欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 说课稿>《商的近似数》说课稿

《商的近似数》说课稿

2023-10-08 08:46:27 收藏本文 下载本文

“悦天和尚”通过精心收集,向本站投稿了15篇《商的近似数》说课稿,今天小编在这给大家整理后的《商的近似数》说课稿,我们一起来阅读吧!

《商的近似数》说课稿

篇1:近似数的说课稿

一、教学内容的说明:(教材分析)

本单元是在学生对小数和分数有了初步认识的基础上进行学习的。这部分内容是学生系统学习小数知识的开始,同时又是学习小数四则计算的基础。

信息窗呈现了三个同学用游标卡尺测量绿毛龟蛋长径和宽径的情境,通过学生质疑测量同一个蛋的长度,为什么两人读数不一样的问题,引入对小数的近似数知识的学习。

二、教学目标:

依据《数学课程标准》的要求,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求,根据本节课的具体内容,我制定了以下教学目标:

知识与能力目标:

掌握把一个较大的数改写成用万或亿作单位的数后再求它的近似值。能正确区分改写和保留的要求以及各自的方法。

掌握用四舍五入法求小数的近似值的方法。使学生理解保留的位数越多,精确度就越高。

过程与方法目标:

通过情境图引出怎样求小数的近似数,学生在教师的指导下探索求小数近似数的方法,并在此基础上学习和区分改写和保留的不同要求和方法。

对所学知识进行拓展,迁移到新知,培养学生知识迁移能力,和利用已掌握知识探索新知识的能力。

情感态度与价值观目标:

让学生体会知识间的紧密联系,体验获取新知的乐趣。

基于以上的分析我确定本节课的教学重点是:

会利用四舍五入法求小数的近似值;理解保留位数越多,精确度就越高。

教学难点是:

理解保留和精确之间的区别与联系以及保留位数越多,精确度越高。

三、教学方法

为了突出重难点,使学生达到本节课设定的目标,我准备采用以下教学方法:

教法:教学充分以学生为主体,调动学生的学习积极性,通过学生发现问题、提出问题、小组合作讨论解决问题,挖掘学生的潜力,培养学生的能力,提高学生的素质。

学法:为了更好地突出、突破重难点,按学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在观察比较概括应用的学习过程中掌握知识。激发每一个学生的学习兴趣,同时让学生获得成功体验!

四、教学过程的设计:

为了全面、准确地引导学生探索发现求小数近似数的方法,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了复习旧知,探索新知,巩固练习,课堂小结,四个环节。

第一个环节:复习导入

这一环节我设置了两个习题:

1、把下面各数省略万后面的尾数,求出它们的近似数。

986534 58741 32100 398210

2、下面的里可以填上哪些数?

32( )64532万 47( )05047万

在此环节重点让学生说一说自己是怎么想的,四舍五入是什么意思,为后面的学习做好知识迁移的准备。

第二个环节:探索新知

这一环节有两个知识点:求小数的近似数;把一个数改写成用万或亿作单位的数。

求小数的近似数:我先出示课本的情境图,引导学生观察情境图,从图中能获得哪些信息?你能提出哪些有价值的数学问题?

根据学生的回答,引出问题,为什么小华、小明两个人说的不一样?教师可以说明由于两个学生对测量结果要求的精确程度不同,就会出现同一个小数的不同近似数,然后引导学生说一说小华说的是几位小数?小明说的是什么数?

通过学生的回答师作说明:近似数的结果是一位小数就是将原小数保留一位小数,结果是整数就是将原数保留整数从而引导学生仿照求整数近似数的方法(四舍五入法)来求小数的近似数:

出示:3.94保留一位小数是多少?3.94保留整数是多少?

学生分组讨论,自主探索求小数近似数的方法,再通过学生的汇报,总结出:求小数的近似数和整数一样也可以用四舍五入法,进一步让学生明白:求近似数时,的数保留整数,表示精确到个位,保留一位小数,表示精确到十分位,保留两位小数,表示精确到百分位。

小组讨论:比较3.9和4与精确值3.94比较谁更接近3.94。

总结出:保留的位数越多,精确度越高,保留的位数越少,精确度越低。

再出示:绿毛龟蛋(2.04厘米)的宽径是多少厘米?(保留一位小数)并让学生思考:末尾的0可不可以省略,进一步让学生体会求一个小数的近似数时保留位数不同,精确度也不同,而且0在这里也起到了占位的作用。为了巩固这一知识,我设计了一个动手测量课桌的活动,比一比谁的结果更精确,说明理由。

第二个知识点:把一个数改写成用万或亿作单位的数

出示课本71页材料,引导学生阅读材料,说一说能获得哪些信息,并提出相关问题。

(1)把1754000改写成用万作单位的数是什么?

先让学生尝试改写,根据学生的情况,如果有正确的改写可以先让学生讲解他的方法,如果没有,老师可作说明:改写时在万位后面点上小数点,写上万字,去掉小数末尾的0就可以了。

(2)全国禽蛋类产量约是多少亿千克呢?(保留整数)把28795000000改写成用亿

作单位的数,让同学们独自探索方法,同桌交流,在此基础上再引导学生用四舍五入法求出287.95亿的近似数。

第三个环节:巩固练习

在这一环节安排了自主练习的4个小题。

1-3题是用多种形式巩固求小数近似数的基本练习题,让学生独立完成,订正时关注有困难的学生,切实巩固求小数近似数的方法。

4题用把大数改写成用万或亿作单位的数。学生独立完成,交流时重点让学生说一说是如何改写的。

第四个环节:课堂小结

为了使学生对本节课所学的内容有一个整体的感知,我让学生共同回忆本节课研究了哪些问题?通过这些问题的解决你有哪些收获?自己在学习上有哪些提高?让学生在交流的过程中进一步深化求一个小数的近似数的方法,感受知识之间的内在联系,同时增强对迁移推理的数学思想的认识。

布置作业:

针对学生的差异布置适当的作业,既能使学生掌握知识,又能使有余力的学生得到提高。

板书设计:

板书作为课堂教学语言的另一种表现形式,它具有启发性、艺术性、实用性,所以本节课我注重发挥其引导功能,做了一下设计:

求小数的近似数

保留整数:3.944

保留一位小数:3.943.9

2.04厘米2.0厘米

1754000=175.4万

28795000000=287.95亿288亿

这样安排有利于学生观察、比较。全面系统了解本节课所学内容,提高学习效率!

