欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 实用文>高性能数据采集系统芯片LM12H458及其应用

高性能数据采集系统芯片LM12H458及其应用

2022-09-12 08:35:39 收藏本文 下载本文

“XNA”通过精心收集,向本站投稿了5篇高性能数据采集系统芯片LM12H458及其应用,下面是小编为大家推荐的高性能数据采集系统芯片LM12H458及其应用,欢迎大家分享。

高性能数据采集系统芯片LM12H458及其应用

篇1:高性能数据采集系统芯片LM12H458及其应用

高性能数据采集系统芯片LM12H458及其应用

摘要:LM12H458是美国NS公司生产的8通道数据采集系统芯片,它精度高、转换迅速、数据传输快、集成度高、单电源供电、外围接口简单。LM12H458内含可用来存储转换结果的32字的FIFO和存储指令的8字RAM。文中介绍了LM12H458的工作原理、引脚功能和具体应用电路。

关键词:A/D转换;数据采集系统(DAS);LM12H458

1概述

LM12H458是高集成度的数据采集系统?DAS?芯片,它将采样保持、A/D转换集成在一块芯片内,从而大大减少了外围电路的设计。其8路模拟信号输入既可作为单端输入,又可两两组成差分输入。器件内部提供的一个2.5V参考电压、8×48bit指令RAM和32×16bit的FIFO大大减小了微处理器的负担。LM12H458的工作电压为3~5.5V,功耗小于34mW,待命模式下的功耗只有50μW。此外,LM12H458还有如下主要性能:

●有三种工作模式:分别为带符号的13位模式、带符号的9位模式和看门狗模式;

●有8个模拟信号输入通道,模拟信号可单端输入,也可差分输入;

●内置采样保持和2.5V参考电压;

●内含32×16bit的FIFO;

●采样时间和转换速率可编程;

●具有自校准和诊断模式;

●带有8位或16位数据总线。

2引脚功能和功能说明

LM12H458的引脚功能如表1所列。图1为其内部功能框图。LM12H458是一个多功能数据采集系统,其内部的电荷重分配ADC采用电容梯形网络代替普通的电阻梯形网络,并使用逐步逼近寄存器的DAC使VREF-和VREF+之间产生一个中间电压,该电压与输入的采样电压相比较可产生数字输出的每一位,中间电压的个数和比较的次数对应于ADC的分辨率,通过校准ADC中的电容网络可校准数字输出的每一位精度。LM12H458有两种不同的校准模式:一种是补偿偏移电压或零误差,在该模式下只测量一次偏移误差,并依此建立修正系数;另一种为修正偏移误差和ADC线性误差,称为全校准。将该模式下的偏移误差测量八次,并取平均值即可建立修正系数。上述两种模式的修正系数被存贮在内部的偏移修正寄存器中。LM12H458的线性修正是通过修正内部DAC的失配电容获得的,在LM12H458内部ROM中存有校准算法,可对每一个电容校准8次并取平均值,从而产生线性修正系数。一旦校准后,内部算术逻辑单元(ALU)即可使用偏移误差修正系数和线性修正系数来修正每一次的转换结果。看门狗模式用于监控单端输入或差分输入信号的幅值。每个采样信号都有上下两个门限,输入信号高于或低于某一门限值都会产生中断。

表1LM12H458的脚符号及功能

引脚号符号功能1,12VA+,VD+模拟电源和数字电源2~11,13~18D0~D15双向数据总线,总线宽度由BW决定。BW=1,总线宽度为8bit,BW=0,总线宽度16bit19RD读信号输入20WR写信号输入21CS片选输入22WR地址锁存,用于总线复用的系统中23ALE外部时钟输入,频率范围为0.05MHz~10MHz24~28A0~A4地址线29SYNC同步输入/输出,当配置寄存器的“I/O选择”位清零时,SYNC为输入;而当“I/O选择”位置为1时,SYNC为输出。30BW总线宽度设定位,BW=1时,总线宽度为8bit,BW=0时,总线宽度为16bit31INT中断输出,低电平有效32DMARQDMA请求输出,高电平有效33GND接地34~41IN0~IN7模拟信号输入通道42VREF-负参考电压输入,电压范围为0~VREF-43VREF+正参考电压输入,电压范围0~VA+44VREFOUT内部2.5V参考电压输出

