欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 实用文>高校管理数据挖掘技术的应用论文

高校管理数据挖掘技术的应用论文

2024-09-29 07:38:55 收藏本文 下载本文

“仁武乡欧文”通过精心收集,向本站投稿了9篇高校管理数据挖掘技术的应用论文,下面小编给大家整理后的高校管理数据挖掘技术的应用论文,希望大家喜欢!

高校管理数据挖掘技术的应用论文

篇1:高校管理数据挖掘技术的应用论文

高校管理数据挖掘技术的应用论文

高校招生规模的不断扩大以及教育方式的灵活多样化,使大多数高校都面临着学生人数的急剧增加与教学资源日渐紧张的矛盾,这给高校的管理带来了前所未有的挑战。因此,如何以最小的代价获得最大的发展成为高校亟待解决的新课题。高校从整体的、宏观的角度认清形势,解决问题,优化教育资源配置,提高教育资源利用率。建立一个有效的高校管理决策支持系统(DecisionSupportingSystem,简称DSS)显得十分必要。该系统的各项功能除了能满足日常简单的查询、统计和维护、全局统筹规划外,还要能够保证管理各种信息、协调各部门工作顺利开展,并能为高校管理者提供有关教育形势的瞬时变化、发展趋势,以及通过高科技手段来开发历史数据,提取隐含在其中的事先未知的、潜在的、深层次的、有价值的信息,以利于简单统计分析和决策。一般在建立DSS时,会利用传统的数据库(Database)技术,但有问题的数据库满足不了。数据仓库技术的出现给决策支持系统的发展注入了新的活力,它把决策者所需的信息从原始的操作数据中分离出来,把分散的、难以访问的原始数据转化为集中统一、随时可访问的信息,即数据仓库对信息实现合理、全面而高效的管理。因此,研究数据仓库和它的相关技术并应用于高校决策支持系统中是极其有效的途径[4]。本文所采用的解决方案,就是一个以数据仓库(DataWarehouse,简称DW)技术为基础,以数据挖掘(DataMining,简称DM)工具为手段的高校管理决策支持系统DSS的设计方案。本方案中,数据仓库用于存储和组织高校的基础数据,而数据挖掘则利用该基础数据,通过一系列技术挖掘出有价值的知识信息,辅助决策。

1高校管理中的数据仓库建立

数据仓库不是业务数据的简单堆积,而是抽取数据,并整理、转化为新的存储格式,把数据聚合在一种特殊的格式中。随着此过程的发展和完善,这种支持决策的、特殊的数据存储即被称为数据仓库。对高校管理来说,DSS建立数据仓库的数据可能来自人事处、学生处、教务处、财务处、后勤管理等职能部门和二级学院等,所有这些数据从结构上看,是相对独立的,是不利于高校决策者进行全面分析和查询的。根据高校DSS的需求,必须要求数据仓库把分散的、难以访问的数据从不同信息系统中分离出来,通过深层次加工把信息转换成数据集市(DataMart)以利于各个职能管理部门和院系作专题分析和辅助领导层决策[5]。总之,数据仓库把高校分散的、难以访问的日常数据转化为集中统一、随时可用的信息。建立数据仓库是一个长期复杂的过程。数据仓库的真正价值在于帮助人们制定能够改进过程的决策。因此,有了数据仓库,高校管理层决策时就可以依据事实,而不再是只依赖直觉。

2高校管理需要数据挖掘

根据目前高校管理信息系统的特点,首先需要将不同信息系统中的数据综合、归类,并进行分析利用,即建立数据仓库,在数据仓库的基础上进行联机分析处理和数据挖掘,为科学决策提供依据支持。数据挖掘就是从大量的、模糊的、随机的、不完全的实际数据中,抽取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。从广义上讲,数据挖掘就是在观察数据的集合中寻求模式的决策支持过程。因此,它除了处理传统数据库中的数值型的结构化数据外,还可以对文本、图形、图像、WWW信息资源等半结构、非结构数据进行挖掘。数据挖掘的对象不仅是数据库,也可以是文件系统、数据集合或数据仓库。基于数据仓库的数据挖掘技术,其任务是发现数据仓库中尚未被发现的数据。对于那些决策者明确了解的信息,可以用查询等工具直接获取,而另外一些隐藏在大量数据中的关系等信息就需要数据挖掘技术[2]。数据挖掘技术可从数据仓库中找出大量真正有价值的信息,可以更好地对高校各方面的发展趋势做出定量的分析和预测。为高校的管理决策者提供更科学的决策基础,从而有效地提高教学质量,有针对性地加强教学管理。就目前高校的情况而言,现有的管理信息系统大都具有分类特性,因此高校管理DSS系统的数据挖掘方法主要采用能实现分类模式分析的方法,以分类模式分析为主线,关联模式分析为辅线结合其他分析方法进行。

3决策支持系统技术分析

⑴基本概念管理的核心是“决策”。随着时代的发展,高校比以往任何时候都面临着更为复杂的生存环境,更难以形成并维护其竞争优势,竞争的压力对高校制定决策的质量、速度都提出了更高的要求[1]。决策支持系统(DSS,DecisionSupportingSystem),是以运筹学、管理科学、行为科学和控制论为基础,以信息技术、计算机技术和仿真技术为手段,针对半结构化的决策问题,支持决策活动的具有智能作用的人机系统[3]。该系统能够为决策者提供决策所需的信息、数据和背景材料,帮助明确决策目标和进行问题的识别,建立或修改决策模型,提供各种备选方案,并且对各种方案进行评价和优选,通过人机交互功能进行分析、比较和判断,为正确决策提供必要的支持。决策支持系统作为一种新型的信息技术,能够为高校提供各种决策信息以及许多问题的解决方案,从而减轻管理者从事低层次信息处理和分析的负担,使得他们专注于最需要决策智慧和经验的工作,提高了决策的质量和效率。从功能逻辑结构上看,它是由模型库系统、知识库系统、数据库系统及人机会话系统等部分组成的。⑵DSS的分析方法DSS应满足决策支持系统的要求和达到DSS的性能指标,由于DSS的特殊性,对DSS的系统分析通常采用一种称之为ROMC的方法。ROMC是一种基于决策过程基本活动的方法,是决策者进行表达(R)、操作(O)、存储辅助(M)和控制(C)的方法,其基本思路是建立起DSS的要求与性能之间的关系,并力求减少它们之间的差异。ROMC分析方法是建立在用户目标的基础之上的,它主要从以下几点进行分析:⑴提供表达式帮助决策者将问题概念化,以便于处理和交流;⑵提供分析和运算这些表达式的操作方法;⑶提供辅助记忆手段;⑷提供控制机构以处理和使用整个系统。

