢?传输门时钟φTG起的就是这一作用,当φTG由低电平变为高电平并经过一定的时延(最小值50ns)后,转移时钟φIO开始按周期翻转,每翻转一次,输出一个像元。所有像元输出完毕,φTG再由高电平变为低电平。图4中φTG只给出了开始部分的波形,后面表示积分时间的波形没有给出,因此后面的积分时间长短可以根据对积分时间的需要自行设定。但积分时间内的φIO数目也是有要求的。因为该CCD芯片的有效单元为1024,加上虚设单元、暗信号和空驱动等共有12613个光电二极管,由于该器件是两列并行分奇偶传输的,所以一个φTG周期至少要有630个φIO脉冲,即φTG>630φIO。
如将其准时钟频率确定为8.000MHz,即周期为125ns,那么,根据给出的最小值就可算出四路波形的周期和占空经,具体列于表3。
表3四路驱动波形的周期的占空比
φIOφTGφROφSHO周期(ns)17501313000875875占空比1/21/7516/75/7
根据各路波形的周期、占空经和它们之间存在的关系所给出的典型驱动电路如图5所示。
5CCD数据采集
CCD可用于位置、尺寸和图像的检测,根据CDD传感器视频信号应用的差异,CCD视频信号的处理有两种方法:一是对CCD视频信号进行二值化处理后,再进行数据采集;二是对CCD视频信号采样、量化编码后再采集到计算机系统。
在检测钢轨不平顺的设计中要检测运动光源的瞬时位置,只需要测定光源在CCD上的成像位置,即光源成像在第几个像元上。图6为CCD数据采集原理图,采用二值化方法。
由于线阵CCD既具有高灵敏度的光电转换功能,又具有光电信号的存储和快速读出功能,所以通过一组时序脉冲的驱动控制(驱动器),可以实现对目标光源的实时光电转换与信号读出。当入射在CCD像元上成像时,入射光子被CCD像元吸收并产生相应数量的光生电荷。在光积分期间,光生电荷被积累并存储在彼此隔离的相应像元的势阱中,在每个像元势阱中所积累的信号电荷数与照射在该像元面上的平均照度和光积分时间的乘积成正比。在电荷转移期间,光生电荷依次转移称至输出区,通过复位脉冲的控制,在输出极形成视频信号,每次积分的输出波形代表目标光图像在CCD采样方向的瞬态强度的空间分布,输出视频信号经过低噪声宽带放大器放大处理后,每个光斑的输出波形如图7(a)所示。然后,对CCD的视频信号进行二值化处理,原理如图7(b)所示,二值化的前沿和后沿分别对应CCD像元的信号,计算出这两个像元位置的平均值,即为光线的中心位置,这即是一个检测数据。在CCD连续工作下,所有的检测数据经数据处理后,通过串行通讯电路将结果传送给单片机。
在进行CCD在线检测时,干扰光线较难克服,而且光源使用一段时间,光强也会变弱,这样会引起CCD输出信号幅度变化,从而导致测量误差,因此对上边的电路作了一定改进,即让阈值电压随CCD视频信号的幅值变化,改进后的浮动阈值电路如图8所示。当光源强度变化引起CCD视频信号变化时,可以通过电路CCD视频信号的起伏反馈到阈值上,使阈值电压随之改变,从而保证在光较弱时,二值化电路仍能输出合适的二值化信号。
二值化处理后输出的信号称为二值化信号。二值化信号为一个方波,该波形的前沿和后沿分别对应CCD像元的序号,计算出两个像元位置的平均值,即为线光源在CCD上成像的中心位置,从而获得一个检测数据。在CCD连续工作下,所有的检测数据经处理后,再经过串行通讯电路将结果传给单片机做进一步的处理。
篇7:搜索引擎工作原理论文
搜索引擎工作原理论文
■ 全文搜寻引擎
