分解因式教学反思
“sozooo”通过精心收集,向本站投稿了15篇分解因式教学反思,下面是小编整理后的分解因式教学反思,欢迎大家阅读分享借鉴,欢迎大家分享。
篇1:分解因式的教学反思
这节课学习的主要内容是运用平方差公式进行因式分解,学习时如果直接就给同学们讲把前面在整式的乘法中学习到的平方差公式反过来运用就形成了因式分解的平方差公式,然后就是反复的运用、反复的操练的话,学生学起来就会觉得没有味道,对数学有一种厌烦感,所以我就想到了运用逆向思维的方法来学习这节课的内容。
在新课引入的过程中,我首先让学生回忆了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。接着就让学生利用平方差公式做三个整式乘法的运算。然后,我巧妙的将刚才用平方差公式计算得出的三个多项式作为因式分解的题目请学生尝试一下。只见我的题目一出来,学生就争先恐后地回答出来了。待学生回答完之后,我马上追问“为什么”时,学生轻而易举地讲出是将原来的平方差公式反过来运用,马上使学生形成了一种逆向的思维方式。之后,我就顺利地和同学们一起分析了因式分解中的平方差公式——两数的平方差等于这两个数的和与这两个数的差的积,讨论了“怎样的多项式能用平方差公式因式分解?”可以说,对新问题的引入,我是采取了由浅入深的方法,使学生对新知识不产生任何的畏惧感。接下来,通过例题的讲解、练习的巩固让学生逐步掌握了运用平方差公式进行因式分解。
篇2:分解因式的教学反思
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
篇3:分解因式的教学反思
一、试卷总体评价
整张试卷以新课程标准的评价理念为指导,以新课标教材为依据,特别在依据北师大版本教材的基础上,又参考了苏科版教材,实现了第二次教材改革的平稳过渡。试卷起点低,坡度缓,给了更多学生成功的体念。突出的特点有:
1、知识点考查全面。让题型为知识点服务,而不是本末倒置,一味的求奇求趣。对基本知识和基本技能的考查,由证明(二)、证明(三)到一元二次方程,到视图与投影,每一个知识点无不被囊括其中,真正做到了全面出击;
2、注重数学思想方法和动手能力的考查。卷中多次出现了翻折(填空第9题,解答题第24题)、拼图(解答题第21题)、动点问题(填空第10题)、分段收费(解答题第23题)等等,无一不反映了出卷者对重要的数学思想理念、数学思想方法的理解和感悟;特别是填空第4题,又小又到位,对因式分解法做了更进一步的考查;
3、加强了课程改革内容的考查。卷中在填空、选择以及第三大题里反复考查了视图与投影知识,考查分数达到了20分,比重明显加大;
4、逻辑推理回归自然。数学在走过了万水千山之后,终于回归自然,恢复了它本身的独特,这不仅让人有些感慨:数学在追求完美的过程中是否曾经丧失了自我?整张试卷共考查了两道证明题,第20题实现了等腰三角形性质和判定使用的完美结合,同时对全等三角形的判定易错点进行了考查;第22题考查四边形问题,但出卷者能反弹琵琶,把平行作为结论来证,既避开了思维定势,又引导学生严密地论证问题,对学生的基本推理能力做了全面细致的考查,让我们重新拾回了数学的原始风情,领略了数学之美。
但美中不足的是,该套试卷居然抄袭了18分的原题,而且一字不动,连数据也一模一样,这给本来公平的考试蒙上了不公平的阴影;最主要的是它给了应试者可以猜题的误导。另外,整张试卷的层次不是特别分明,有平均着墨的嫌疑,缺少区分度。
二、各题得分情况分析
我校共有12个班级,664名学生参考,校平均:77.4,合格率:81.8,优秀率:50.5,各项指标都走到了历史的低谷。但各班之间差距不大,其中班级最高平均分:79.89,最低平均分:74.31,差距5.58分;合格率最高为:86.79最低为:75,相差10.21,优秀率最高为:53.57,最低为37,差距15.43,在这次考试中,师生投入了较大的精力,学生的潜力已充分挖掘,若要取得更进一步的成绩,则需付出更多的人力、物力、和精力。下面是我们的一些统计数据:(数据来源:三(4)、三(5)班,人数:110)
分数段0—4040—6060—7575—8585—9595—100人数51121193222百分率4.5℅10℅19.1℅17.3℅29.1℅20℅从以上数据来看,我们学校的补差工作已经取得了可喜的成绩,但后备力量明显不足,其中60——75这个分数段的学生太多,他们在考试中还属于危险分子,倘若我们能把这一部分学生的潜力挖掘出来,那后面的差生将失去市场,学校成绩将会有一个大幅度提高。各题得分情况统计(单位:℅)题号123456789101112得分率92.681.583.442.5994.962.9696.370.3770.3742.5996.368.52题号13141516171819222324得分率81.4892.5992.4996.393.796.387.9638.8983.761.4252.3174.8