篇2:商的近似数教案

一、说教材:

求商的近似数是九年义务教育青岛版小学数学四年级上册第七单元的内容,是在学习小数除法的基础上学习的。小数除法有时会出现除不尽的情况,还有商的小数位数较多的情况。但是在实际工作和生活中,并不总是需要求出很多位小数的商,而往往只要求出商的近似值就可以了。因此这部分内容的教学很重要。

在本册前面,已经学过用“四舍五入法”求一个小数的近似值,以及求小数乘法的积的近似值,本知识窗是通过求“三峡大坝的高度是八盘峡坝的多少倍”的应用题,让学生体验求商的近似数的必要性。让学生自己想一想,怎样取商的近似值。

二、说教学目标:

1、知识与技能:

(1)使学生理解商的近似数的意义。

(2)掌握小数除法计算中用“四舍五入”求商的近似数的一般方法。

2、过程与方法:

能根据实际情况进行求近似数。

3、情感、态度与价值观:

培养学生在实际生活中灵活运用数学知识的能力。

三、说教学重点:

在理解的基础上,掌握小数除法计算中用“四舍五入”求商的近似数的一般方法。

四、说教学难点:

根据题意正确救出商的近似数。

五、说教法、学法

由于本学段的学生年龄多在9―11岁,富于形象直观思维,但他们都有比较强烈的自我发展意识和表现欲望,在学习素材的选取和呈现、学习内容和活动的安排上,一定要想方设法给学生提供“做数学”的机会,让他们在数学活动中表现自我、发展自我,感受到数学学习活动有意义、很重要、可以做。在这些过程中,初步学习数学思考的方法,形成从不同的角度分析同一个问题的辩证思考问题的能力。

《小学数学课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的`数学活动经验。

学生在学习本课之前,学生已经学习了用“四舍五入”求小数的近似数的一般方法。这正是他们的认识基础和新知识的生长点。所以只有站在这个基点上组织学习内容才是明智的选择。

本节课的教学是从复习入手,注重新旧知识的迁移,教师以引导为主,充分体现以学生为主体,让学生在已有知识的基础上通过观察,比较,同点票交流等学习方法,学会求商的近似数,并且在练习中注意根据实际情况灵活的处理问题,使知识活学活用。

准备采用“情境―问题”的教学模式:即课堂上,教师创设练习情境,学生提出适当的数学问题,通过学生与学生(或教师)之间相互讨论,相互学习,在问题解决过程中发现规律,建立概念,逐步完善对用“四舍五入”求商的近似数的的认知结构。

六、说教学过程

本节课由七个基本环节组成:复习,创设练习情境――解决问题――归纳、总结求出商的近似数的方法――巩固练习,总结,作业。

(一)复习

一上课,我先指导学生复习用“四舍五入”法求出小数的近似数的,为后面求商的近似数作好准备。

1、按照“四舍五入”法求出下面各数的近似数。

保留

整数

保留一

位小数

保留两

位小数

保留三

位小数

2、9456

12、0045

0、5999

2、用竖式计算,导入新课。

19、4÷12

(二)创设练习情境,学生提出问题

《小学数学课程标准》在“总体目标――解决问题”里指出:通过义务教育阶段的数学学习,学生能够:初步学会从数学的角度提出问题、理解问题、并能综合运用所学的知识和技能解决问题,发展应用意识。这是本教学模式的依据。因此,我设计:

列竖式计算185÷33

(1)指导:

185÷33除不尽,我们可以看出,它的商的末尾总是606060…哪怎么办呢?根据实际情况没有必要必要算出这么多位。所以今天我们来学“商的近似数”

板书:今天学习“商的近似数”

(2)问题:

请同学们根据这题,结合自己的学习经验,说一说如果商保留整数,商需要需要算到那一位?如果商保留一位小数,商需要需要算到那一位?……

(3)学生同桌讨论总结出,商的近似数如果商保留整数,商需要需要算到十分位;如果商保留一位小数,商需要需要算到百分位;……

(4)完成“自主练习第一题”。

(三)根据生活实际问题求商的近似数

1、导:

在实际的生活中,小数除法所得的商也可以根据需要用“四舍五入”法,保留一定的位数,求出商的近似数。例如:自主练习第六题(1)

2、解答这道应用题。

(1)读题,理解题意。

(2)列式计算。

(3)反馈不同策略,指导取值。

①2、2×9、28≈6、56(元)

②2、2÷0、35≈7(个)

说说①得数保留两位小数的理由,笔算时分别应除到哪一位?

师:小数除法有时会碰到永远除不尽的情况,有时虽然能除尽但实际上不需要那么多的小数位数,这样求出的商就只要按题目要求取它的近似值。

提醒:用“四舍五入”法取商的近似数,一般只要除到比需要保留的小数位数多一位。

(四)归纳、总结求出商的近似数的方法。

方法:1、看――需要保留几位小数或整数。

2、除――除到比需要保留的小数位数多一位。

3、取――用“四舍五入”法取商的近似数。

(五)巩固练习:

1、完成23页“做一做”

保留一

位小数

保留两

位小数

保留三

位小数

40÷14

26、37÷31

45、5÷38

问题:每一个小题,用竖式计算时,需要除几次?除到小数的哪一位?

2、再次总结求出商的近似数的方法。

让学生说说。

(六)总结:

今天学习了什么?你对商的近似值有了哪些新的认识?你又有哪些收获?还有什么问题?

(七)作业:

1、基本练习:

判断练习:下列问题要取近似值吗?如果需要,应用哪种方法取近似值?

(1)做一个奶油蛋糕要用7、5克奶油。50克奶油最多可以做多少个这样的蛋糕?

(2)幼儿园买50个奶油蛋糕,每8个装一盒,至少要用多少个盒子?

(3)雨燕是长距离飞行最快的鸟,一只雨燕3小时可飞行510千米,一只信鸽每小时可飞行74千米。雨燕飞行的速度大约是信鸽的多少倍?

(4)每套衣服用布2、2米,50米布可以做多少套这样的衣服?

学生独立解答,全班交流。

2、作业:

自主练习第3、5、8题。

篇3:商的近似数教案

教学内容:

教科书第23页的例7和“做一做”中的题目。

教学目的:

1、使学生学会根据实际需要用“四舍五入”来求小数的近似数.

2、提高学生的比较、分析、判断的能力。

教学过程:

一、复习

1.按“四舍五入法”,将下列各数保留一位小数.

3.724.185.256.037.98

2.按“四舍五入”法,将下列各数保留两位小数.

1.4835.3478.7852.864

7.6024.0035.8973.996

做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.

二、新课

1.教学例6.

教师出示例6,要求根据书上提出的'信息列式计算.当学生除到商为两位小数时,还除不尽.教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)

教师问:保留一位小数,应该等于多少?表示计算到“角”。

教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”.)

2.做第23页“做一做”中的题目.

教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)

教师问:你解题时用了什么技巧?