在搜寻引擎分类部份咱们提到过全文搜寻引擎从网站提守信息树立网页数据库的概念。搜寻引擎的自动信息收集功能分两种。1种是按期搜寻,即每一隔1段时间(比如Google1般是二八天),搜寻引擎主动派出“蜘蛛”程序,对于必定IP地址规模内的互联网站进行检索,1旦发现新的网站,它会自动提取网站的信息以及网址加入自己的数据库。
另外一种是提交网站搜寻,即网站具有者主动向搜寻引擎提交网址,它在必定时间内(二天到数月不等)定向向你的网站派出“蜘蛛”程序,扫描你的网站并将有关信息存入数据库,以备用户查询。因为最近几年来搜寻引擎索引规则产生了很大变化,主动提交网址其实不保证你的网站能进入搜寻引擎数据库,因而目前最佳的办法是多取得1些外部链接,让搜寻引擎有更多机会找到你并自动将你的网站收录。
当用户以症结词查找信息时,搜寻引擎会在数据库中进行搜索,如果找到与用户请求内容符合的网站,便采取特殊的算法――通常依据网页中症结词的匹配程度,呈现的位置/频次,链接质量等――计算出各网页的相干度及排名等级,然后依据关联度高下,按顺序将这些网页链接返回给用户。
■ 目录索引
与全文搜寻引擎相比,目录索引有许多不同的地方。
首先,搜寻引擎属于自动网站检索,而目录索引则完整依赖手工操作。用户提交网站后,目录编纂人员会亲身阅读你的网站,然后依据1套自定的评判标准乃至编纂人员的主观印象,抉择是不是接纳你的网站。
其次,搜寻引擎收录网站时,只要网站自身没有背反有关的规则,1般都能登录胜利。而目录索引对于网站的请求则高患上多,有时即便登录屡次也不必定胜利。特别象Yahoo!这样的超级索引,登录更是难题。(因为登录Yahoo!的难度最大,而它又是商家网络营销必争之地,所以咱们会在后面用专门的篇幅介绍登录Yahoo雅虎的技能)
另外,在登录搜寻引擎时,咱们1般不用斟酌网站的分类问题,而登录目录索引时则必需将网站放在1个最适合的目录(Directory)。
最后,搜寻引擎中各网站的'有关信息都是从用户网页中自动提取的,所以用户的角度看,咱们具有更多的自主权;而目录索引则请求必需手工此外填写网站信息,而且还有各种各样的限制。更有甚者,如果工作人员认为你提交网站的目录、网站信息不适合,他可以随时对于其进行调剂,固然事前是不会以及你磋商的。
目录索引,顾名思义就是将网站分门别类地寄存在相应的目录中,因而用户在查询信息时,可选择症结词搜寻,也可按分类目录逐层查找。如以症结词搜寻,返回的结果跟搜寻引擎1样,也是依据信息关联程度排列网站,只无非其中人为因素要多1些。如果按分层目录查找,某1目录中网站的排名则是由标题字母的前后顺序抉择(也有例外)。
目前,搜寻引擎与目录索引有互相融会渗入的趋势。原来1些纯洁的全文搜寻引擎现在也提供目录搜寻,如Google就借用Open Directory目录提供分类查询。而象 Yahoo! 这些老牌目录索引则通过与Google等搜寻引擎合作扩展搜寻规模。在默许搜寻模式下,1些目录类搜寻引擎首先返回的是自己目录中匹配的网站,如国内搜狐、新浪、网易等;而此外1些则默许的是网页搜寻,如Yahoo。
篇8:地源热泵工作原理论文
地源热泵工作原理论文
1、地源热泵工作原理
地源热泵则是利用水源热泵的一种形式,它是利用水与地能(地下水、土壤或地表水)进行冷热交换来作为水源热泵的冷热源,冬季把地能中的热量“取”出来,供给室内采暖,此时地能为“热源”;夏季把室内热量取出来,释放到地下水、土壤或地表水中,此时地能为“冷源”。
地源热泵供暖空调系统主要分三部分:室外地能换热系统、水源热泵机组和室内采暖空调末端系统。其中水源热泵机主要有两种形式:水―水式或水―空气式。三个系统之间*水或空气换热介质进行热量的传递,水源热泵与地能之间换热介质为水,与建筑物采暖空调末端换热介质可以是水或空气。