LM12H458是一个多功能数据采集系统,内部有28个16bit的寄存器,各个寄存器的功能如下:

配置寄存器是DAS的控制中心,可用于控制序列器的启动和停止、复位RAM指针和标志、设置待命状态、校准偏移和线性误差、选择RAM区等。

指令RAM分为三个区:指令区、门限1区、门限2区。每一条指令(48bit=3X16bit)分散在三个16比特字宽的RAM区中,三个区的选择可由配置寄存器2bit的RAM指针来控制。指令区可设置通道的选择、工作模式、采样时间和循环位。其它两个区用于设置上下门限值。DAS可从指令0连续执行所有设置的指令,执行的最后一条指令的循环位为1时,再返回到指令0。指令执行期间,微处理器不能访问指令RAM,只有处理器终止指令循环后才可访问。

FIFO为只读寄存器,可用于存储转换结果。

中断使能寄存器可使用户激活8个中断源,该寄存器的高字节与中断1、2有关。

图2LM12H458与80C51的接口电路

中断状态寄存器和门限状态寄存器用于指示DAS中断源和输入信号是否超过上门限或下门限。

定时寄存器用于设置指令执行前的等待时间。而指令寄存器的bit9可使能或禁止插入等待时间。

LM12H458有8个中断源,各中断具有同等的优先级别,中断使能寄存器可使能或禁止相应的中断,当发生中断时,中断状态寄存器相应的位置1。各个中断对应的`功能如下:

●INT0:模拟输入信号在规定的门限值以外产生中断。

●INT1:序列发生器执行到某条指令时,该指令地址等于中断使能寄存器中bit8~bit10设定的值时,产生中断。

●INT2:A/D转换的结果保存在FIFO,当FIFO中转换结果的个数等于中断使能寄存器比特11~15中设定的值时,产生中断。

●INT3:完成单次采样自动校准后产生中断。

●INT4:完成一次完整的自校准后产生中断。

●INT5:执行时,指令暂停位为1时产生中断。

●INT6:电源指示中断,当芯片供电电压小于4V时,产生中断。

●INT7:在从等待模式返回10ms后产生中断。

图3编程流程图

3应用

3.1硬件电路设计

LM12H458灵活的总线接口简化了与多种微处理器的接口,它既可与8位处理器相连,又可方便地与16位微处理器相连。图2为AT89C51与DAS的接口电路图。该电路采用全地址译码方式来产生DAS的片选信号CS,其DAS映射的地址空间为0000-001F,数据总线宽度为8bit。图中的74HC373用于锁存低8位地址,而8bit幅度比较器则可用来对高8位地址进行译码,通过比较地址与地址范围所选择的输入逻辑可产生U5(74HC138)的选通信号,74HC138的Y0可作为DAS的片选信号。DAS的INT端口用于驱动AT80C51的中断INT0,同时它还允许DAS请求中断服务。

3.2软件编程

LM12H458虽然应用灵活、广泛,但基本的工作流程不变,图3为其典型的编程流程。在处理器初始化后,应向DAS写入合适的指令以初始化DAS,以便设置采样时间、工作模式、通道选择等。完成一次全校准需要4944个时钟周期,若设置中断使能,校准后应产生中断以通知微处理器。全校准会影响DAS的内部标志和指针,从而影响指令的执行。因此校准后必须复位。将配置寄存器的bit0设置为1可启动序列器。流程图中的p表示用户定义的不同工作模式。图3(a)为DAS的初始化和序列器的启动流程,图3(b)为中断服务例程。当进入中断服务后,配置寄存器的bit0应清零以停止A/D转换,然后处理中断事务。