4基于数据挖掘的决策支持系统的建立

基于以上讨论,一种基于数据挖掘的决策支持系统基本结构框架已经出现。它由数据仓库、数据库、数据挖掘工具、数据仓库管理模块、知识库、知识发现模块、人机交互模块组成。系统的主要输入是源于数据库的.数据以及存储在知识库中的知识;人机交互模块提供相互联系的集成界面;数据仓库管理模块完成数据仓库的创建以及数据仓库中数据的综合、提取等各种操作,负责管理整个系统的运转;数据挖掘工具用于实现实际决策问题所需的各种查询检索工具和数据挖掘工具等,以实现决策支持系统的各种要求;知识发现模块管理并控制知识发现过程,它将知识库中的信息和数据的输入用于驱动数据选择过程、知识发现引擎过程和发现的评价过程。以下描述建立决策支持系统的过程。①分析决策需求,确定决策主题,确定决策的问题。②确定数据来源,对异构环境下可操作的数据库、数据记录或文件系统中的数据重新进行联接,建立数据仓库。③针对任务的所属类别,选择有效的数据挖掘算法并加以实现。④调用数据挖掘功能,提炼数据,并与最终用户交互、协同,得到所必须的有用的数据。⑤测试与评价数据,对数据进行一致性、有效性处理。⑥根据最终用户的要求,建立适用于决策支持的集成界面和应用程序,使用户能在决策支持中运用所发现的知识。以上过程是一个学习、发现和修改的过程,各步骤之间包含了反复循环,以达到对所发现的知识不断求精、深化,并使其易于理解的结果。

5结束语

数据仓库、数据挖掘和决策支持系统都是方兴未艾的前沿科学,已经在多个领域取得令人满意的应用。数据挖掘技术为决策支持系统研制与开发提供了一种有效、可行的系统化解决方案。随着数据仓库和数据挖掘技术在各个领域的广泛应用,决策支持系统的研究与开发将被推向一个更高的层面。在教育领域,随着数据挖掘技术的不断发展,把数据挖掘技术应用到管理信息系统中,以建立高校管理决策支持系统,最终可以达到我们的目标――提高高校管理者的工作效率。这种方式为高校在激烈的竞争中掌握主动,在未来的发展中争取更广阔的空间,发挥重要的作用,为高校的跨越式发展起到一个科学导向作用。

篇2:高校管理中数据挖掘技术的应用途径论文

高校管理中数据挖掘技术的应用途径论文

摘要:近年来,数据库挖掘技术的普遍应用,使数据价值实现最大化,在我国金融、商业、市场营销等领域得到广泛应用。然而在我国高校管理中并没有得到推广,为使高校管理系统中的数据充分发挥应有价值,在该系统中使用数据库挖掘技术意义深远。本文首先介绍了数据挖掘技术的流程,然后在教师教学质量评估中应用数据库挖掘技术,充分证明数据库挖掘技术在高校管理中能发挥重大作用。

关键词:管理 决策 数据挖掘技术

当前,大部分高校都拥有配套的管理系统,该系统具备海量数据储存和管理功能,彻底告别了手工记录信息和数据的年代。不但节约了纸张,更有效提高了高校管理数据和信息的效率。然而我国高校没有有效利用应用数据挖掘技术,因此研究数据库挖掘技术在高校管理中的应用十分必要。

1数据挖掘技术的流程

数据挖掘技术能够将海量数据展开分析和处理,再把整体数据库中存在规律的数据整合起来,实施该技术主要包括以下五个环节。目标定义:该环节中要与有关领域的背景知识相结合,清晰、精确的定义出数据挖掘目标。数据准备:在该环节中要搜集、选取数据源中的数据,处理已选数据,将其转换为适合数据挖掘的形态。数据挖掘:该环节是数据挖掘技术的核心,即采用关联规则法、分类分析法等各种数据挖掘方法把数据中隐藏的知识和规律发掘出来。结果表示:在该环节中可以以用户需求为依据,将挖掘出来的知识和规律转变为用户能接受和理解的形态。知识吸收:该环节中,主要是把挖掘结果与指定领域中的需求相结合,在该领域中应用发掘出来的结果,为决策者提供知识,是数据挖掘的终极目标。

2数据挖掘技术在教学质量评估中的应用

2。1运用关联规则法挖掘数据库中的信息

评估老师教学质量不但是评定教学效果的重要部分,也是评定教师职称的重要根据,因此是高校管理工作中不可或缺的部分。目前评估教学质量的`主要措施是搜集、统计学生的成绩和以及对老师的评价,然后加权算出老师的总得分,作为评估该老师教学质量指标。这种方法非但不科学,其权威性也较低,因此需要深挖数据的相关性,本文采用了数据挖掘技术中的关联规法挖掘数据中的规律和知识,为评估老师教学质量提供有力根据。运用关联规则法挖掘数据,其规则方法为“XY,置信度为c%,,支持度为s%”。关联规则中置信度为c%:在整体事件D集合中,如果既能够符合事件X中拥有c%的需求,也能够符合Y的要求。那么就用置信度来表示关联规则的强度,被记录为confidence(XY),置信度最小值用minConf来表示,通常置信度最小数值由客户提供。关联规则中置信度为s%:在整体事件D集合中,如果既能够符合事件Y中的s%的需求,又能够符合X要求。用支持度来表示关联规则的频度,把支持度的最小数记录用minsup(X)来表示,通常支持度最小数值由客户提供。频繁项集合:当X项集的支持度大于等于用户设定好的最小支持度时,那么频繁项集是X。通常关联规则包含两个环节:①把全部频繁项集从整体事件集中选出;②运用频繁项集产生关联规则。在这两个环节中关联规则效果和性能是否良好取决于第一个环节。

2。2关联规则分析在评估教学质量中的运用

第一步是准备数据期,在某大学的教学管理系统中将五百条与教学评价有关的记录从数据库中随机抽取,并挑选出老师编号、学历、性别、教龄、评估分和职称这六个属性,并将相关数据从数据库中提取。比如把讲师、副教授和教授等职称转化成11、01、00等编码,表1就是制定的评价教师教学记录表。第二步采用关联规则分析法把90分以上评价分数作为检索目标和判断标准,也就是将≥90分作为判断是否是高教学质量阙值。通过检索有143条记录符合标准,即设定最小的支持度为10%,置信度则为15%,得出下表2的关联规则。最后一步评价本次实验的结果。由上表得知,学生喜欢男老师和女老师的程度大致相同;学历愈高的老师,给予他们的教学评价也就愈高,即学历和教学评价成正比,这也说明了学历高的老师其基本功与学历低的老师相比,前者基本功更为稳固,也有较高的科学研究水平;有较长教龄和较高职称的老师,其教学质量也越高;此外,在支持度中可以看出,高校教授和高学历人才越多,说明其办学能力也就越高。

3结语

高校管理系统作为教学信息化的重要举措,只是起到搜集和储存海量教学信息的作用,并没有挖掘出海量数据之间的相关性,而在本文中把关联规则法运用在教师教学质量评估中,在数据中挖掘有价值的知识和规律,使评估教师教学质量更具有科学性,因此在高校管理中全面应用数据挖掘技术,能为高校深化教学改革提供新的契机。

参考文献

[1]江敏,徐艳。数据挖掘技术在高校教学管理中的应用[J]。电脑知识与技术,,(24):541—545+560。

[2]杨雪霞。数据挖掘技术在高校图书馆管理系统中的应用研究[J]。软件,(04):16—18。

篇3:浅析水利工程管理中数据挖掘技术应用论文

浅析水利工程管理中数据挖掘技术应用论文

引言

近几年,中国经济建设的快速发展也带动了水利这些基础建设的发展,水利工程的增多正在逐渐改善我国的水利体系,如防洪、排水、灌溉、发电、养殖、旅游等,同时也反过来促进国民经济更加稳健发展。此外,为了能加快水利工程建设的发展,需要在水利工程管理上做出新的调整,以给水利工程注入新鲜血液,使水利工程起到更巨大的作用。因此,本文通过阐述数据挖掘技术的一些实施要点,探讨了数据挖掘技术在水利工程中的可行性和应用情况。