三、巩固练习

1、求下面各数的近似数:

3.81÷732÷42246.4÷13

2、书上的作业。

篇4: 《商近似数》教学设计

教学内容

人教版五年级上册第32页例6。

教学目标

1.知识与能力:

(1)结合具体情境,让学生掌握用“四舍五入”法正确的按题意求商的近似数。

2.过程与方法:

(1)能根据实际情况进行求近似数。

(2)根据实际情况,帮学生从计算过程中理解根据需要保留上的位数的方法。

(3)通过自主探究交流,让学生掌握求商的近似数时,商中的小数位数要比要求保留的小数位数多一位。

3.情感、态度、价值观:培养学生数学知识,在实际生活中灵活应用的能力。

教学重难点

教学重点:掌握用“四舍五入”法取商的近似数。

教学难点:求商的近似数时,商中的小数位数要比要求保留的小数位数多一位。

教学过程

一、复习导入

按照“四舍五入”法求出下面各数的近似值

保留整数

保留一位小数

保留两位小数

精确到千份位

6.0294

0.9298

9.9949

2.计算:0.38×0.14(得数保留两位小数)

二、进入新课

1.学习例6。

出示例6:有个小朋友叫王鹏,他特别喜欢打羽毛球,这天他爸爸给他新买了一筒羽毛球,一筒里面装了一打羽毛球。

师:那你们知道这一筒羽毛球有多少个吗?(12个)

师:你怎么知道有12个?(一打就是12个)

师:如果这筒羽毛球19.4元,那你们现在能算出一个羽毛球是多少钱吗?请同学们在课堂练习本上列式计算出结果。(学生自主列式计算,老师巡视)

师:好了,同学们,请大家停止计算。你们是不是遇到了什么问题了?(算式除不尽)

师:那一个羽毛球到底是多少钱呢?这个1.61666……到底是多少钱呢?是不是我们就没办法定出一个羽毛球的价钱呢?同学们,四人一小组讨论一下,你们准备怎么给这个羽毛球定价?为什么?(学生讨论并汇报)

师:同学们,这么多定价,你们觉得哪种更合理些?为什么?

师:给这个羽毛球定价1.6元和1.62元,两种定价有什么不同呢?

(定价1.6元,是保留一位小数;定价1.62元,是保留两位小数)

师:如果是定价2元呢?(是保留整数)

师:那这些价格是不是一个羽毛球的最精确的'价格呢?(只是接近准确价格,是近似数)

师:当用近似数作为结果的时候,应该用什么数学符号呢?(用约等于号)

教师板书:19.4÷12≈1.6(元)或19.4÷12≈1.62(元)

师:在我们的生活中,常常遇到小数除法除不尽的情况,下次遇到同样的问题,你们会解决吗?怎样解决?(用“四舍五入”法取近似数;根据不同情况保留一定的小数位数)

师:现在我们来做一些题目,大家有信心吗?

设计意图:给学生充足的时间进行讨论,根据实际情况进行四舍五入,培养学生知识迁移的能力。

2.研究求商的技巧。

出示一道计算题:48÷23(得数保留两位小数)

师:同学们计算出结果了吗?是多少?(2.08695)

师:谁的比较简练?为什么?

师:为什么算到第三位就够了?

(要保留两位小数,我们只要看小数第三位上的数字是不是比5大就可以了)

师:老师现在把题目变一变,要求保留一位小数,应该计算到什么位?(计算到第二位小数)

师:谁能用一句话概括出你们的发现?

总结:当我们求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”取商的近似值。

三、巩固练习

1、练习见课件。(计算、判断、选择)

2、猜一猜。

师:同学们,老师买了一个毽子大约花了2元钱,你们猜猜,这个毽子多少钱?

师:仔细想一想,这个毽子的价格在什么范围内。(1.5元到2.4元之间)

师:在这个范围内,哪一段属于四舍,哪一段属于五入呢?

(1.5元到1.9元属于五入,2.1元到2.4元属于四舍。)

3、准确数与近似数:

准确数:在日常生活和生产实际所遇到的数中,有时可以得到完全准确的数,它们精确,没有误差。如,5(2)班有学生50人,这里的50是准确数。

近似数:由于实际中常常不需要用精确的数描述一个量,或不可能得到精确的数。例如:中国约有15亿人。这里的15就是近似数。

四、课堂小结

通过这节课的学习,你有什么收获呢?

总结:这节课我们学习了求商的近似数,方法是“四舍五入”法,而且计算的时候计算到比保留的数位多一位就可以了。

五、布置作业

教材第36页练习八第1题。

六、教后反思:

本节课通过复习“四舍五入”进行导入,因为“四舍五入”法是学生原有的知识,对学生来说一点也不难,但对于基础相对薄弱的学生仍然需要给学生充足的时间思考。

篇5:近似数和有效数字说课稿

七年级数学近似数和有效数字说课稿

一、课时安排说明

《近似数和有效数字》共分两课时,第一课时,主要内容是认识近似数和精确数;第二课时,掌握精确度和有效数字等相关知识。

二、学生起点分析

学生活动经验基础:在本章前面的学习过程中,学生已经对生活中的较小数据以及近似数有了一定的认识,并且经历了一些探索、发现的数学活动,积累了初步的数学活动经验,具备了一定的探究能力。并且经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

三、教学任务分析

在实际问题的基础上继续让学生认识生活中存在着大量的近似数;进一步让学生体会近似数的作用,能根据实际问题的需要选取近似数;结合实际问题情境让学生充分认识有效数字的概念,能按照要求取近似数,并体会近似数的意义及在生活中的作用。教学中所采用的问题情境尽可能来源于实际,充分挖掘学生生活中与数据有关的素材,使他们体会所学内容与现实世界的密切联系。为此,本节课的教学目标是:

1.掌握精确度及有效数字的概念,并能熟练运用。

2.提高学生分析数据,处理数据以及解决实际问题的能力。

3.进一步体会数学的应用价值,发展“用数学”的信心和能力。

本节的教学重点:掌握精确度及有效数字的概念,并能熟练运用。

本节的教学难点:如何确定一个数据的有效数字。

四、教学设计分析

本节课设计了七个教学环节:回顾复习、学习新知、例题讲解、课堂练习、拓展提高、知识小结、布置作业。

第一个环节:回顾复习

活动内容:

1.阅读报道

中国是世界面积第3大国;中国有世界第一高峰珠穆朗玛峰,海拔8844米;中国共划分34个省级单位,包括23个省,5个自治区,4个直辖市和2个特别行政区,人口约12.9533亿,占世界人口的21.2;共有56个民族,少数民族人口最多的是壮族,有1600万人。

2.回答问题

你能找出这篇报道中的精确数据和近似数据吗?

3.知识回顾

1.认识精确数和近似数,明确近似数产生的原因。

2.会用四舍五入法取近似数,并能进行合理比较。

活动目的:改变原有的直接复习知识模式,通过阅读一篇报道,找出其中的近似数和精确数达到复习上一节内容的目的。其一可以改变枯燥的概念复习,使复习环节变得更加有趣;其二通过阅读可以让学生掌握更多的知识,例如此报道可以让学生更多的了解我们的祖国。

活动注意事项:(1)复习过程中虽然不直接的对概念进行复习,但在学生回答完问题后,仍应对上节所学概念加以巩固(2)复习一方面是对上节课的回顾和总结,同时也应为新课的学习和探究作和铺垫和作准备工作。

第二个环节:学习新知

活动内容:学习新概念

(1)精确度:

利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。

(2)有效数字:

对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的`数字都叫做这个数的有效数字(significantdigits).