4结论

LM12H458数据采集系统芯片功能强大、应用灵活,可广泛用于数据记录、测量仪器、惯性制导、过程控制、能源消耗管理等方面。由于篇幅所限,本文仅作简单介绍,有关LM12H458的详细技术资料可在NationalSemiconductor的网站上获得。笔者已将LM12H458用于PI网络石英晶体元件的测试系统中。使用证明:LM12H458的转换精度很高,而且工作稳定可靠。

篇2:高性能DDS芯片AD9954及其应用

高性能DDS芯片AD9954及其应用

摘要:AD9954是美国AD公司采用先进的DDS技术生产的高集成度频率合成器,它能产生200MHz的模拟正弦波。文章介绍了AD9954的基本特点和引脚功能,分析了其内部结构和工作原理,给出了AD9954在高速调制信号系统中的应用方案。

关键词:AD9954  串行操作  RAM  高速调制

1 概述

AD9954是采用先进的DDS技术开发的高集成度DDS器件。它内置高速、高性能D/A转换器及超高速比较器,可用为数字编程控制的频率合成器,能产生200MHz的模拟正弦波。AD9954内含1024×32静态RAM,利用该RAM可实现高速调制,并支持几种扫频模式。AD9954可提供自定义的线性扫频操作模式,通过AD9954的串行I/O口输入控制字可实现快速变频且具有良好的频率分辨率。其应用范围包括灵敏频率合成器、可编程时钟发生器、雷达和扫描系统的FM调制源以及测试和测量装置等。AD9954的内部结构如图1所示,其主要特性如下:

●内置400MSPS时钟;

●内含14位DAC;

●相位、幅度可编程;

●有32位频率转换字;

●可用串行I/O控制;

●内置超高速模拟比较器;

●可自动线性和非线性扫频;

●内部集成有1024×32位RAM;

●采用1.8V电源供电;

●可4~20倍倍频;

●支持大多数数字输入中的5V输入电平;

●可实现多片同步。

图1

2 引脚说明

AD9954采用48脚TQFP/EP封装,其引脚排列发图2所示,各引脚定义如下:

I/O UPDATE:在该引脚的上升沿可把内部缓冲存储器中的内容送到I/O寄存器中。引脚电平的建立和保持与SYNC-CLK输出信号有关;

DGND和AGND:数字地与模拟地;

OSC/REFCLK和OSC/REFCLK:参考时钟或振荡输入端:

CYRSTAL OUT:振荡器输出端;

CLKMODESELECT:振荡器控制端,为1时使能振荡器,为0时不使能振荡器;

LOOP_FILTER:该引脚应与AVDD间串联一个1kΩ电阻和一个0.1μF电容;

IOUT和IOUT:DAC输出端,使用时应接一个上接电阻;

DACBP:DAC去耦端,使用时应接一个0.01μF的旁路电容;

DAC_RSET:DAC复位端,使用时应通过一个3.92kΩ的电阻接至AGND端;

COMP_OUT:比较器输出端,可以输出方波或脉冲信号;

COMP_IN和COMP_IN:比较器输入端;

PWRDWNCTL:外部电源掉电控制输入引脚;

(本网网收集整理)

RESET:芯片复位端;

IOSYNC:异步串行端口控制复位引脚;为1时,当前I/O操作立即停止;为0时开始新的I/O操作;不用时,此引脚必须接地;

SDO:采用3线串口操作时,SDO为串行数据输出端。采用2线串口操作时,SDO不用,可以不连;

CS:片选端,低电平有效,允许多芯片共用I/O总线;

SCLK:I/O操作的串行数据时钟输入端;

SDIO:采用3线串口操作时,SDO为串行数据输入端,采用2线操作时,SDO为双向串行数据端。

DVDD_I/O;I/O电源,可以是1.8V或3.3V;

SYNC_IN:同步多片AD9954输入信号,使用时与主AD9954的SYNC_CLK的输出相连;

SYNC_CLK:时钟输出脚,为内部时钟的1/4,可用作外围硬件同步;