1数据挖掘

从另一个角度看,数据挖掘是资料收集、信息化采矿等。在水利工程项目管理过程中,数据挖掘技术的应用对水利工程项目的管理起着重要的推动作用。同时,数据挖掘是从数据库中发掘信息的过程(数据库知识发现)。数据挖掘的主要应用于大量的数据的采集整理,通过搜索算法来隐藏信息的过程。同样,在当今的信息时代,数据挖掘与计算机和先进的科学技术密切相关,通过计算机、互联网搜索、统计、分析、和其他方面的发展,可服务于许多行业和许多项目,本文借助于某市的水利工程,详细的阐述了其在现场数据管理中的应用情况。

2浅析数据挖掘技术实施方法

数据挖掘是以现有的海量数据为重要资源,采用数据挖掘引擎技术,通过分析数据库中的数据,提取出最有价值的信息。

2.1相关性分析

通过数据源之间的相关性,找到所需的目标数据和扩展的信息,通过数据之间的联系找到规律,以便更好地分析数据的使用情况。

2.2数据的分类与整合

为了达到对更多的数据进行分类和整合的目的,对于没有规律和类型的标记数据按照相关的分类规则,以同一规则将信息汇总在一起,方便查找和应用数据,提高工作效率。

2.3坚持预测分析

在数据源中坚持预测分析,通过对重要数据进行建模,对信息进行综合有效的分析和预测,从而得出数据的发展趋势。让数据本身通过数据挖掘技术得出必要的结论。

2.4把握概念

通过了解数据源中所需信息的含义,总结主要特点,并给出概念描述,使数据具有高度的清晰度。

2.5把握据偏差

数据在输入和输出时不可避免地会出现差错,通过数据挖掘技术检测数据准确性是必要的,要找出参考值与结果之间是否存在差异,寻找一些潜在的信息,以减少数据误差。

3数据挖掘技术在水利工程管理中的应用出现的问题

3.1部门专家观点之间存在差异

在水利工程管理中使用了大量的数据,特别是采煤工艺在处理大空间问题上,加之水利部门普遍较大,且越来越多,需要与各部门协调配合工作。但不同的部门通常只负责沟通、交流的时间少,再加上数据分析技术落后于实践,各部门使用的仪器不一样,在数据点的分析上各专家持不同意见,这将阻碍数据处理,从而影响部门之间的合作,数据非常容易干扰,从而影响整个项目进展情况。

3.2与GIS系统联系不密切

GIS在水利工程信息系统中占有很大的比重,是水利工程信息系统中不可缺少的一部分,它的主要功能是产生大量的空间数据,空间数据的.计算、查询和分析,以及空间数据可视化是非常复杂的,单纯的依靠手工和一般信息系统是无法解决的,所以我们应该充分利用GIS系统。然而,在现实中,由于在这方面缺乏专业人才,充分利用原有的数据和GIS系统以进行有效结合,两者一起处理复杂的空间数据,现在还有很多事情要解决。

3.3数据挖掘模型建立不够完善

我国的水利工程虽然已经开展多年,但水利工程信息系统的应用还处于起步阶段。如今,数据挖掘技术模型可以帮助水利工程数据挖掘的人员可以预见在工程设计和施工过程中存在的差距等问题,确保水利工程项目按照原先设定好的方向进展。

4实例分析

4.1概况

某水电站于1963开始建设,于1975年完工,其位于黄河中游的陕西境内,装机容量122万5000kW,是新中国成立以来为数不多的达到百万千瓦的大型水利水电项目。大坝主体结构为混凝土结构,大坝高度为147m,其电站总存储容量为57亿8000万m3。其水利项目主要管理内容包括水库管理、水闸管理、堤防管理、引水工程管理、水利工程管理等。

4.2工程管理数据挖掘模型的构建

数据模型主要功能包括水利工程防洪、除涝、灌溉、运输、发电、水产养殖等,电站周边区域的社会经济和农业发展受其影响尤为巨大。在过去的发展过程中,某市的水利工程在管理和决策中,这些都是比较复杂的非结构化决策。因此,构建一个探索性或查询驱动的数据挖掘模型会给水电站的工作人员和专家在数据检索和专业分析的工作上提供方便,使管理者在管理工作上更加的科学合理。

库和数据仓库OLAP和OLAM层(数据挖掘的核心内容),用户界面层。用户界面层主要功能是管理员或用户进行人际对话、挖掘数据查询、挖掘结果显示以及数据结果输出。

4.3数据挖掘技术与水利工程管理软件的集成

该水利工程项目管理的内容主要包括:管理水库,水闸管理、堤防管理、南水北调工程管理、项目管理、灌溉等方面。虽然数据挖掘有助于这个过程的开展,水给利工程的管理提供了科学依据,但如果该水利工程管理只是单单的进行数据挖掘,这是不符合数据挖掘系统理论的基本思想。因此,只有在现有的、成熟的国内水利工程项目管理成果的基础上,结合数据挖掘系统,这才是开发水电站管理种数据挖掘系统的最佳方式。

国内许多水利工程在管理和施工过程中,最常用的是GIS技术软件。GIS软件具有分析处理功能、空间数据查询功能。GIS技术软件本身蕴含着多样的数据信息,如当地的一些社会经济、地形地貌、地质、水文环境等。所以,对于水利工程管理数据挖掘系统的未来发展,首先要考虑的应该是如何实现GIS系统和数据挖掘理论系统完美衔接。

5总结

综上所述,数据挖掘技术在水利工程管理中的应用使我们能够分析水利工程的数据更加的全面,这样我们就可以充分挖掘潜在的、有价值的信息,使项目管理更加有效率,使工程的投入资金能被合理的利用,从而提高水电工程质量和工作效率,降低项目管理成本,使水电工程发挥出最大的社会效益和经济效益。虽然在挖掘数据方面还存在很多问题,但我们希望能在今后的水电工程管理中更多的去采用这种技术,为项目管理提供更多的帮助,促进国民经济的发展。

篇4:科研管理中数据挖掘技术的应用论文

科研是科学研究的简称,具体是指为认识客观事物在内在本质及其运动规律,而借助某些技术手段和设备,开展调查研究、实验等活动,并为发明和创造新产品提供理论依据。科研管理是对科研项目全过程的管理,如课题管理、经费管理、成果管理等等。由于科学研究中涉及的内容较多,从而给科研管理工作增添了一定的难度。为进一步提升科研管理水平,可在不同的管理环节中,对数据挖掘技术进行应用。下面就此展开详细论述。