活动目的:通过学习精确度和有效数字两个新的概念,为下面解决实际问题做好准备工作。

活动注意事项:(1)对于精确度概念的理解,要做到把精确度和四舍五入法有机的统一。让学生明确四舍五入到哪一位,就说这个近似数精确到哪一位;(2)对于有效数字的理解一定要让学生明确从那个数字起,到那个数字止;(3)这两个概念是这节课的基础和关键,只有让学生真正理解这两个概念,才能更好的去解决实际问题。

第三个环节:例题讲解

活动内容:

例3按要求取右图中(见教科书)溶液体积的近似数,并指出每个近似数的有效数字。

(1)四舍五入到1毫升;(2)四舍五入到10毫升

解:(1)四舍五入到1毫升,就得到近似数17毫升,这个数有两个有效数字,分别是1,7;

(2)四舍五入到10毫升,就得到近似数20毫升,这个数有一个有效数字,是2.

例4据中国统计信息网公布的中国第五次人口普查资料表明,我国的人口总数为1295330000人。请按要求分别取这个数的近似数,并指出近似数的有效数字。

(1)精确到百万位;(2)精确到千万位;(3)精确到亿位;(4)精确到十亿位。

活动目的:通过对例3的学习让学生对精确

度和有效数字的应用有了初步的认识,并且对这两个概念有了更深的理解;例4的学习让学生学会用科学记数法表示近似数。

活动注意事项:(1)在例3的学习中,第二个问题得到近似数20毫升,部分学生会误认识有效数字的个数是两个,这时,教师一定要对该知识分析透彻,从定义的角度让学生明确如何正确的判断有效数字。(2)例4中对于较大数据,为了让大家更清楚地看出近似数的有效数字,例如:例4中,若不用科学记数法表示近似数据,则(2)和(3)的结果均可表示为1300000000,除非用文字加以注释,否则难以区分,因此,教师最好要求学生对于某些数据要用科学记数法表示。

第四个环节:课堂练习

活动内容:

1.下列说法不正确的是

A.0.03精确到百分位,有一个有效数字B.1423精确到个位,有四个有效数字

c.87.4精确到十分位,有三个有效数字D.5.670×10精确到百分位,有三个有效数字

2.下列各近似数精确到万位的是()

A.35000B.4亿5千万c.3.5×104D.4×104

3.0.03296精确到万分位是,有个有效数字,它们是。

4.近似数0.8050精确到位,有个有效数字,是。

5.近似数4.8×105精确到位,有个有效数字,是。

6.近似数5.31万精确到位,有个有效数字,是。

7.一箱雪梨的质量为20.95K,按下面的要求分别取值:

(1)精确到10K是K,有个有效数字,它们是;

(2)精确到1K是K,有个有效数字,它们是;

(3)精确到0.1K是K,有个有效数字,它们是。

活动目的:通过课堂练习巩固落实学生对精确度和有效数字这两个知识点的应用。

活动注意事项:(1)前六个练习题是没有实际背景的基础练习,要求学生应在短时间内高效完成,第七题是实际应用问题,要让学生学会数学问题和实际问题间的互相转化。(2)例如近似数4.8×105精确到哪一位的这类判断精确度的题目要强调先还原数据,再判断精确到哪一位。

第五个环节:拓展提高

活动内容:

世界上最大的沙漠――非洲的撒哈拉沙漠可以粗略的看成是一个长方体,撒哈拉沙漠的长度大约是5149900m,沙漠的深度大约是3.66m。已知撒哈拉沙漠中沙的体积约为3345km3。

(1)将沙漠的沙子的体积表示成立方米,并保留两个有效数字;

(2)撒哈拉沙漠的宽度是多少?(保留三个有效数字)

(3)如果一粒沙子体积大约是0.0368mm3,那么,撒哈拉沙漠中有多少粒沙子?(保留三个有效数字)

解:(1)3345km3=3345×109m3=3.345×103×109m3≈3.3×1012m3

活动目的:本节课的知识目标是掌握精确度及有效数字的概念,并能熟练运用。这个环节对学生提出了更高的要求,先要通过数据的计算,再按要求取近似数据。

活动注意事项:(1)要提醒学生注意单位的换算,数据计算必须在单位统一的情况下才能进行;(2)计算过程提倡学生用计算器进行运算;(3)对于能力达不到的学生在这一环节不做过高要求。

第六个环节:知识小结

活动内容:师生互相交流总结本节课上应该掌握的相关知识:1.掌握精确度和有效数字的概念。2.会按照要求利用科学记数法取近似数。教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生畅谈个人的学习感受。

活动目的:一方面通过小结对今天所学知识进行一个概括和升华,对学生易错的知识加以强调和补充;另一方面,通过教师和学生的交流,进一步激发学生的学习兴趣,鼓励学生发表自己的见解,为今后的学习打好坚实的基础。

活动注意事项:在总结中要发挥学生的主体地位,让学生做课堂的主人,让学生自己进行总结归纳;教师在这一环节中要仔细聆听,对于学生的错误和漏洞要及时作出纠正和补充。

篇6:四舍五入求近似数说课稿

四舍五入求近似数说课稿

一、问题的提出

《四舍五入求近似数》这节课的知识目标是“结合具体情境理解近似数的意义,理解和掌握用‘四舍五入’法求近似数的方法”。在达成知识目标的过程中,渗透数形结合思想和模型化思想,培养学生推理能力。本课的教学难点主要集中在两个方面:

一是由于数目较大,离学生的现实生活较远,学生对“四舍五入法”的学习往往感到比较抽象。

二是如果仅仅把“四舍五入法”局限在对整万数、整亿数的估计,学生容易形成点状的知识,很难从整体上把握四舍五入的方法,也就不能把握“四舍五入法”的本质和规律,即“四舍五入法”求近似数时要看哪个数位,为什么四及四以下要舍、五及五以上要入?

二、解决问题的思考

针对上述难点一的解决方法,我认为:从学生已有的经验出发去寻找教学的切入点。学生在万以内数的认识和数的运算学习时,就已经有“四舍五入法”的经验积累,只不过没有归根概括提炼出“四舍五入法”这个抽象名称而已。学生的这些个体经验不仅为抽象的“四舍五入法”的学习提供了理解概念内涵的感性支撑,而且还提供了丰富概念内涵的基础性资源。因此,可以从学生这些感性的个体经验出发去寻找教学的切入点,在学生的个体经验与抽象的“四舍五入法”之间搭建起沟通的桥梁。

针对上述难点二的解决思考:我认为一是可以引导学生从感性的知识出发,经历“四舍五入法”的归纳、概括、提炼和抽象命名的形成过程,从而了解和把握“四舍五入法”的来龙去脉,真正做到知其然而知其所以然。二是采用数形结合的方法,用数轴来辅助教学,化抽象为直观。

三、教学过程设计

(一)创设情境,理解近似数的意义及必要性。

1、出示教材中的情境图,学生阅读后,通过问题“观察上面的几组数,你有什么发现?”引导学生发现这些数的共同特点,引出近似数。

2、让学生找找日常生活中的近似数,联系学生已有经验,增进对近似数意义的理解,体验近似数产生的必要性。

最后小结:生活中一些事物的数量,有时不需要精确地表示出来,用近似数表示更方便。

(二)借助素材,探究“四舍五入法”求近似数的方法

引入环节:从学生的感性认识和经验出发,了解估“整十数”看个位。

教师提出问题:一棵大树高约30米。这棵大树实际高多少米可以估计成30米?你能有序地说出这些数吗?