OSK:在编程操作时可用该脚来控制幅度与时间斜率,与SYNC_CLK同步;当OSK不能被编程时,此脚接DGND;

PS1和PS0:可用来选择4个RAM段控制字区中的一个。

3 AD9954的串行操作

在AD9954的串行操作中,指令字节用来指定读/写操作和寄存器地址。由于串行操作是在寄存器级别上发生的,因此串行端口控制器应能识别指令字节寄存器地址和自动产生适当的寄存器字节地址。在串行操作指令阶段和通信阶段,一般先传送指令阶段的指令字,指令阶段对应于SCLK的前8个上升沿,其对应的指令字(8比特)包含了以下信息:

MSBD6D5D4D3D2D1LSBR/WXXA4A3A2A1A0

其中R/W位用于决定指令字后的操作是读还是写,高电平为读出,低电平为写入;6、5位的电平高低与操作无关;4~0位则对应于A4~A0,表示操作串行寄存器地址,该地址信息同时包含了与该指令字所在指令段对应的通信段的传送字节数。指令阶段后接着是通讯阶段,传送对应于字节数的几个通信周期。

通信周期完成后,AD9954的串口控制器即认为接下来的8个SCLK的'上升沿对应的是下一个通信周期的指令字。IOSYNC引脚为高时将立即终止当前的通信周期,而当IOSYNC引脚状态回到低电平时,AD9954串口控制器即认为接下来的8个系统时钟的上升沿对应的是下一个通信周期的指令字,从而保持通信的同步。

AD9954的串行操作有两种数据传送方式,即从最高位开始传送和从最低位开始传送,这是由控制寄存器0的第8位来决定的。默认状态为低电平,此时先传送最高位,若为高电平则先传送最低位。串行操作的读/写时序如图3所示。

4 AD9954的RAM

AD9954内部的1024×32静态RAM具有双向单一入口,对它进行的读/写操作不能同时进行,写操作优先。RAM的使能位是CFR<31>(控制功能寄存器31位),此位为低时,对RAM的操作只能通过串行端口;此位为高且CFR<30>为逻辑0时,RAM的输出为相位累加器的输入,此时给芯片提供的是频率转换字;此位为高且CFR<30>为逻辑1时,RAM的输出可作为相位偏移加法器的输入给芯片提供相位偏移控制字。写RAM的操作首先通过控制PS1、SP0来选择RAM段。然后再对相应的RAM控制寄存器写RAM操作的地址变化率、起始地址、终止地址、模式控制和停留方式位。RAM段控制寄存器的5、6、7位可用来指示RAM操作的5种模式,即直接转换模式、上斜坡模式、双向斜变模式、连续双向斜变模式和连续循环模式。其中连续循环模式是使能RAM,RAM模式控制字为100,这种模式可提供自动、连续、单向的扫频,地址发生器从起始地址开始,当其增加到终止地址后会自动回到起始地址重新开始下次循环。

RAM段控制寄存器的39~24位可定义RAM控制器在每个地址停留的SYNC_CLK的周期数,取值范围是1~65535;9、8、23~16位用于定义10位终止地址;3~0、15~10位则用于定义10位起始地址。

5 在高速调制系统中的应用

调制信号对干扰有较强的抵抗作用,同时对相邻信道的信号干扰也较小,并具有解调方便且易于集成等优点,因此数字调制信号系统可广泛应用于现代通信设备及科研教学仪器中。由于受频率精确度、稳定度和范围等因素的制约,提高数字调制方式中的FM速度是难点,用高性能DDS芯片AD9954可以很好的解决这个问题。AD9954具有良好的频率分辨率和快速、连续的变频能力,它内部有静态RAM,能实现高速数字调频。

数字调制信号系统的框图如图4所示。本系统采用DSP作为控制电路的核心,来向AD9954写命令字,AD9954将产生所需频率的正弦或调制信号,并经低通滤波器后输出。