2.1在立项及可行性评估中的应用

科研管理工作的开展需要以相关的科研课题作为依托,当课题选定之后,需要对其可行性及合理性进行全面系统地评估,由此使得科研课题的立项及评估成为科研管理的主要工作内容。现阶段,国内的科研课题立项采用的是申请审批制,具体的流程是:由科研机构的相关人员负责提出申请,然后再由科技主管部门从申请中进行筛选,经过业内专家的评审论证之后,择优选取科研项目的承接单位。在进行科研课题立项的过程中,涉及诸多方面的内容,具体包括申请单位、课题的研究领域、经费安排、主管单位以及评审专家等。通过调查发现,由于国家宏观调控政策的缺失,导致科研立项中存在低水平、重复性研究的情况,从而造成大量的研究经费浪费,所取得的研究成果也不显著。科研管理部门虽然建立了相对完善的数据库系统,并且系统也涵盖与项目申请、审评等方面有关的基本操作流程,如上传项目申报文件、将文件发给相关的评审专家、对评审结果进行自动统计等。从本质的角度上讲,数据库管理系统所完成的.这些工作流程,就是将传统管理工作转变为信息化。故此,应当对已有的数据进行深入挖掘,从而找出其中更具利用价值的信息,据此对科研立项进行指导,这样不但能够使有限的科技资源得到最大限度地利用,而且还能使科研经费的使用效益获得全面提升。在科研立项阶段,可对数据挖掘技术进行合理运用,借此来对课题申请中涉及的各种因素进行挖掘,找出其中潜在的规则,为指标体系的构建和遴选方法的选择提供可靠依据,最大限度地降低不合理因素对课题立项带来的影响,对确需资助的科研项目进行准确选择,并给予相应的资助。在科研立项环节中,对数据挖掘技术进行应用时,可以借助改进后的Apriori算法进行数据挖掘,从中找出关联规则,在对该规则进行分析的基础上,对立项的合理性进行评价。

2.2在项目管理中的应用

项目管理是科研管理的关键环节,为提高项目管理的效率和水平,可对数据挖掘技术进行合理运用。在信息时代到来的今天,计算机技术、网络技术的普及程度越来越高,国内很多科研机构都纷纷构建起了相关的管理信息系统,其中涵盖了诸多的信息,如课题、科研人员、研究条件等等,而在这些信息当中,隐藏着诸多具有特定意义的规则,为找出这些规则,需要借助数据挖掘技术,对信息进行深入分析,进而获取对科研项目有帮助的信息。由于大部分科研管理部门建立的科研管理信息系统时间较早,从而使得系统本身的功能比较单一,如信息删减、修改、查询、统计等等,虽然这些功能可以满足对科研课题进展、经费使用等方面的管理,但其面向的均为数据库管理人员,处理的也都是常规事务。而从科研课题的管理者与决策者的角度上看,管理信息系统这些功能显然是有所不足的,因为他们需要对历史进行分析和提炼,从中获取相应的数据,为决策和管理工作的开展提供支撑。对此,可应用数据挖掘技术的OLAP,即数据库联机分析处理,由此能够帮助管理者从不同的方面对数据进行观察,进而深入了解数据并获取所需的信息。利用OLAP可以发现多种于科研课题有关信息之间的内在联系,这样管理者便能及时发现其中存在的相关问题,并针对问题采取有效的方法和措施加以应对。运用数据挖掘技术能够对科研项目的相关数据进行分析,找出其中存在的矛盾,从而使管理工作的开展更具针对性。

3结论

综上所述,科研管理是一项较为复杂且系统的工作,其中涵盖的信息相对较多。为此,可将数据挖掘技术在科研管理中进行合理应用,对相关信息进行深入分析,从中挖掘出有利用价值的信息,为科研管理工作的开展提供可靠的依据,由此除了能够确保科研项目顺利进行之外,还能提高科研管理水平。

参考文献:

[1]刘占波,王立伟,王晓丽.大数据环境下基于数据挖掘技术的高校科研管理系统的设计[J].电子测试,(1):21-22.

[2]史子静.高校科研管理系统中计算机数据挖掘技术的运用研究[J].科技资讯,2017(6):65-66.

[3]丁磊.数据挖掘技术在高校教师科研管理中的应用研究[D].大连海事大学,.

篇5:科研管理中数据挖掘技术的应用论文

1数据挖掘技术及其具体功能分析

所谓的数据挖掘具体是指通过相关的算法在大量的数据当中对隐藏的、有利用价值的信息进行搜索的过程。数据挖掘是一门综合性较强的科学技术,其中涉及诸多领域的知识,如人工智能、机器学习、数据库、数理统计等等。数据挖掘技术具有如下几个方面的功能:1.1关联规则分析。这是数据挖掘技术较为重要的功能之一,可从给定的数据集当中,找到出现比较频繁的项集,该项集具体是指行形如X->Y,在数据库当中,X和Y所代表的均为属性取值。在关联规则下,只要数据满足X条件,就一定满足Y条件,数据挖掘技术的这个功能在商业金融等领域中的应用较为广泛。1.2回归模式分析回归模式主要是通过对连续数值的预测,来达到挖掘数据的目的。例如,已知企业某个人的教育背景、工作年限等条件,可对其年薪的范围进行判定,整个分析过程是利用回归模型予以实现的。在该功能中,已知的条件越多,可进行挖掘的信息就越多。1.3聚类分析聚类具体是指将相似程度较高的数据归为同一个类别,通过聚类分析能够从数据集中找出类似的数据,并组成不同的组。在聚类分析的过程中,需要使用聚类算法,借助该算法对数据进行检测后,可以判断其隐藏的属性,并将数据库分为若干个相似的组。

篇6:数据挖掘技术在客户关系管理中怎么应用探讨管理论文

数据挖掘技术在客户关系管理中怎么应用探讨管理论文

根据波特的影响企业的利益相关者理论,企业有五个利益相关者,分别是客户、竞争对手、供应商、分销商和政府等其他利益相关者。其中,最重要的利益相关者就是客户。现代企业的竞争优势不仅体现在产品上,还体现在市场上,谁能获得更大的市场份额,谁就能在竞争中占据优势和主动。而对市场份额的争夺实质上是对客户的争夺,因此,企业必须完成从“产品”导向向“客户”导向的转变,对企业与客户发生的各种关系进行管理。进行有效的客户关系管理,就要通过有效的途径,从储存大量客户信息的数据仓库中经过深层分析,获得有利于商业运作,提高企业市场竞争力的有效信息。而实现这些有效性的关键技术支持就是数据挖掘,即从海量数据中挖掘出更有价值的潜在信息。正是有了数据挖掘技术的支持,才使得客户关系管理的理念和目标得以实现,满足现代电子商务时代的需求和挑战。

一、客户关系管理(CRM)

CRM是一种旨在改善企业与客户之间关系的新型管理方法。它是企业通过富有意义的交流和沟通,理解并影响客户行为,最终实现提高客户获取、客户保留、客户忠诚和客户创利的目的。它包括的主要内容有客户识别、客户关系的建立、客户保持、客户流失控制和客户挽留。通过客户关系管理能够提高企业销售收入,改善企业的服务,提高客户满意度,同时能提高员工的生产能力。

二、数据挖掘(DM)

数据挖掘(Data Mining,简称DM),简单的讲就是从大量数据中挖掘或抽取出知识。数据挖掘概念的定义描述有若干版本。一个通用的定义是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取人们感兴趣的知识,这些知识是隐讳的、事先未知的、潜在有用的信息。

常用的数据挖掘方法有:

(1)关联分析。即从给定的数据集中发现频繁出现的项集模式知识。例如,某商场通过关联分析,可以找出若干个客户在本商场购买商品时,哪些商品被购置率较高,进而可以发现数据库中不同商品的联系,进而反映客户的购买习惯。