学生有序说出后,再让学生观察并进行分类,根据学生的回答教师板书:25~2931~34并引导学生在数轴上表示如下:

30

20

40

25

35

师问:25、26、27、28、29这些数都是二十几,为什么约等于30?

生可能:因为它们离30比离20更近。

师问:31、32、33、34这些数都是三十几,为什么也约等于30?

生可能:因为它们离30比离40更近。

此时,学生在根据已有经验,再借助数轴的直观,可以初步感知以5为分界线来估数的特点。

师生把刚才的结论简单地整理如下:

估整十数

十位

个位

2

大于等于5

3

小于等于4

第一环节:发现估“整百数”看十位的规律,教给学生发现的方法结构。

紧接上个环节,教师提出问题:什么样的数可以估计成300?

能有序地分段写出这些数吗?可以像老师这样借助数轴来找一找!

教师提出大问题,充分放手让学生找数。此时学生的思维可能是凌乱的散点状态,无法有序地分段写出所有可以估成300的数;也可能有学生能有序地找,但出现遗漏或重复的现象,如只找到295~304;或260~270,270~280,280~290,……,320~330,330~340。教师及时捕捉学生的思维动向,选取有代表性的几种做法进行交流。

通过课前学情调查,由于学生在二年级学万以内数的近似数时都是找最接近的数,所以大多数学生仅仅找出295~299,301~304这些数,这是学生最原始的思维状态,所以我们的交流就从295-304开始。

出示数轴,引导学生从数轴上找出295-304这些数的位置。

300

200

400

为了更准确地找出295所在的位置,我们需要再分,标出数据,如

300

200

400

210

220

230

240

250

260

270

280

290

320

330

340

350

360

380

390

370

310

问:这些都可以估成300吗?

学生可能回答:可以,但还没找全。学生进一步补充。

教师引导学生再对这些想法进行辨析比较,在辨析中逐渐帮助学生明确思路,如学生找到25□~299,教师可以追问:25□~299的这些数都是200多,为什么也能估成300?

生可能发现,它们最接近的整百数是300,或者说这些数在数轴上比200~300的一半要多。

同样方法引导学生找出301~349这些数,逐渐帮助学生形成正确的认识:

251~299、301~349.

300

200

400

210

220

230

240

250

260

270

280

290

320

330

340

350

360

380

390

370

310

当百位上是2时,要想估成300,十位上的数字要大于或等于5;当百位上是3时,要想估成300,十位上的数字要小于或等于4。教师进一步引导思考:个位上的数字呢?如果学生一时难以概括,可举例子,如251可估成那个整百数?252呢?253?259?通过举例和借助数轴学生会发现:251~259,无论个位上的数字是几,这个数都可以估成300。同样,260~269,270~279,280~289,290~299,301~309,310~319,320~329,330~339,340~349.这些数也可估成300。学生发现:估成与个位上的数字无关。教师再把学生的思维过程进行简单的整理和记录如下:

估300

百位

十位

个位

2

大于等于5

任意数

3

小于等于4

任意数

师举例:476接近哪个整百数?生回答并阐明理由;再请学生举一个三位数,请同学们判断接近哪个整百数。

这样通过举例,学生发现:估整百数都合这一规律,即:

估整百数

百位

十位

个位

2

大于等于5

任意数

3

小于等于4

任意数

也就是,估整百数时,要看十位上的数字,与个位上的数字无关。

第二环节:发现估“整千数”看百位、估“整万数”看千位的规律,学生运用方法结构自主发现。

教师提出问题:什么样的数可以估计成3000、30000?你能有序地分段写出这些数吗?如果有困难,还可以借助数轴来找一找!

由于结构相同,可以采取同桌分工合作的方式,每人分别研究其中一种情况然后互相交流。

集体交流,课件出示数轴,让学生在数轴上找出这些数的范围,并借助数轴的直观来体验为什么这些数都接近3000.

3000

4000

2500

3500

2500~2999

3001~3499

同样方法可得到估成30000的数的范围。

30000

20000

40000

25000

35000

25000~29999

30001~34999

对以上规律进行比较和概括,学生在表格上自己整理:

估整千数

千位

百位

十位

个位

2

大于等于5

任意数

任意数

3

小于等于4

任意数

任意数

估整万数

万位

千位

百位

十位

个位

2

大于等于5

任意数

任意数

任意数

3

小于等于4

任意数

任意数

任意数

通过整理,学生进一步发现:估整千数时,只看百位;估整万数时,只看千位。

第三环节:发现估“整十万数”看万位、估“整百万数”看十万位……的规律,学生运用结构进行想象。

第四环节:对以上规律进行比较和概括,归纳提练和抽象出四舍五入的一般方法。

教师提出问题:通过举例探究的.方法,我们分别发现了估整十数、整百数、整千数……的方法,你能把这些规律简练地概括一下吗?

学生交流,教师小结:像这样求近似数的方法,叫作“四舍五入法”。

(三)巩固应用,内化提升。

出示信息:小明的妈妈一月份的工资收入是6492元。

提出问题:

问题一:估成整十数,大约是多少元?为什么?(交流后,课件出示数轴)

教师进一步明确要求:估成整十数,也就相当于省略十位后面的尾数求近似数。

问题二:省略百位后面的尾数,大约是多少元?说说你的想法!(交流后,课件出示数轴)

问题三:你还能提出其他关于近似数的问题吗?

生提问题并解决。(交流后,课件出示数轴)

问题四:仔细观察数轴,这三个近似数哪个更接近6492元?你有什么发现?

小结:省略的尾数越多,近似数离准确值就越大;反之就越接近准确值。所以我们在运用近似数时,要根据实际的需要来估计。

四、我们的思考与疑惑:

1、说明:《近似数》这节课在备课时,我们教研组出现了两种不同的声音:一种是遵循教材,通过研究将大数怎样估成整万数或整亿数,教学“四舍五入”取近似数的方法。

另一种就是刚才所呈现的,从估整十数、整百数、整千数、整万数、整十万数……这样依次探究,在估整百数时教结构,让学生在大量的数例中充分感悟:估整百数要看十位上的数字,与个位上的数字无关。接下来的估整千数、整万数是用结构,学生同桌分工合作,运用方法结构自主发现规律。估整十万数、整百万数、整千万数和整亿数的规律,则可让学生运用结构进行推理和想象。

通过两种思路的对比和研讨,我们统一了认识:如果仅仅把“四舍五入法”局限在对整万数、整亿数的估计,学生容易形成点状的知识,很难从整体上把握四舍五入的方法。另外从对整万数、整亿数的估计入手,由于数目较大,离学生的现实生活较远,学生对“四舍五入法”的学习往往感到比较抽象,也不容易把握“四舍五入法”的本质和规律。基于这些,我们提出了上述问题,并做了以上设计。

一开始我们对于这种整体架构、教结构——用结构的思想也是又爱又怕,甚至持怀疑的态度:学生能有序地分段找到这些数吗?能发现规律吗?基于不自信,我们在三年级上了半节课,结果虽然有点生涩,但学生所表现出来的比我们预期的要好得多。而且,从长远来看,学生经历了“四舍五入法”背后的过程形态的知识,比如借助知识结构的类比思考、归纳概括的思想和方法等等,都可以成为教学过程中促进学生成长的重要资源。

2、思考:数轴对于这节课的教学有很大的帮助,数形结合不仅能帮助学生直观地理解“四舍五入”的本质,并能有效地培养学生的数感。

3、疑惑:25估成整十数,与20、30一样接近,该估成30吗?再如25□,251~259估成整百数应该是300,250估成整百数呢?期待大家能帮我们答疑解惑。

以上是我们团队对《四舍五入求近似数》这节课内容的理解,如有不当之处,恳请领导和老师们多提宝贵意见。谢谢!