2、地源热泵技术路线
地源热泵技术路线有以下两种:土--气型地源热泵技术和水--水型地源热泵技术
土--气型地源热泵技术以美国的技术为代表,水--水地源热泵技术以北欧的技术为代表。二者的差别是:前者从浅层土壤或地下水中取热或向其排热,通过分散布置于各个房间的地源热泵机组直接转换成热风或冷风为房间供暖或制冷。后者是从地下水中取热或向其排热,经过热泵机组转换成热水或冷水,然后再经过布置在各个房间的风机盘管转换成热风或冷风给房间供暖或制冷。由于美国的土--气型地源热泵技术,可以不用地下水,采用埋设垂直管、水平管或向地表水抛设管路等多种方式,直接从浅层土壤取效或向其排热,不受地下水开采的限制,推广的范围更大、更灵活。
3、地源分类
地源按照室外换热方式不同可分为三类:(1)土壤埋管系统,(2)地下水系统,(3)地表水系统。
根据循环水是否为密闭系统,地源又可分为闭环和开环系统。闭环系统如埋盘管方式 (垂直埋管或水平埋管),地表水安置换热器方式。开环系统如抽取地下水或地表水方式。
此外,还有一种“直接膨胀式”,它不象上述系统那样采用中间介质水来传递热量,而是直接将热泵的一个换热器(蒸发器)埋入地下进行换热。
4、地源热泵系统的形式
土-气型地源热泵系统按照室外换热方式不同分,主要有三类形式:
1、地耦管系统
该方案只需在建筑物的周边空地、道路或停车场打一些地耦管孔,室外水系统注满水后形成一个封闭的水循环,利用水的循环和地下土壤换热,将能量在空调室内和地下土壤之间进行转换。故该方案不需要直接抽取地下水,不会对本地区地下水的平衡和地下水的品质造成任何影响,不会受到国家地下水资源政策的`限制。
2、地下水系统
项目附近如果有可利用的地表水,水温、水质、水量符合使用要求,则可采用开式地表水(直接抽取)换热方式,即直接抽取地表水,将其通过板式换热器与室内水循环进行隔离换热,可以避免对地表水的污染。此种换热方式可以节省打井的施工费用,室外工程造价较低。
3、地表水系统
项目附近如果有可利用的地表水,水温、水质、水量符合使用要求,则可采用抛放地耦管换热方式,即将盘管放入河水(或湖水)中,盘管与室内循环水换热系统形成闭式系统。该方案不会影响热泵机组的正常使用;另一方面也保证了河水(湖水)的水质不受到任何影响,而且可以大大降低室外换热系统的施工费用。
篇9:iButton的工作原理及其特点论文
摘要:在介绍1-Wire总线的基础上,对1-Wire器件iButton及其工作原理进行了介绍,并概括了它的特点。
关键词:1-Wire总线 信息钮扣 通信协议
包括达拉斯半导体公司现在生产的信息钮扣iButtion(information Button)在内,已有30多种1-Wire器件,它们采用一种特殊的通信协议,通过单条连接线解决了控制、通信和供电等问题,降低了系统成本并简化了设计,正越来越广泛地应用于日常生活中。例如iButton已用于金融、电信、商业以及军事领域等。
1 1-Wire总线
1-Wire总线是一种简单的信号电路,它仅用一根数据线即可与外界进行信息交换。1-Wire总线器件的共性是:每个器件都有一个不会与其它任何器件重复的出厂时应已固化的序列号,也就是说,每一个器件都是唯一的。一旦器件的序列号已知,通过这个序列号,任意一个器件都可以从众多连到同一1-Wire总线的器件中被选出用于通信。
(收集整理)
通信时,总线控制器先发出一个“复位”信号以使总线同步,然后选择受控制器件进行随后的通信。这可以通过选择一个特定的受控器件(利用该设备的系列号进行选择)或者通过对半检索法找到总线上的下一个受控器件来实现,当然,也可以选择所有的受控器件。一旦一个特定的器件被选中,那么在总线控制器发出下一次“复位”信号之前,所有其它器件都被挂起而忽略随后的通信。