(2)序列模式分析。它与关联分析相似,其目的也是为了控制挖掘出的数据间的联系。但序列模式分析的侧重点在于分析数据间的前后(因果)关系。例如,可以通过分析客户在购买A商品后,必定(或大部分情况下)随着购买B商品,来发现客户潜在的购买模式。

(3)分类分析。是找出一组能够描述数据集合典型特征的模型,以便能够分类识别未知数据的归属或类别。例如,银行可以根据客户的债务水平、收入水平和工作情况,可对给定用户进行信用风险分析。

(4)聚类分析。是从给定的数据集中搜索数据对象之间所存在的有价值联系。在商业上,聚类可以通过顾客数据将顾客信息分组,并对顾客的购买模式进行描述,找出他们的特征,制定针对性的营销方案。

(5)孤立点分析。孤立点是数据库中与数据的一般模式不一致的数据对象,它可能是收集数据的设备出现故障、人为输入时的输入错误等。孤立点分析就是专门挖掘这些特殊信息的方法。例如,银行可以利用孤立点分析发现信用卡诈骗,电信部门可以利用孤立点分析发现电话盗用等。

三、数据挖掘在客户关系管理中的应用

1、进行客户分类

客户分类是将大量的客户分成不同的类别,在每一类别里的客户具有相似的属性,而不同类别里的客户的属性不同。数据挖掘可以帮助企业进行客户分类,针对不同类别的客户,提供个性化的服务来提高客户的满意度,提高现有客户的价值。细致而可行的客户分类对企业的经营策略有很大益处。例如,保险公司在长期的保险服务中,积累了很多的数据信息,包括对客户的服务历史、对客户的销售历史和收入,以及客户的人口统计学资料和生活方式等。保险公司必须将这些众多的信息资源综合起来,以便在数据库里建立起一个完整的客户背景。在客户背景信息中,大批客户可能在保险种类、保险年份和保险金额上具有极高的相似性,因而形成了具有共性的.客户群体。经过数据挖掘的聚类分析,可以发现他们的共性,掌握他们的保险理念,提供有针对性的服务,提高保险公司的综合服务水平,并可以降低业务服务成本,取得更高的收益。

2、进行客户识别和保留

(1)在CRM中,首先应识别潜在客户,然后将他们转化为客户

这时可以采用DM中的分类方法。首先是通过对数据库中各数据进行分析,从而建立一个描述已知数据集类别或概念的模型,然后对每一个测试样本,用其已知的类别与学习所获模型的预测类别做比较,如果一个学习所获模型的准确率经测试被认可,就可以用这个模型对未来对象进行分类。例如,图书发行公司利用顾客邮件地址数据库,给潜在顾客发送用于促销的新书宣传册。该数据库内容有客户情况的描述,包括年龄、收入、职业、阅读偏好、订购习惯、购书资金、计划等属性的描述,顾客被分类为“是”或“否”会成为购买书籍的顾客。当新顾客的信息被输入到数据库中时,就对该新顾客的购买倾向进行分类,以决定是否给该顾客发送相应书籍的宣传手册。

(2)在客户保留中的应用

客户识别是获取新客户的过程,而客户保留则是留住老顾客、防止客户流失的过程。对企业来说,获取一个新顾客的成本要比保留一个老顾客的成本高。在保留客户的过程中,非常重要的一个工作就是要找出顾客流失的原因。例如,某专科

学校的招生人数在逐渐减少,那么就要找出减少的原因,经过广泛的搜集信息,发现原因在于本学校对技能培训不够重视,学生只能学到书本知识,没有实际的技能,在就业市场上找工作很难。针对这种情况,学校应果断的抽取资金,购买先进的、有针对性的实验实训设备,同时修改教学计划,加大实验实训课时和考核力度,培训相关专业的教师。

(3)对客户忠诚度进行分析

客户的忠诚意味着客户不断地购买公司的产品或服务。数据挖掘在客户忠诚度分析中主要是对客户持久性、牢固性和稳定性进行分析。比如大型超市通过会员的消费信息,如最近一次消费、消费频率、消费金额三个指标对数据进行分析,可以预测出顾客忠诚度的变化,据此对价格、商品的种类以及销售策略加以调整和更新,以便留住老顾客,吸引新顾客。

(4)对客户盈利能力分析和预测

对于一个企业而言,如果不知道客户的价值,就很难做出合适的市场策略。不同的客户对于企业而言,其价值是不同的。研究表明,一个企业的80%的利润是由只占客户总数的20%的客户创造的,这部分客户就是有价值的优质客户。为了弄清谁才是有价值的客户,就需要按照客户的创利能力来划分客户,进而改进客户关系管理。数据挖掘技术可以用来分析和预测不同市场活动情况下客户盈利能力的变化,帮助企业制定合适的市场策略。商业银行一般会利用数据挖掘技术对客户的资料进行分析,找出对提高企业盈利能力最重要的客户,进而进行针对性的服务和营销。

(5)交叉销售和增量销售

交叉销售是促使客户购买尚未使用的产品和服务的营销手段,目的是可以拓宽企业和客户间的关系。增量销售是促使客户将现有产品和服务升级的销售活动,目的在于增强企业和客户的关系。这两种销售都是建立在双赢的基础上的,客户因得到更多更好符合其需求的服务而获益,公司也因销售增长而获益。数据挖掘可以采用关联性模型或预测性模型来预测什么时间会发生什么事件,判断哪些客户对交叉销售和增量销售很有意向,以达到交叉销售和增量销售的目的。例如,保险公司的交叉营销策略:保险公司对已经购买某险种的客户推荐其它保险产品和服务。这种策略成功的关键是要确保推销的保险险种是用户所感兴趣的,否则会造成用户的反感。

四、客户关系管理应用数据挖掘的步骤

1。需求分析

只有确定需求,才有分析和预测的目标,然后才能提取数据、选择方法,因此,需求分析是数据挖掘的基础条件。数据挖掘的实施过程也是围绕着这个目标进行的。在确定用户的需求后,应该明确所要解决的问题属于哪种应用类型,是属于关联分析、分类、聚类及预测,还是其他应用。应对现有资源如已有的历史数据进行评估,确定是否能够通过数据挖掘技术来解决用户的需求,然后将进一步确定数据挖掘的目标和制定数据挖掘的计划。

2、建立数据库

这是数据挖掘中非常重要也非常复杂的一步。首先,要进行数据收集和集成,其次,要对数据进行描述和整合。数据主要有四个方面的来源:客户信息、客户行为、生产系统和其他相关数据。这些数据通过抽取、转换和装载,形成数据仓库,并通过OLAP和报表,将客户的整体行为结果分析等数据传递给数据库用户。

3、选择合适的数据挖掘工具

如果从上一步的分析中发现,所要解决的问题能用数据挖掘比较好地完成,那么需要做的第三步就是选择合适的数据挖掘技术与方法。将所要解决的问题转化成一系列数据挖掘的任务。数据挖掘主要有五种任务:分类,估值预测,关联规则,聚集,描述。前三种属于直接的数据挖掘。在直接数据挖掘中,目标是应用可得到的数据建立模型,用其它可得到的数据来描述感兴趣的变量。后两种属于间接数据挖掘。在间接数据挖掘中,没有单一的目标变量,目标是在所有变量中发现某些联系。