AD9954的串口与DSP相连,DSP通过AD9954的CS、SCLK、SDIO和SDO管脚向AD9954写入数据和控制字。首先设置特定的寄存器控制字,以允许RAM工作,接着将RAM输出作为相位累加器的输入给芯片提供频率转换字,然后写好RAM段控制寄存器的值,定义好起始地址、终止地址并选择好工作模式。例如,在RAM地址256~511中写入计算好的频率值,主要操作过程如下:

(1)允许RAM操作,清除CFR<30>;

(2)选择模式5即连续循环模式;

(3)选择RAM段1,PS0=1,PS1=0;

(4)指令字节为00001001;

(5)定义通信阶段的通信周期数为256,把数据写入RAM存储器地址256~511中;

(6)改变I/O UPDATE启动模式工作。

本系统可由地址的变化速率来计算调制速度,地址变化速率RAM段控制寄存器中的地址变化率控制字决定,其值的范围是1~65535,定义的时间是SYNC_CLK的周期数。由于SYNC_CLK最大为100MHz,从而决定了地址变化率控制字为1时能定义的最快速度为100MHz,假设一个波形要采集256个点,那么调制速度为100 MHz/256=400kHz;如果采样点为100个,则调制速度可达100 MHz/100=1 MHz。由于AD9954产生的调制波形采样点多,采样时间精确,因此波形性能较好。

6 结束语

高性能DDS芯片由于其AD9954内部集成有RAM,因此,利用RAM的存储功能,能够产生频率分辨高,波形性能好,调制速度高达1 MHz的调频波,该速度是其他DDS芯片的几十~几百倍,因而可广泛应用于数字调制系统的设计之中。

篇3:高性能VGA芯片AD8367原理及应用

高性能VGA芯片AD8367原理及应用

摘要:AD8367是AD公司推出的新型VGA芯片,该芯片采用单端输入、单端输出方式,可在500MHz以下的任意频率下稳定工作。文中介绍了AD8367的特点、工作原理及使用注意事项,并在此基础上给出了几种典型应用电路。

关键词:VGA;AGC ;AD8367

1 主要特点

AD8367是AD公司推出的一款可变增益单端IF放大器,它使用AD公司先进的X-AMP结构,具有优异的增益控制特性。由于在片上集成了律方根检波器,因此,它也是全球首枚可以实现单片闭环AGC的VGA的芯片。该芯片带有可控制线性增益的高性能45dB可变增益放大器,并可以在任意低频到500MHz的频率范围内稳定工作。

AD8367具有以下主要特点:

●单端输入、单端输出;

●输入阻抗为200Ω、输出阻抗为50Ω;

●3dB带宽为500MHz;

●输入端为零电平时,输出端电平为电源电压的一半,且可调;

●具有增益控制特性选择和功耗关断控制功能;

●片上集成了律方根检波器,可以实现单片AGC应用;

●增益控制特性以dB成线性;

●可以通过外部电容将工作频率扩展到任意低频。

(本网网收集整理)

2 工作原理

AD8367的功能框图如图1所示,该芯片主要由可变衰减器、固定增益放大器和律方根检波器组成。它的输入级是总衰减量为45dB的可变衰减器,其中包含一个200Ω单端梯形电阻网络和一个高斯内插器。该电阻网络由每级衰减量为5dB的9级衰减网络组成,并可由高斯内插器选择衰减因子,每级梯形网络以固定的分贝数衰减输入信号。当衰减量不是5dB的整数倍时,在控制电压的作用下,相邻两个衰减节点均会导通,通过离散节点衰减的加权平均值来获得与控制电压相对应的衰减量,并以这种方式获得平滑、单调的衰减特性。它在大于40dB的增益控制范围内,工作频率为200MHz时,可提供优于±0.5dB的线性误差,而在400MHz时可提供优于±1dB的线性误差。

紧跟衰减器的是固定增益放大器,该放大器主要用于保证AD8367具有42.5dB的增益和500MHz的带宽,它实际上是一个具有100 GHz增益带宽积的运算放大器,因此,当其工作在高频时,仍具有良好的线性度。