主机能向用于总线通信的所有器件发布指令,对它(或者它们)进行数据的读写。这是因为每类器件运行不同的函数,有不同的用途,而且一旦器件被选定,它所用的协议也就固定下来。即使每类器件有不同的协议和特征,它们也都有着同样的选择过程并且都遵循如图1所示的流程。
2 iButton简介
iButton是一个封装在钮扣型不锈钢外壳里的微型计算机芯片,它的直径为16mm,厚3~6mm。可以实现双工通信,数据传输使用单总线协议,使得引脚数目降至最少:一根数据线,一根地线。不锈钢封装的内圈圆面作为数据线,外圈圆面作为地线。见图2。
iButton的外形如图3。
Ibutton种类繁多,根据使用芯片的不同,可以分为三类:①Memory iButton具有64KB的存储空间,可以存储文字、数字化的图像,有些还具有实时时钟(如DS1904)、温度传感器(如DS1921);②Java-powered crypto iButton采用高速处理器和算法加速器来处理加密和解密算法中的数据,它可以与Internet应用程序进行交互,可以作为一种远程身份验证解决方案;③Thermochron iButton包含了温度探测器和实时时钟,可以保留热交换的历史记录,还有512字节的.附加存储器用来存储输出的历史记录。
IButton也可以通过并口或串口与计算机进行通信,其传输速率可达142kbps。其主机可以是PC机、掌上电脑或笔记本电脑,同时还需要有读写设备(如Blue Dot)以及相应的软件交接面,如iButton-TMEX。
篇10:iButton的工作原理及其特点论文
iButton芯片由多路复用器和存储器两部分构成,其功能模块如图4所示。
由于iButton采用单总线传输协议,所以只需一根数据线和一根地线,结构极其简单。传输数据时,通过数据线供电。微机及有关读写设备处于主动(Master)地位;iButton处于从属(Slave)地位。如果iButton与Master尚未建立连接,则不能进行数据的传输;一旦成功建立连接,只需几微秒的时间,iButton便可将数据线置为低电平,以此通知Master已经建立了连接,等待接收命令,这个脉冲称为在线脉冲。Master也可通过发送“复位”信号使数据线变为低电平。当iButton接收到“复位”信号时,通过检测数据线的电平状态,可在数据线变为高电平后立即发出一个在线脉冲。复位脉冲/在线脉冲的时序见图5。
IButton发出在线脉冲后,等待Master发出命令。收到命令后,便执行相应的操作。由于iButton处于从属地位,因此每个帧从
何时开始就由Master来定义。为了做到这一点,Master从数据线读取一位数据,根据状态的不同做出相应的判断:如果iButton发出信号“1”,则下一个时隙即为帧的开始时刻;否则iButton将继续保持数据线为低
电平直到霜一确定的时间。现以从iButton读取数据为例说明具体的执行过程:确定了下一帧的开始时刻后,Master首先向iButton发一个读数据指令,iButton接收读指令后立即将被读取位的内容送至数据线上,微机从数据线上获得数据。若数据线在iButton的采样时区内维持高电平,则读取值为“1”;否则,为“0”。最后,iButton释放数据线,数据线恢复为高电平,为Master继续从iButton读取数据作好准备。图6示出了从在线脉冲开始到读取数据结束的时序。其中,黑色粗线表示Master的动作,灰色粗线表示iButton的应答,细线表示上拉电阻的作用。