4、建立模型

建立模型是选择合适的方法和算法对数据进行分析,得到一个数据挖掘模型的过程。一个好的模型没必要与已有数据完全相符,但模型对未来的数据应有较好的预测。需要仔细考察不同的模型以判断哪个模型对所需解决的问题最有用。如决策树模型、聚类模型都是分类模型,它们将一个事件或对象归类。回归是通过具有已知值的变量来预测其它变量的值。时间序列是用变量过去的值来预测未来的值。这一步是数据挖掘的核心环节。建立模型是一个反复进行的过程,它需要不断地改进或更换算法以寻找对目标分析作用最明显的模型,最后得到一个最合理、最适用的模型。

5、模型评估

为了验证模型的有效性、可信性和可用性,从而选择最优的模型,需要对模型进行评估。我们可以将数据中的一部分用于模型评估,来测试模型的准确性,模型是否容易被理解模型的运行速度、输入结果的速度、实现代价、复杂度等。模型的建立和检验是一个反复的过程,通过这个阶段阶段的工作,能使数据以用户能理解的方式出现,直至找到最优或较优的模型。

6、部署和应用

将数据挖掘的知识归档和报告给需要的群体,根据数据挖掘发现的知识采取必要的行动,以及消除与先前知识可能存在的冲突,并将挖掘的知识应用于应用系统。在模型的应用过程中,也需要不断地对模型进行评估和检验,并做出适当的调整,以使模型适应不断变化的环境。

篇7:网络营销中数据挖掘技术的应用论文

网络营销中数据挖掘技术的应用论文

前言

近些年来,已经有越来越多的企业把通信、网络技术和计算机应用引入企业的日常管理工作和业务开发处理当中,企业的各类信息化程度也在不断提高。现代科技信息技术的广泛应用已经显著的提高了企业的工作效率和经济效益。但是,在使用信息技术给企业带来的方便、快捷的同时,也不断的出现了新的问题和需求。企业经过多年积累了大量的历史数据,这些数据对企业当前的日常经营活动几乎没有任何的使用价值,成了留之无用弃之可惜的累赘。而且储藏这些历史数据会对企业造成很大的困难和费用开销。为此数据挖掘技术应用在网络营销中势在必行,全面细致的分析数据库资源并从中提取有价值的信息来对商业决策进行支持,从而来控制运营成本、提高经济效益。本文将从网络营销中数据挖掘技术的几个应用进行探讨和分析。

1客户关系管理

客户关系管理在网络营销,商业竞争是一家以客户为中心的竞技状态的客户,留住客户,扩大客户基础,建立密切的客户关系,客户需求分析和创造客户需求等,是非常关键的营销问题。客户关系管理,营销和信息技术领域是一个新概念,这在90年代初,软件产品在上世纪90年代后期出现的诞生。目前,在国内和国外的此类产品的研究和发展阶段。然而,继续与数据仓库和数据挖掘技术的进步和发展,客户关系管理,也是对实际应用阶段。CRM的目标是管理者与客户的互动,提升客户价值,提高客户满意度,提高客户的忠诚度,还发现,市场营销和销售渠道,然后寻找新客户,提高客户的利润贡献率的最终目的是为了推动社会和经济效益。客户关系管理的目的,应用是改善企业与客户的关系,它是企业和服务本质管理和协调,以满足客户的需求,企业政策支持这项工作,并联系客户服务加强管理,提高客户满意度和品牌忠诚度。

然而,数据挖掘可以应用到很多方面的CRM和不同阶段,包括以下内容:

(1)“一对一”营销的内部工作人员认识到,客户是在这个领域的企业,而不是贸易发展生存的关键。与每一个客户接触的过程,也是了解客户的进程,而且也让客户了解业务流程。

(2)企业与客户之间的销售应该是一种商业关系不断向前发展。客户和营销公司成立这种方式,而且有许多方法可以使这种与客户的关系,往往以改善包括:延长时间,客户关系和维护客户关系,以进一步加强相互交往过程中,公司可以在对方取得联系更多的利润。

(3)客户对客户盈利能力分析。我们的客户盈利能力是非常不同的,如果你不明白客户盈利能力,很难制定有效的营销策略,以获取最有价值的客户,或进一步提高客户的忠诚度的价值。数据挖掘技术可以用来预测客户在市场条件变化不同的盈利能力。它可以找到所有这些行为和使用模型来预测客户行为模式的客户交易盈利水平或新客户找到高利润。

(4)在所有部门维护客户关系的竞争日趋激烈,企业获得新客户的成本上升,因此,保持现有客户的关系变得越来越重要。对于企业客户可分为三大类:没有价值或者低价值的客户,不容易失去宝贵的客户,并不断寻找更多的优惠,更有价值的服务给客户。前两个类型的`客户,客户关系管理,现代化,然而,最具潜力的市场活动,是第三个层次的用户,而且还特别需求和营销工具,以保护客户,可以减缓企业经营成本,而且还获得了宝贵的客户。数据挖掘还可以发现,由于客户流失,该公司能够满足这些客户的需要,采取适当措施,保持销售。

(5)客户访问企业业务系统资源,包括能够获得新客户的关键指标。为了提供这些新的资源,包括企业搜索客户谁不知道该产品的客户,可能是竞争对手,服务客户。这些细分客户,潜在客户可以帮助企业完成检查。

2企业经营定位

通过挖掘客户的有关数据,可以对客户进行分类,找出其相同点和不同点,以便为客户提供个性化的产品和服务,使企业和客户之间能够通过网络进行有效的沟通和信息交流。例如,关联分析,客户在购买某种商品时,有可能会连带着购买其他的相关产品,这样购买的某种商品和连带购买的其他相关产品之间就存在着某种关联,企业可以针对这种关联进行分析,分析出规律,已制定有效的营销策略来长效的起到吸引客户连带消费,购买其他产品的营销策略。它能够智能化地从大量的数据中提取出有用的信息和知识,为企业的管理人员提供决策支持。数据挖掘技术使数据库技术进入了一个更高级的阶段,它不仅能对过去的数据进行查询和遍历,并且能够找出过去数据之间的潜在联系,从而促进信息的传递。

客户群体的划分也会用到数据挖掘,没有基于数据挖掘的客户划分,就没有真正的差异化、个性化营销,就没有现代营销的根本。做为企业的领导者,不管你的企业是卖产品的还是卖服务,第一个应该准确把握的商业问题就是你的目标客户群体,他们是谁,有什么特点和行为模式,有那些独特的喜好可以作为营销的突破口,有多大的多长久的赢利价值。这些问题是你整个商业运做的核心和基础,不了解你的客户,下面的路就根本别指望能走下去了。数据挖掘营销应用中的客户群体划分可以科学有效的解决这个问题,也能给企业找到一个合理的营销定位。

3客户信用风险控制

数据挖掘技术在90年代开始应用于信用评估与风险分析中。企业在进行网络营销的过程中会受到各种各样的来自买方的信用风险的威胁,随着市场竞争的加剧,贸易信用已经成为企业成功开发客户和加强客户关系的重要条件。客户信用管理主要是搜集储存客户信息,因为客户既是企业最大的财富来源,也是风险的主要来源。为了让企业在这方面更少的受到威胁,可以利用数据挖掘技术发现企业经常面临的诈骗行为或延付货款行为,进而进行回避。同时尽可能把客户信用风险控制在交易发生之前是成功信用管理的根本。因此,充分获取客户的详细资料并做出安全的决策非常重要。