AD8367在输出端集成了一个律方根检波器,可检测输出信号电平并与内部设置的354mVrms电平(对应于1Vp-p的正弦波)相比较。当输出电平超过内部设置电平时,将产生一个差值电流。用接在DETO脚和地之间的'外部电容CAGC(包括5pF的内建电容)对该电流进行积分可产生与接收信号强度成比例的RSSI电压,这样,在AGC应用时,该电压可以用作AGC控制电压。

AD8367最适合工作在200Ω阻抗系统,并可通过电阻或电抗无源网络来实现与其它通用阻抗系统(从射频系统的50Ω到数据转换器的1kΩ)的转换。一般情况下,转换网络的设计选择取决于特殊的系统要求,如带宽、回损、噪声系数和绝对增益范围等。

AD8367内含无源可变衰减器和固定增益放大器,其电路噪声和失真性能均是增益和控制电压的函数,且输入折合噪声随衰减量成比例增加。电路在最大增益时具有最小为7.5 dB的噪声系数,增益每降低1dB,噪声系数增加1dB。在接收系统中,如果接收到的信号很弱,则会有最大增益和最小噪声系数;而当接收到的信号电平较高时,系统将具有较低的增益和较大的噪声系数。因此,电路噪声系数随增益的变化不会对系统造成明显的影响。电路的失真性能与噪声性能相类似。当AD8367工作在200Ω源阻抗系统时,它的输出级是一个低输出阻抗电压缓冲器,此时具有50Ω阻尼电阻,可以降低对负载电抗和寄生参数的敏感性。

3 典型应用

3.1 通用VGA放大器

AD8367是一款通用型VGA放大器,适合于大控制范围的压控增益应用。由于其具有从任意低频到500 MHz的工作带宽,它不但可以处理高达500MHz的高频信号,而且可以通过频率扩展来适应音频系统。图2所示是AD8367在VGA工作时的基本连接电路。图2中,电路增益AV与控制电压VGAIN成正比。由于AD8367的增益控制率为50dB/V,所以,在VGAIN以V为单位时,电路增益AV可由下式计算:

AV=50VGAIN-5

当电路的线性增益控制范围为-2.5dB~42.5dB时,从上式可以推算出VGAIN所对应的取值范围为50mV~950mV。

将电容器CHP 连接到抵消信号路径dc平衡变化的内部漂移控制环,可设置信号通道的高通截止频率。在不使用该电容时,可由内部电容提供一个500kHz的缺省高通截止频率。CHP与高通截止频率的关系式为:

fHP=10/(CHP+0.02)

式中,fHP的单位为kHz,CHP的单位为nF。这样,只要增大CHP的值就可以将AD8367扩展应用到音频领域。

3.2 用作AGC放大器

利用内部集成的精确律方根检波器,AD8367可以方便地配置成单片AGC放大器,其基本连接如图3所示。AD8367用作AGC放大器时,需选择反向增益控制模式。当输出信号的有效值超过354mV时,检波器将以20mV/dB的比例从DETO端输出与输入信号成比例的RSSI电压。将该RSSI电压作为AGC控制电压加到增益控制端GAIN,便可构成控制率为20mV/dB的简单单片AGC放大器。当使用低于5V电源时,检波器的输出起点和比例都不会发生变化,即电源电压在2.7V~5.5V的范围内变化时,电路的AGC特性能够保持不变。

按图3的连接方式,在大于35 dB的输入范围内可以获得优于0.1dB的控制线性度。电路的时间常数τAGC可简单地由AGC电容CAGC设定。事实上,τAGC是由AGC电容CAGC和10kΩ的片上等效电阻RAGC共同作用的结果。所以,时间常数如下:

τAGC=RAGCCAGC

需要说明的是:采用误差积分技术的AGC环存在一个共同的弱点,当用一个逐渐增大的信号驱动时,AGC控制电压增加会降低增益。当增益降低到它的最低值后,与输入成比例的控制电压增加将对增益不产生影响,因而将造成输入过载。实际上,用AD8367配置成的AGC放大器也存在输入过载的问题。由于它的最小增益为-2.5dB,因此,输入幅度超过起控点2.5dB以上的输入都会造成过载,也就是说,输入信号功率超过+6.5dBm均会造成输入过载。因此,实际使用时,最好将最大输入电平控制在低于过载电平5dB处,以形成一定的过载保护带。 在AGC应用时,同样可以通过频带扩展应用到音频领域,当CHP高至1μF时,电路便可处理频率低至10Hz的音频信号。将图2中的CHP、C4、CAGC的取值改为1μF后即可构成一款高稳定、低失真的音频稳幅电路。

当需要的AGC起控点不同于电路内部的设定值时,应使用外部检波器。利用输出端检出的直流电平经放大、分压后加到增益控制端,便可获得需要的AGC起控点。

3.3 信号功率检测应用

使用律方根检波器的另一个好处是其输出作为RSSI电压来反映信号功率,从而实现任何给定源阻抗的绝对功率测量。因此,AD8367还可以作为功率检测芯片来设计功率计,或者作为以分贝数读出的ac电压计。其功率检测范围为45dB。如不使用图2中的增益控制,从DETO端输出的RSSI电压便可作为输入信号功率的检测电压。在用于输入信号功率检测时,只有当输出信号电平达到354mVrms时才有指示电压输出。

篇4:VXI数据采集系统的建立及其应用

VXI数据采集系统的建立及其应用

在液氧/煤油发动机试验中,需要根据测量精度、被测参数的'类型、采样速率等技术指标进行数据采集系统的选型、配套,完成对温度、压力、流量转速、推力、真空压力等众多参数的测量.主要介绍了利用VXI数据采集系统完成各参数的测量任务,包括系统的建立,解决系统调试中出现的问题,同时介绍了VXI数据采集系统在发动机故障诊断紧急关机系统中的应用.

作 者:雷震 唐云龙 Lei Zhen Tang Yunlong  作者单位:西安航天动力试验技术研究所,陕西,西安,710100 刊 名:火箭推进 英文刊名:JOURNAL OF ROCKET PROPULSION 年,卷(期): 34(5) 分类号:V434.3 关键词:液体火箭发动机   数据采集   参数测量  

篇5:用实时时钟芯片DS1305启动数据采集系统

摘要:介绍串行时钟芯片DS1305的功能、结构及其利用DS1305设计的电源开关电路,可使数据采集系统平时处于关闭状态。定时开启时系统上电,进行数据采集;一次工作结束时关闭开关,系统断电。

关键词:DS1305 低功耗 数据采集

引言

对于许多便携式数据采集系统,需要长时间无人看管地工作,如在石油钻井下、输油管道等场所。一般需要间隔数小时进行一个采集,这样系统大部分时间处空闲状态。虽然现在低功耗单片机的睡眠状态提供了降低功耗的一种方法,但低功耗不等于没有功耗,系统长时间工作时不得不考虑功耗的问题。

为进一步节省功耗,我们在研制一数据采集系统时,利用实时时钟芯片DS1305设计一电源开关电路。利用该开关电路,可使系统在空头时处于关闭状态,每当采集时间到,由报警信号开启单片机系统以进行数据采集,在数据采集结束时,单片机关闭开关电路,系统断电。这样系统处于关闭状态,一直到下一次开关电路报警。

(本网网收集整理)

1 DS1305简介

DS1305是美国Dallas公司推出的串行接口带报警实时时钟。它有20脚的TSSOP、16脚的DIP两种封装方式[1],工作电压范围从2.0~5.5V。

1.1 主要特性

DS1305用二一十进制(BCD)码表示实时时钟的秒、分、小时、星期、日、月和年的时间信息,并且自动对小月(少于31天的`月份)和闰年的日期进行调整,兼有带AM/PM指示12小时和24小时两种时间指示格式。图1为DS1305两种引脚的排列。