4 iButton的特点
由于iButton的硅晶片被保护在坚固的不锈钢外壳里,你可以把它扔在地上,踏上几脚,磨擦它或者戴着它游泳都没关系。由于其内部采用了先进的防静电电路及芯片,确保了iButton能承受高达8kV的静电而保证自身和存储的数据安装无恙。IButton的结构决定了它具有防撞击、防水、耐腐蚀、抗磁扰、防折叠等特点;工作温度范围也较宽,可以在-40℃~80℃的温度范围内正常工作,适用于恶劣的环境;它可以嵌在戒指、钥匙串、钱包或手表上,随身携带方便。
另外,iButton的广泛应用还在于它具有磁卡、IC卡的不具有的突出特点,具体表现在:
(1)存储量大:iButton的最大数据存储量可达64KB,如DS2506具有64KB的EPROM存储器,DS具有64KB的NVRAM存储器。
(2)速度快:读写数据时,只需与触点轻轻接触,瞬间便可完成,而且其传输速率可达142kbps。
(3)安全性高:每个芯片都具有全球唯一的64位序列号,该序列号在出厂时通过激光工艺刻在芯片上,并增加了保护层,具有不可伪造性,任何企图更改序列号的行为都会使CRC校验过程出错。
(4)成本低:iButton所用的读写器其成本只有一百多元,维修成本小于0.01%。iButton的稳定性高,故障率低,性能价格比非常高。
(5)寿命长:iButton的不锈钢外壳内置有高性能锂电池,而且其功耗很低,可以确保其数据的存储长达以上。它的使用没有次数的限制,可以无限次地使用。
IButton的种种优势,决定了它势必具有广阔的应用前景。
篇11:禽类呼吸系统工作原理探析论文
禽类呼吸系统工作原理探析论文
摘要:禽类呼吸过程和哺乳动物一样,包括肺的通气,气体在肺和组织中的交换以及气体在血液中的运输。禽类呼吸系统由呼吸道和肺两部分构成。呼吸道包括鼻、咽、喉头、气管、鸣管、支气管及其分枝、气囊及其某些骨骼中的气腔。
(1) 鼻腔禽类鼻腔较狭窄,鼻腔粘膜有粘膜腺和丰富的血管,对吸入气体有加温和湿润作用。粘膜上有嗅神经分布,但禽类嗅觉不发达。
(2) 喉 禽类喉没有会厌软骨,也没有发声装置 .禽类的发声器官是鸣管,在气管分叉为两支气管的地方。
(3) 气管 禽类气管在肺内不分支成气管树,而是分支成1~4级支气管。各级支气管间互相连通。
(4) 肺 约1/3嵌于肋间隙内。因此,扩张性不大 .肺各部均与易于扩张的气囊直接连通。所以,肺部一旦发生炎症,已与蔓延,症状比哺乳动物严重。
关键词:禽类、肺、气体、呼吸、支气管
一、呼吸运动
禽类没有像哺乳动物那样的膈肌,胸腔和腹腔仅有一层薄膜隔开,胸腔内的压力几乎与腹腔内完全相同,没有经常性的负压存在。
禽类肺的弹性较差,被相对的固定在肋骨间。打开胸腔后并不萎缩。呼吸主要通过强大的呼气肌和吸气肌的收缩来完成。吸气时胸腔内容积加大,气囊容积也加大,肺受牵拉而稍微扩张,气囊内压力下降,气体及进入肺,再由肺进入气囊。呼气肌收缩时则发生相反的过程。
禽类气管系统分支复杂,毛细气管壁上有诌:多膨大部,叫肺房,是气体交换的场所。气体通过各级支气管进入气囊。根据研究,禽类呼吸时,吸气和呼气时均有气体进入气囊并通过肺部交换区,所以,无论是吸气过程或呼气过程都是在肺部进行气体交换,提高了呼吸效率。
每次吸入或呼出的气量,称潮气量。鸡约为15~30ml,鸭约为38 ml左右。美分钟肺通气量在来航鸡为550~650ml,芦花鸡约337ml.由于禽类气囊的存在,呼吸器官的容积明显增加。据测定鸡达300~500ml,因此,每次呼吸的潮气量仅占全部气囊容积的8%~15%.