客户信用风险管理应用数据挖掘技术的优势:

(1)数据挖掘技术,自动总结相对简单的评估模型,数据挖掘应用程序的形式被广泛用于学习技术,它可以自动完成统计归纳和推理机实现的任务数量,系统用户无法理解模型详情及有关统计知识的情况下,它可以很容易地得出结论。这种评价模型在实际应用中降低了成本;

(2)数据挖掘技术更适合描述的财务指标和信贷上的信用评价模型指标为基础的传统方法,非线性特性的情况基本上是线性的基础上适当的方法和实际应用,企业信用状况和财务指标常表现出非线性特性,但在体重指标体系和分配方法来描述这些困难的非线性关系,实现了数据挖掘应用,其中不少是在非线性系统为基础,尤其描述了合适的非线性特性;

(3)数据挖掘技术也可以适应各种形式的数据,数据挖掘可以是连续的数据,离散数据,而其他形式的数据处理,以便在更大的灵活性,在选择指标时,更加符合客观实际的信用风险模型。

(4)数据挖掘技术是优于修正的噪音数据,对那些在特殊阶段或数据的完整性,市场条件可能不准确,有可能是虚假的数据。由数据挖掘的方法可以修改一些在一定程度上,从而提高了模型的准确性进行评估;

(5)数据挖掘在不完全信息的情况下也可以计算,计算信贷风险往往会遇到德国不完整的信息问题,一些指标只能在一个范围的估计。通过粗糙集数据挖掘或分类树方法,可以优化性能的范围,以获取该指标更准确的估计;

为现代信用风险管理方法有两个:第一是所谓的指数法,其基础是信用相关业务的某些特性来企业信用评估;第二类是所谓的结构化方法,根据历史数据和市场数据模拟在企业资产价值变化的动态持续的过程,然后确定其企业信用的位置。

4在网络营销中进行数据挖掘的优势

网络营销作为适应网络经济时代的网络虚拟市场的新营销理论,是市场营销理念在新时期的发展和应用。它能够智能化地从大量的数据中提取出有用的信息和知识,为企业的管理人员提供决策支持。数据挖掘技术使数据库技术进入了一个更高级的阶段,它不仅能对过去的数据进行查询和遍历,并且能够找出过去数据之间的潜在联系,从而促进信息的传递。

1.维护原有客户,挖掘潜在新客户

网络营销中销售商可以通过客户的访问记录来挖掘出客户的潜在信息,跟据客户的兴趣与需求向客户有针对性的做个性化的推荐,制定出客户满意的产品服务。在做好维护原有老客户的基础上,通过对数据的挖掘,利用分类技术,也可以寻找出潜在的客户,通过对web日志的挖掘,可以对已经存在的访问者进行分类,根据这种精细的分类,还可以找到潜在的新客户。

2.制定营销策略,优化促销活动

对于保留的商品访问记录和销售记录进行挖掘,可以发现客户的访问规律,了解客户消费的生命周期,起伏规律,结合市场形势的变化,针对不同的商品和客户群制定不同的营销策略,保证促销活动针对客户群有的放矢,收到意想不到的效果。

3.降低运营成本,提高竞争力

网络营销的管理者可以通过数据挖掘发现市场反馈的可靠信息,预测客户未来的购买行为,有针对性的进行营销活动,还可以根据产品访问者的浏览习惯来觉定产品广告的位置,使广告有针对性的起到宣传的效果。从而提高广告的投资回报率,从而能降低运营成本,提高且的核心竞争力。

4.对客户进行个性化推荐

根据客户采矿活动对网络规则,有针对性的网络营销平台,提供“个性化”服务。个性化服务是在服务策略和服务内容的不同客户的不同,其本质是客户为中心的Web服务的需求。它通过收集和分析客户资料,以了解客户的利益和购买行为,然后采取主动,以达到建议的服务。

5.完善网络营销网站的设计

网站的建设者可以根据对客户交易行为的记录和反馈的情况对站点做出改进,站点的设计者可以根据这些信息进一步优化网站结构,站点导航等功能来提高站点的点击率,为客户提供更为方便的浏览方式。利用关联规则,

参考文献

1 冯英健著,《网络营销基础与实践》,清华大学出版社,1月第1版

2 U.M.Fayyad. P.Smyt,and. G.Piatetsky-Shairo h,R.Uthurusamy.Advances in Knowledge discovery and data mining. AAAI/MIT Press,Menlo Park,CA.:

10 刘书香,卢才武,张志霞.数据挖掘中的客户聚类分析及其算法实现 信息技术(1):5~8

篇8:科研数据挖掘技术论文

一、数据挖掘相关概念

数据挖掘技术是近些年发展起来的一门新兴学科,它涉及到数据库和人工智能等多个领域。随着计算机技术的普及数据库产生大量数据,能够从这些大量数据中抽取出有价值信息的技术称之为数据挖掘技术。数据挖掘方法有统计学方法、关联规则挖掘、决策树方法、聚类方法等八种方法,关联规则是其中最常用的研究方法。关联规则算法是1993年由R.Atal,Inipusqi,Sqtm三人提出的Apriori算法,是指从海量数据中挖掘出有价值的能够揭示实体和数据项间某些隐藏的联系的有关知识,其中描述关联规则的两个重要概念分别是Suppor(t支持度)和Confi-dence(可信度)。只有当Support和Confidence两者都较高的关联规则才是有效的、需要进一步进行分析和应用的规则。

二、使用Weka进行关联挖掘

Weka的全名是怀卡托智能分析环境(WaikatoEnviron-mentforKnowledgeAnalysis),是一款免费的、非商业化的、基于JAVA环境下开源的机器学习以及数据挖掘软件[2]。它包含了许多数据挖掘的算法,是目前最完备的数据挖掘软件之一。Weka软件提供了Explorer、Experimenter、Knowledge-Flow、SimpleCLI四种模块[2]。其中Explorer是用来探索数据环境的,Experimenter是对各种实验计划进行数据测试,KnowledgeFlow和Explorer类似,但该模块通过其特殊的接口可以让使用者通过拖动的形式去创建实验方案,Simple-CLI为简单的命令行界面。以下数据挖掘任务主要用Ex-plorer模块来进行。

(一)数据预处理

数据挖掘所需要的所有数据可以由系统排序模块生成并进行下载。这里我们下载近两年的教师科研信息。为了使论文总分、学术著作总分、科研获奖总分、科研立项总分、科研总得分更有利于数据挖掘计算,在这里我们将以上得分分别确定分类属性值。

(二)数据载入

点击Explorer进入后有四种载入数据的方式,这里采用第一种Openfile形式。由于Weka所支持的标准数据格式为ARFF,我们将处理好的xls格式另存为csv,在weka中找到这个文件并重新保存为arff文件格式来实现数据的载入。由于所载入的数据噪声比较多,这里应根据数据挖掘任务对数据表中与本次数据任务不相关的属性进行移除,只将学历、职称、论文等级、学术著作等级、科研获奖等级、科研立项等级、科研总分等级留下。