DS1305提供了主电源和后备电源的双电源引脚和一个电池输入引脚;Vcc1为主电源,Vcc2为后备电源,可充电电源接此引脚,VBAT接3V的锂纽扣电池或其它电源。VCCIF引脚用来驱动SDO和PF(电源失效输出)引脚的电平和接口的电相兼容。DS1305只支持三种电源连接方式,如图2所示。VCC1和VBAT供电时,VCC1大于VBAT0.2V时,正常对DS1305进行访问。当VCC1小于CBAT时,DS1305进入写保护。VCC1、VCC2供电时,当Vcc1比Vcc2大0.2V,Vcc1输入作为电源;当Vcc1小于Vcc2,Vcc2对DS1305供电。这种模式下,DS1305不能写保护自己。当Vcc1以+5V供电时,DS1305正常工作电流为1.28mA,时钟保持电流最大为81μA,当+2V供电时,正常工作电流为0.425mA,时钟保持电流最大为25.3μA。

DS1305支持通过SPI串行数据端口或者标准的三线接口进行时间的校正和数据的读取,可进行单字节的或连读字节束发方式的访问。SERMODE接地,串口访问模式设定为标准3线模式:SD1(串口数据输入)与SDO(串口数据输出)连接在一起作为单一的I/O引脚,它与CE、SCLK组成3线模式。SERMODE接VCC,选择SPI通信模式,具体操作可查阅有关资料。

INT0、INT1提供两个可编程的中断报警信号,可通过串行总线访问和设定秒、分、时、星期的报警时间。

X1、X2引脚直接连接标准的32.768kHz晶振,无需外接其它元件。如实时时钟有误差,可以在振荡器两端并接6pF电容进行调整。

1.2 操作方式

DS1305共有148个用户RAM,其读操作地址与写操作地址空头分开,当其高位为1时,为写操作地址空间,0为读操作地址。除实时时钟、日历寄存器和通用寄存器之外,还有作一般数据存储器用的96字节的NVRAM。对DS1305操作之前,必须对控制寄存器、状态寄存器、涓流充电寄存器进行初始化。

以下为控制寄存器(0F读,8F字):

76543210EOSCWP000INTCNAIE1AIE0

EOSC:设置为0使振荡器开始工作,设置为1,DS1305处于低功耗闲置状态。WP:写保护位,上电初始化后,WP位处于三态,在任何写操作之前,该位必须清零。INTCN:中断控制位,控制两个中断之间的联系,置位后两个中断引脚INT0、INT1分别响应各自的中断(需中断使能),清零后,中断1、2报警时间匹配都只能引发INT0输入低电平,INT1无效。ALE0、ALE1置1时中断0、1使能。

状态寄存器(读10H)只有两位IRQF0、INQF1,置位时分别表示中断时间匹配。涓流充电寄存器(读11H,写91H)控制涓流充电的特性。

DS1305标准三线模式的读写操作过程,每个字节需要16个SCLK时钟。通过CE引脚输入高电平来启动所有数据传送,前8个SCLK周期为输入写命令,后8个SCLK周期为输入或输出的数据。输入时,SCLK的上升沿数据有效;输出时,SCLK的下降沿输出数据有效。

【高性能数据采集系统芯片LM12H458及其应用】相关文章:

1.CPLD在远程多路数据采集系统中的应用

2.DMA结合McBSP在数据采集系统中的应用设计

3.塞式喷管模拟实验及数据采集系统

4.基于USB接口的心电信号数据采集系统

5.超声波测井的井下数据采集与传输系统的实现

6.人才培养工作状态数据采集与管理论文

7.利用ColdFire uClinux实现数据采集和传输

8.中德道路交通事故信息采集系统简析

9.对地震勘探数据采集震源的分析论文

10.RTLinux在雷达信号采集处理系统的应用

下载word文档
《高性能数据采集系统芯片LM12H458及其应用.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部