篇7:《商的近似数》教学反思

本节课值得自我褒奖的地方:

1、在课堂中充分发挥了学生的主体性、主动性。特别是在新知识的呈现中,我先让学生自我尝试,再让学生展现自己的想法,最后进行对比、归纳讲解总结。在自我检测后当堂训练练习中,将知识点化解在这些练习中,让学生能够学以所用,学以致用。

2、在做一做环节中,由于学生自学和理解能力的强弱差别较大,他们的速度出现断层,快的学生早已经完成,让他们去帮助较慢的学生后,存在问题的学生大多数能够接受本节的新知识即明白求商的近似数要除到比要保留的位数多一位。

3、在本节课结束时,适时总结知识点并板书,让学生谈自己的收获,并通过板书对本节课进行快速的回顾,还可让学生结合知识点思考自己是否完成学习目标。

存在的问题:

1、教学设计比较流畅,但个别环节处理欠妥。如在让学生自学时,自学指导设计太简单,笼统,指令不明确,对学生来说要干什么,达到什么要求比较模糊,以至于此处教学中学生没有紧张的学,有的学生仅仅是走马观花的将书浏览了一遍;另外在自我检测环节,让学生直接算出保留三位小数的方法会更好,这样还能巧妙的把该题目简单化,让学生容易自我完成。还有有的学生计算能力特别差,老师在后教时过于强调计算的错误而浪费了大量的时间,应引导学生把教学重点放在研究取商近似数的方法上来,让学生多说自己的想法。

2、过高估计了学生的计算能力。本节课的练习题我有意识的设计为计算题、填空题、判断题,力求通过多角度使学生掌握求商近似数的方法,但是学生做题的速度相差甚远,为了照顾到全体学生,而浪费了一些宝贵的时间,最终没有使课堂达到高效、最优化。

3、课堂中随机问题处理欠佳。如学生计算较慢的特点,发现了,在后面的教学中没有给予有效处理,致使后面的拓展练习当堂训练没有完成。再者,课堂中教师的作用是引导,促进、组织和在必要时帮助学生,但是在授课时没有充分发挥引导者的作用,对于学生的无效问题应可稍加引导或者告诉学生我们这节的学习目标是掌握方法会灵活应用就行,而不应纠结于计算之中。

4、板书布局欠合理、美观。我授课的对象是五年级的小学生,对于他们而言,很多时候会模仿或学习教师的言行特点,而此阶段也是学生行为习惯养成和巩固的最佳时机,所以教师在课堂中应将美观、大方、简练、整齐的板书呈现给学生,让学生认识到学习习惯和书写格式的重要性。

篇8:《商的近似数》教学反思

《商的近似数》是堂新授课。但是我们已经学过积的近似数,于是我尝试让学生自己完成例题,并由学生来完成讲解,尝试效果如何。

1、问题的生成是学生亲身经历的,而不是教师提供的。

当学生在计算150÷44的时候,碰到了一种现象“除不尽”。这在以前的小数除法中没有出现过,与学生原有的认知产生了冲突,形成了问题。这是其自己发现的,很自然便会产生一种自己尝试解决的迫切欲望。这无疑为引导学生自主探究解决问题奠定了良好的心理基础。

2、解决问题策略的多样性,体现了学生自主探究的成果。

当问题产生以后,解决问题便成为了学生学习的目标。但由于教师没有提供解决问题的统一方法,学生缺少了模仿和依赖的基础,整个探究空间也有了比较大的自由度。学生既可以结合已有的知识经验去解决这一问题,也可以“创造”出一种新方法来解决。当然,也出现了一些思路是正确的,结果却是错误的情况。但无论怎样,这是学生经过了一番思考后产生的一些想法,也是真正意义上的“解决问题策略的多样性”的典型表现。

3、问题解决的过程也是一个学生评价与反思的过程。

学生在展示自己独特的.解决问题的方法和策略的同时,他们同样也关注别人解决问题的方法或策略。当别人的方法与自己不同时,学生自然会产生“为什么他的方法与我的不一样”、“我的方法到底有没有问题”等想法,从而促使其反思自己的做法。

总的看来,我在本节课的教学中,引导学生充分经历了问题的生成和解决过程,突出了学生在问题生成和解决过程中的主体作用,收到了良好的效果。

篇9:《商的近似数》教学反思

“商的近似数”这一内容主要让学生经历用“四舍五入”的方法求商的近似数的过程,体验迁移应用的学习方法,激发学生的学习兴趣,培养学生学数学、用数学的良好习惯。本节课我从生活的“真实”入手,从自然引入,还情境为生活本来的面貌,给学生自主思考的时间,自由表达的空间,让学生情入生活、心入生活,在真实化的情境中体验、感悟数学知识,收到了良好的教学效果。

一、学生自主探究,策略多样。

在教学时,对教材进行处理,我有意识地开发生活资源。首先我讲述生活中的实例,当我刚想提出要求时,发现有的学生已经做了起来。我并没有阻止,而是继续让学生在计算中发现问题。算了一会后,发现有的学生抓耳挠腮,有的学生小声的嘀咕,还有的干脆停下了笔看同桌的。当问题产生以后,解决问题便成为了学生学习的目标。但由于我没有提供解决问题的统一方法,学生缺少了模仿和依赖的基础,整个探究空间也有了较大的自由度。学生既可以结合已经有的知识经验解决这一问题,也可以“创造”出一种新的方法来解决,在解决问题中体现了策略的多样性。

二、创设了轻松,自由探索的课堂氛围。

举出生活实例后,我出示例6:爸爸给王鹏新买了1筒羽毛球。一筒羽毛球是12个,这筒羽毛球是19.4元,买一个大约要多少钱?并以自学的方式引出数学问题,营造一种有利于学生学习的氛围,使其积极主动地学习。同时体现了数学来源于生活。学生自学完毕,我问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)听后,同学们都明白了保留两位小数的道理,使学生学会了根据实际生活需要用四舍五入法求商的近似数。在这一环节中,学生自主探索,发现问题,合作学习,让学生经历求商的近似数的过程,培养学生的自学能力,发现问题,解决问题的能力,同时也让他们尝到自学的成果。