(三)关联挖掘与结果分析

WeakExplorer界面中提供了数据挖掘多种算法,在这里我们选择“Associate”标签下的Apriori算法。之后将“lowerBoundMinSupprot”(最小支持度)参数值设为0.1,将“upperBoundMinSupprot”(最大支持度)参数值设为1,在“metiricType”的参数值选项中选择lift选项,将“minMetric”参数值设为1.1,将“numRules”(数据集数)参数值设为10,其它选项保存默认值,这样就可以挖掘出支持度在10%到100%之间并且lift值超过1.1且排名前10名的关联规则。其挖掘参数信息和关联挖掘的部分结果。

三、挖掘结果与应用

以上是针对教师基本情况和科研各项总分进行的反复的数据挖掘工作,从挖掘结果中找到最佳模式进行汇总。以下列出了几项作为参考的关联数据挖掘结果。

1、科研立项得分与论文、科研总得分关联度高,即科研立项为A级的论文也一定是A。这与实际也是相符的,因为科研立项得A的教师应该是主持了省级或是国家级的立项的同时也参与了其他教师的科研立项,在课题研究的过程中一定会有国家级论文或者省级论文进行发表来支撑立项,所以这类教师的论文得分也会很高。针对这样的结果,在今后的科研工作中,科研处要鼓励和帮助教师搞科研,为教师的科研工作提供精神上的支持和物质上的帮助,这样在很大程度上能够带动整个学校科研工作的进展。

2、副教授类的教师科研立项得分很高,而讲师类教师和助教类教师的科研立项得分很低,这样符合实际情况。因为副教授类的`教师有一定的教学经验,并且很多副教授类的教师还想晋职称,所以大多数副教授类教师都会申请一些课题。而对于讲师类和助教类的教师,由于教学经验不足很少能进行省级以上的课题研究,因此这两类教师的科研立项分数不高。针对这样的结果,在今后的科研工作中,科研处可以采用一帮一、结对子的形式来帮助年轻教师,这样可以使青年教师参与到老教师的科研课题研究工作中去,在课题研究工程中提高科研能力和教学能力。

3、讲师类教师的论文等级不高。从论文得分能够推断出讲师类教师所发表论文的级别不高。为了鼓励这类教师的论文发表,在今后的科研量化工作中对省级、国家级的论文级别进行细化,并且降低一般论文的得分权重,加大高级论文的得分权重。并且鼓励讲师类教师参加假期培训,提高自身的科研和教学水平。

篇9:基于数据挖掘技术的客户关系管理

在以客户为中心的竞争环境中,如何既是能够拥有正确的信息,又能够拥有分析信息的工具,这就是商业智能,商业智能系统通过数据仓库、数据挖掘和高级数据分析为企业提供全方位的客户分析决策支持和客户关系管理,其中最为关键的技术就是数据挖掘技术。数据挖掘技术是从大量数据中提取或挖掘知识,数据挖掘工具进行数据分析,可以发现重要的数据模式,为解决商务决策中“数据丰富,知识贫乏”作出了巨大的贡献。从电话中心变成了联络中心或“互动中心”;市场营销工具可以采用E-mail、IP语音、共享化浏览、文字聊天和多种电子文字交流,以及客户与企业的整体关系成为企业迫切需要解决的问题。CRM通过管理企业与客户间的关系、优化供应链,减少销售环节,降低销售成本,挖掘潜在客户,发现新市场和渠道,提高客户价值、客户满意度、客户利润贡献度和忠诚度,实现企业最终销售管理、营销管理、客户服务与支持等方面的效果的提高。然而CRM失败率也很高,这是由于CRM的实施中会遇到高度集成,企业文化,设计技术如XML基于组件等,个性化服务与自动化矛盾,基础网络设施,可扩展性等问题。CRM起源于20世纪80年代中期,20世纪90年代得到企业广泛重视,进入新世纪人们更加重视吸引和发现潜在的客户和留住最有价值的客户。统计表明,现代企业的销售额是来自12%的重要客户,而其余88%中的大部分客户对企业是微利甚至是微利可图,开发一个新客户的成本是留住一个老客户的5倍,而流失一个老客户的损失,需要争取到10 个新客户才能弥补,因而CRM成为企业研究和应用的热点。如何成功的应用客户关系系统呢?利用数据挖掘技术来分析客户的数据,找出客户的购买模式,不断的满足客户的需求,把客户当作企业最重要的资产进行管理,是成功的应用CRM搞好企业的经营管理工作关键技术。

一、基于数据挖掘技术的客户行为分析与重点客户发现

目前许多企业在为客户的服务过程中积累了大量的数据,通过这些数据可以分析企业的发展历程、竞争态势、发展趋势及客户资源,这些资源是企业普遍关注的重要资源,而对客户的分析是赢利竞争优势的重要方法,从销售自动化中,提供了记录和跟踪在客户的信息,提供了销售人员与潜在客户交流要点,以便有效地管理自己时间,安排与客户交流和沟通,

而在电子商务环境下,接触客户不仅是销售人员,通过Internet把获取客户信息进一步扩展到企业所有部门,与之所有能与客户接触的所有人员,包括各种销售渠道的人员。通过与客户的各种“接触点”对客户360度的认识。美国艾克通过长期以来总结的经验认为CRM应让客户更方便、对客户更亲切、个性化和立即反应,才能更好地维持客户关系。凡成功地企业CRM一定是“以人为本,以客户为中心”去分工,实现企业内部“一对一客户观念”的确认。企业内部与客户相关的部门应该保持不同部门与客户之间作业的连贯;实现各种管理信息与知识的共享,建立较为详细的客户联系库,共同遵守的互动规则。利用客户智能—通过分析来自营销、销售、服务和商务的信息,制定统一的关于客户需求服务的规则,以增加客户的满意程度和减少客户背离程度。数据挖掘成为识别好的客户,完成市场划分以及改进直销活动效果的关键工具。

图1 数据挖掘技术在CRM中的作用

增加市场占有率有两种常用方法:以客户为基础的产品促销活动和交叉销售,数据挖掘技术能够实现哪些客户最有可能购买新产品以及哪些产品能够被一起购买,这样销售人员就能够将更多的精力放在这些重点客户上。Microsoft Commerce Server 2000是一个基于SQL Server 2000利用数据挖掘技术的快速实现商业智能的通用平台,它通过扩展基于OLE DB技术模式对象与CRM集成。它可以针对注册用户进行数据分析了解不同消费群体的购物行为,对未注册的用户则根据用户停留在该电子商务网站停留的时间、点过的连接、查询过的商品等记录分析出他们的行为模式;还可分析出广告、打折活动等营销方法的效果。

【高校管理数据挖掘技术的应用论文】相关文章:

1.多层次技术的XML数据挖掘研究论文

2.浅析软件工程数据挖掘研究进展论文

3.无公害蔬菜栽培管理技术应用分析论文

4.基于关联规则的数据挖掘技术在提高课程教学质量中的应用

5.BIM技术中建筑工程设计管理应用论文

6.数据挖掘技术在辽河水文预报中的研究

7.自动化技术及应用论文

8.数据挖掘在企业客户行为的运用论文

9.信息化技术在隧道施工管理的应用论文

10.高校宿舍管理系统论文

下载word文档
《高校管理数据挖掘技术的应用论文.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部