禽类的呼吸频率变化比叫大,它取决于体格大小、种类、性别、年龄、兴奋状态及其他因素。通常体格较小,呼吸频率越高。
气囊是禽类特有的器官,是肺的衍生物。禽类一般有九个气囊,其中包括一个不成对的`锁骨气囊、一对颈气囊、一对前胸气囊、一对后胸气囊和一对腹囊。这些气囊充满与腹腔内脏和体壁之间。气囊和支气管及肺相通。气囊的容积很大,占全部呼吸器官总容积的85%~90%,较肺容积大5~7倍。
禽类的气囊除了作为空气储存库外,还有下列许多重要功能:①气囊内空气在吸气和呼气时均通过肺,从而增加了肺通气量,适应与禽体旺盛的新陈代谢需要。②储存空气,便于潜水时在不呼吸情况下,仍旧能利用气囊内的气体在肺内进行气体交换。③气囊的位置都偏向身体背侧,飞行时有利于调节身体重心,对水禽来说,有利于在水上漂浮。④依靠气囊的强烈通气作用和广大的蒸发表面,能有效地发散体热,协助调节体温。但是由于气囊的血管分布较少,因此不进行气体交换。
二、气体交换与运输
禽类支气管在肺内不行成支气管树。支气管在肺内为一级支气管,然后分支形成二级和三级支气管,三级支气管又叫副支气管,各级支气管互相联通。副支气管的管壁呈辐射状的分出大漏斗状微管道,并反复分枝形成毛细气管网,在这些毛细气管的管壁上有许多膨大部即肺房,相当于家畜的肺泡。同时,由副支气管动脉分支形成毛细血管并于毛细气管紧密接触,形成很大的气体交换面积,按肺每单位体积的交换面积计算,母鸡交换面积达17.9CO,鸽子高达40.3CO。
气体交换的动力也是动静脉血液中氧和二氧化碳的分压差。鸡的静脉血氧分压约为6.7Pa,肺和气囊中为12.5KPa,于是氧从肺进入血液,血液离开肺时即成为含氧丰富的动脉血。
禽类气体在血液中的运输方式,基本上与哺乳动物的相同,只是前者阳历曲线偏右,表明在相同氧分压条件下,血氧饱和度比哺乳动物小,即血红蛋白易于释放氧,以供组织利用。
三、呼吸运动的调节
禽类呼吸中枢位于脑桥和延髓的前部。从脑桥的紧后部切除脑时,呼吸完全停止,刺激上述部位时则可兴奋呼吸。中脑前部背区有喘气中枢,刺激时出现浅快的急促呼吸,在丘脑圆核附近还有抑制中枢,刺激时引起呼吸变慢。
有实验证明,禽类肺和气囊壁上存在有牵张感受器,感受肺扩张的刺激,经迷走神经传入中枢,引起呼吸变慢,所以在禽类,肺牵张反射也可以调节呼吸深度,维持适当的呼吸频率。血液中的二氧化碳和氧含量对呼吸运动有显着的影响。肺内存在二氧化碳感受系统,还有颈动脉体化学感受器。血液中二氧化碳分压上升时,这些感受器兴奋呼吸。切断鸡两侧迷走神经传入,可兴奋呼吸。缺氧使呼吸中枢抑制,但可通过外周化学感受器兴奋呼吸。切断鸡两侧迷走神经可以消除或显着降低缺氧引起的呼吸频率增加。鸡在热环境中发生热喘呼吸,常使副支气管区的通气显着加大,并导致严重的二氧化碳粉压过低,甚至造成呼吸性碱中毒。
参考文献:
1、《普通动物学》第4版刘凌云、郑光美主编
2、《动物生理学》张玉生、刘巨雄、刘娜主编
3、《动物生理学》杨秀平主编
【门传感器工作原理的论文】相关文章:
1.传感器论文
3.空调工作原理
4.管理学原理论文
5.美学原理论文
6.网络通信原理论文
9.带锯床的工作原理
10.DNS服务器工作原理






文档为doc格式