三、设计贴近生活,学以致用的练习。

教师应该充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,以体会数学在现实生活中的应用价值,学习数学知识,是为了更好地去服务生活,应用于生活,学以致用。因此,在设计练习时,我设计了一系列与生活相关的题目,使学生体会点到“求商的近似值”在生活中的用处,增强学习数学的兴趣,解决问题的策略也就因真实的生活变得丰富多样,让学生拓展思维得到发展。

回顾这一节课,也存在一些不足:本以为求近似数是教学难点, 所以在新授前安排了大量相关知识的复习. 但在实际教学中才发现计算才是真正的教学难点,因此,在以后的教学中,多加强计算能力的训练,充分调动学生对计算的兴趣,做到“细心精准”。

篇10:《商的近似数》教学反思

本人在教学求商的近似数时,感觉学生在试商时很困难,为了突出重点,突破难点,抓住关键,特用了一下几个环节:

第一、创设了轻松,民主的课堂氛围。

例题的巧妙改动给学生留出了更为自由发挥的空间,一句“能像上题那样,保留两位小数得6.67吗?”的.开放问题,导引着学生建立条件与条件间的联系,培养了学生根据条件生发问题的能力,提高了学生收集、处理信息的水平。素质教育也可以说是学生主体教育,要求教学过程是一个师生之间,生生之间的多边活动过程。课堂教学中,学生的积极有效参与是促进学生主体性发展,提高学生素质的重要保证和有效途径。

第二、设计了生活化,学以致用的练习。

教师应该充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,以体会数学在现实生活中的应用价值,学习数学知识,是为了更好地去服务生活,应用于生活,学习致用。因此,在设计练习时,我设计了一系列与生活相关的题目,使学生体会到“求商的近似值”在生活中的用处,增强学习数学的兴趣。使学生亲历了“做数学”的过程,学会了用旧知识解决新问题的策略,体验到了学习数学的快乐。

第三、组织了自由探索,合作交流的方式。

自由探索与合作交流是《数学新课标》中提出的学生学习数学的重要方式。教学实践也证明,在自由探索与合作交流的学习方式中,学生认识活动的强度和力度要比单纯接受知识大得多。在本节课的实施中的每一个学习活动,都试图以学生个性思维,自我感悟为前提多次设计了让学生自主探索,合作交流的时间与空间。通过学生和谐有效地互动,强化学生的自我意识,自我感情。

第四、在小结中对比沟通,形成整体认识。

充分利用课堂这一阵地,致力于学生反思意识的培养,有利于学生把零碎的知识串联起来,建构自己的知识系统;让每一位学生站在元认知的高度重新审视自己的学习方式,这既是对知识本身的反思,更是对整个学习过程的反思,对知识、情感、能力、方法等各个方面的反思,这无论是培养学生从小养成良好的学习品质,还是对学生的

终身发展都有着重要的意义。

篇11:《商的近似数》教学反思

我在教学《商的近似数》一课时,对教材进行了处理,有意识得开发生活资源。首先我出示例7:爸爸给王鹏买了1筒羽毛球,一筒羽毛球12 个,这筒羽毛球是19、4元,买一个大约多少钱?并以谈话的形式引出数学问题,营造一种有利于学生学习的氛围。使其积极主动地学习,同时体现了数学来源于生活。再要求学生根据提出的信息练出计算。当学生除到商为两位小数时,还除不尽,我在巡视中发现,有的学生一直往下除,根本没有停下来的意思。这时教师就问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候该怎么办?”听后。同学们都明白了保留两位小数的道理,使学生学会了根据实际、生活需要用四舍五入法求商的近似数。本以为求近似数是数学难点。但在实际数学中才发现计算是真正的数学难点。由于例题及做一做中所有习题全是小数除以整数,所以当作业中出现小数除以小数时,许多学生都忘记了“一看,二移”的步骤,所以在设计巩固练习是应增加小数除以小数的练习。

其次在上课的时候,不能因为需要保留两位小数或几位小数而强调学生只能除到小数部分的第三位或第二位。遇到学生除了比实际需要更多的数位。应加以鼓励表扬并及时提示学生根据实际需要去除,这也许是学生创新的灵感之花,是一种钻研精神的表现,新课程改革需要的是这样的教学,也需要这样的老师,更需要我们培养有创新精神的学生。

篇12:《商的近似数》教学反思

《商的近似数》这堂课我没有上成功,课后静下心来,认真作了分析、反省,找出了原因。

一、小数除法知识,学生没有掌握好,所以很多学生做尝试练习时,不会计算“19.4除以12”。

二、课前准备不充分。(1)备课不够认真仔细,没有深钻教材,没有灵活运用教材。(2)没有认真备学生,忽略了学生在课堂上会出现各种情况。

三、教学方法老一套。

在探究新知部分,由于学生不与我配合,我就采用了老一套的教学方法:教师在台上讲,学生在台下听。把这节课的知识强硬的灌输给学生,让学生被动的去接受。总结取商的近似数的方法时,也被我代替了。这节课的一切都被我包办了,剥夺了学生的权利,所以一节课下来,有的学生听懂了,有的学生没有听懂,教学效果很不好,是自己没有很好的去引导学生发现问题,分析问题,解决问题,学生所做的一切都由老师包办了,严重违背了“以学生为主体,教师为主导”的新理念,这是我最大的失误。

四、自身素质欠缺,课堂驾驭能力差。

由于本人胆子小,一看见有领导和老师来听课,我的心就砰砰直跳,说话变得吞吞吐吐,语无伦次,甚至还说错了几句话。遇到学生不与我配合时,我就更加紧张,乱了阵脚,乱了思路,不知如何是好。“头发长,见识短”是对我最好的写照,因为自己平时业务学习较少,积累的经验也少,像一只“井底之蛙”,所以不能巧妙、机智的驾驭课堂,出现了本节课由我一人唱“独角戏”的尴尬场面。

总之,不足之处很多很多,一言难尽。以后我会多加强业务学习,提高自身素质,多向经验丰富的教师请教、学习,取长补短。

篇13:《商的近似数》教学反思

“商的近似数”这一内容主要让学生经历用“四舍五入”的方法求商的近似数的过程,体验迁移应用的学习方法,激发学生的学习兴趣,培养学生学数学、用数学的良好习惯。本节课我从生活的“真实”入手,从自然引入,还情境为生活本来的面貌,给学生自主思考的时间,自由表达的空间,让学生情入生活、心入生活,在真实化的情境中体验、感悟数学知识,收到了良好的教学效果。

一、学生自主探究,策略多样。

我在教学《商的近似值》一课时,对教材进行处理,我有意识地开发生活资源。首先我讲述生活中的实例,当我刚想提出要求时,发现有的学生已经做了起来。我并没有阻止,而是继续让学生在计算中发现问题。算了一会后,发现有的学生抓耳挠腮,有的学生小声的嘀咕,还有的干脆停下了笔看同桌的。当问题产生以后,解决问题便成为了学生学习的目标。但由于我没有提供解决问题的统一方法,学生缺少了模仿和依赖的基础,整个探究空间也有了较大的自由度。学生既可以结合已经有的知识经验解决这一问题,也可以“创造”出一种新的方法来解决,在解决问题中体现了策略的多样性。

二、创设了轻松,自由探索的课堂氛围。

举出生活实例后,我出示例6:爸爸给王鹏新买了1筒羽毛球。一筒羽毛球是12个,这筒羽毛球是19。4元,买一个大约要多少钱?并以自学的方式引出数学问题,营造一种有利于学生学习的氛围,使其积极主动地学习。同时体现了数学来源于生活。学生自学完毕,我问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)听后,同学们都明白了保留两位小数的道理,使学生学会了根据实际生活需要用四舍五入法求商的近似数。在这一环节中,学生自主探索,发现问题,合作学习,让学生经历求商的近似数的过程,培养学生的自学能力,发现问题,解决问题的能力,同时也让他们尝到自学的成果。

三、设计贴近生活,学以致用的练习。

教师应该充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,以体会数学在现实生活中的应用价值,学习数学知识,是为了更好地去服务生活,应用于生活,学以致用。因此,在设计练习时,我设计了一系列与生活相关的题目,使学生体会点到“求商的近似值”在生活中的用处,增强学习数学的兴趣,解决问题的策略也就因真实的生活变得丰富多样,让学生拓展思维得到发展。

通过复习求一个小数的近似数,为新课学习做好铺垫,通过复习求积的近似数,唤起了学生用“四舍五入”法取近似数的知识经验。这里通过买羽毛球的情境,让学生经历求商的近似数的过程,体会和总结求商的近似数的一般方法,同时也结合实例让他们体会了商的近似数的实际意义,通过例题与复习题的对比,让学生明确求商的近似数与求积的近似数的异同,既突破了教学难点,又让学生形成了较完整的认知结构。

篇14:《商的近似数》教学反思

数学源于生活,本节课从生活的“真实”入手,从自然引入,还情境为生活本来的面貌,给学生自主思考的时间,自由表达的空间,让学生情入生活、心入生活,在真实化的情境中体验、感悟数学知识。收到了良好的教学效果。

我在教学《商的近似值》一课时,对教材进行处理,我有意识地开发生活资源。首先教师出示例7 :爸爸给王鹏新买了1筒羽毛球。一筒羽毛球是12个,这筒羽毛球是19.4元,买一个大约要多少钱?并以谈话的方式引出数学问题,营造一种有利于学生学习的氛围,使其积极主动地学习。同时体现了数学来源于生活。再要求学生根据提出的信息列式计算.当学生除到商为两位小数时,还除不尽。教师巡视中发现,有的学生一直往下除根本没有停下来的意思。这时教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)听后,同学们都明白了保留两位小数的道理,使学生学会了根据实际生活需要用四舍五入法求商的近似数。

本以为求近似数是教学难点, 所以在新授前安排了大量相关知识的复习. 但在实际教学中才发现计算才是真正的教学难点, 由于例题及做一做中所有习题全是小数除以整数, 所以当作业中出现小数除以小数计算时, 许多学生装都忘记了“一看, 二移”的步骤. 所以在设计巩固练习时应增加小数除以小数的练习.

其次我根据学情补充介绍了一种求商近似数的简便方法. 即除到要保留的小数位数后不再继续除,只把余数同除数做比较,若余数比除数的一半小,就说明求出下一位商要直接舍去;若余数等于或大于除数的一半,就说明要在已除得的商的末一位上加1。介绍了这种方法感觉好的同学算得更快了,但悟性较差的学生听完后连最基本的保留两位小数应除到小数点后面第几位也混淆不清了。所以下次再教时,此方法的介绍时间可以适当后移,放在练习课上。

其实在上课的时候,不能因为需要保留两位小数或保留一位小数而强调学生说只能除到小数部分的第三位或第二位,遇到学生除到了比实际需要更多的数位,应加以鼓励表扬,并及时提示学生根据实际需要去除,决不能“一味扼杀,一棒子打死”。这也许是学生创新的灵感之花,是一种钻研精神的表现,新课程改革需要的是这样的教学,也需要这样的老师,更需要作为教师的我们要培养有创新精神的学生。新教材为我们提供了广阔的思维空间,我们要结合课改,挖掘教材,合理、科学的利用教材,全面贯彻课改精神,实现学生在学习活动上的“知识与技能、过程与方法、情感态度与价值观”三维目标而努力教学,这样才无愧于学生,才能称得上是一名新课改下的老师。

篇15:《商的近似数》教学反思

在复习小数乘、除法时,学生遇到求近似数时,感到困难。我认为如果将有关求近似数的内容联系起来教学,让学生找到之间的联系和区别,把知识连起来,可以起到事半功倍的效果。

我在和学生一同复习时,先带领学生将学过的求近似数的知识列举出来:一、求积的近似数:二、求商的近似数。

1、回忆求积的近似数的方法,——先计算,再用四舍五入的方法保留。

2、回忆求商的近似数的方法,——先计算,再用四舍五入的方法保留,但要注意只需除到比要求保留的位数多一位就行了。

3、在这里要学生比较两种求近似数的方法有什么相同和不同。相同点:用四舍五入的方法保留,不同点:乘法可算得准确的结果,而除法不一定能除尽,也不需要除完

4、在求商的近似数时,学生最感到困难的是根据实际情况进行保留,提醒学生并不是任何时候都可以用四舍五入的方法保留,有时要用进一法有时用去尾法,我让学生举例说说什么时候进一什么时候去尾,帮助学生理解。

为了验证学生学情,指名五名学生到黑板上分别计算各自的式题,三名学生在老师的监督下艰难做对了,我向他们一一表示祝贺,以此鼓励他们,树立学习的信心。其中两位同学被困难挡住了去路,这时下课的铃声响起,我不得不让他们回到自己的座位上。为了给他们一点压力,当放学的铃声响起,我把它们叫到自己的办公室,指导他们完成练习四的第一题,这五道都是求商的近似数。孙艳花了近一个小时艰难的做完了,其中一道做错,在我的反复指导下终于做对了,我向他表示祝贺,并让他回家吃饭,同时叮嘱他上课要认真听讲,做题要动脑筋。晚上再次研究班上几位同学验算所用的草稿纸,发现错误的原因,有的题不是小数点点错了位置,就是商放错了位置:有的题除数扩大了,被除数却还是没有移动小数点;有的题确立的商和除数乘的积竟然不知道放在什么位置上,总之从孙丹妮所做的式题,可以清楚看到她根本没有掌握求近似值的知识,脑子里完全糊涂着,想孙丹妮这样的学生绝不仅仅是孙丹妮,还要继续强化训练学生求商的近似数,小数点的确立,以及商的位置是求近似数的重点和难点。

【《商的近似数》说课稿】相关文章:

1.商的近似数教案

2.商的近似数教学设计

3.积得近似数说课稿

4.五年级数学商的近似数练习题

5.求近似数四舍五入法的说课稿

6.认识近似数教案设计

7.“近似数”教学反思

8.近似数 教学反思

9.小数的近似数教案

10.小数近似数教学设计

下载word文档
《《商的近似数》说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部