从以上统计数据可以发现,我们的学生在逻辑推理方面相当欠缺,在问题的实际应用方面还没有完全开窍,至于动手操作方面,学生虽然具备了一定的意识,但仍然是今后教学努力的重点。
三、典型错题分析
1、填空题的错误主要集中在第4和第10两小题上,第4题用已有知识解决陌生问题,考题的立意非常好,但中下等学生的能力没达到,导致失分;第10小题,把动点和平行四边形巧妙的结合起来,既考查了学生的运动观点,又考查了学生对平行四边形判定的掌握情况,属于基础题,但部分学生由于审题不清,错把P点的运动时间当作Q点的运动时间,致使失分严重;另外,填空第6涉及到作图后使用相似、第8是个结论开放性问题,第9是图形变换问题,这几题的失分仅次于第4和第10题;
2、选择第12、13错误较多,反映了学生对概念理解的不到位,特别是对文字语言叙述的选项存在较大的恐惧心理;
3、第20、22两道证明题,学生失分情况比预计的严重,特别是语言的严密性,解答的规范性,以及合理使用条件的能力,在学生身上都体现得较差,学生的证明有点象他们在家里的处世方法:要风得风,要雨得雨,需要什么条件就拿来为我所用,而不顾及题目本身的要求;
4、第23题的第一空,很多同学把10也加上去,导致错误;第2小问有的同学看不懂表格而列错方程或验根错误,考查形式比直接列方程解应用题要好。但由于是原题,有的班级在考前讲到了,导致学生之间差距较大。
四、今后努力的几个方向
1、坚持能力培养的方向不变。学生的能力是他们今后立身社会的根本,在数学教学中对学生进行各种能力的培养一方面是我们不可推卸的责任,另一方面我们也看到了它的可操作性,比如试卷第21题拼图,第24题翻折,第19题视图等等,学生完成的情况较好,说明我们课改下的学生在识图,动手操作,空间想象等方面的能力已经得到了明显提高,只要我们能够静下心来,真心实意的投入到课改当中,相信我们的学生在将来会有更强的生存能力和竞争优势;
篇4:分解因式的教学反思
在数学教学过程中,知识的传授不应只是教师单纯地讲解与学生简单的模仿,而应通过教学活动,让学生经历知识的形成与应用过程,从而使学生更好的理解知识的意义,掌握必要的技能,发展应用数学的意识,增强学好数学的愿望与信心。根据新课程标准要求和学生的起点能力,本节课的具体目标有两个,一个是会用完全平方公式分解因式,一个是会综合运用提取公因式法、公式法分解因式。
在新课引入的过程中,我以 “ 问题情境 —— 建立数学模型 —— 解释、应用与拓展 ” 的模式组织课堂教学。对新问题的引入,我是采取了由浅入深的方法,使学生对新知识不产生任何的畏惧感。接下来,通过例题的讲解、练习的巩固让学生逐步掌握了运用完全平方进行因式分解。整堂课教下来我觉得自己做的比较好的几点是 :
1 、突显特点。这节课的重点是运用完全平方公式分解因式,而完全平方式的判定是关键。所以我比较重视完全平方式特点分析,应用。尤其强调完全平方式标准模式的书写,这也是学生思维过程的暴露,有利于中等及中等以下学生对新知识的掌握 , 提高学生解题的准确率 , 对提高那些偏理科的数学尖子生的表达能力也有好处。对以后灵活掌握用配方法解一元二次方程,求代数式最值等知识有正向迁移作用。有利于学生思维能力的发展。
2 、自主训练。我以先引导学生分析多项式特点,再让学生尝试分解因式的方式完成例题教学。对课本上的练习题放手让学生自己完成,体现了以教师为主导,以学生为主体,及时反馈,及时巩固教学方式。
3 、及时归纳。根据初二学生认知特点,教学中我给予学生及时的多归纳,总结,使学生掌握一定的条理性和规律性,有利于学生的创新和发展。如完全平方式特点形象概括(口诀记忆法,结构的对称美),因式分解步骤概括(一提二套三查),以及换元思想,配方法的提出。
4 、重视动态生成。教学中我发现学生们思维很活跃,接受能力比较强,我对例题教学作了及时调整,由师生合作完成改为先引导学生观察、分析多项式特点,再让学生自主完成解题过程。
5 、根据学生的心理特点和实践认知水平,努力为他们创造成功的'条件。在教学过程中采用类比、探索式教学,辅以讲练结合,师生互动,总而言之,努力营造出平等、轻松、活泼的教学氛围。从新课标评价理念出发,抓住学生语言、思想等方面的亮点给予帮助、鼓励、提高学生学数学,用数学的信心。
不足之处:
4 、公式中的字母 a,b 可以表示数 , 单项式 , 多项式的广泛意义只是让学生体验,没有让学生开口表达。
以上是我上这节课的一些教学反思,在以后的教学中我会更多的结合学生的学习情况,多发现学生在学习方面的优势和不足,因材施教,更好的提高课堂效率。
篇5:分解因式的教学反思
因式分解是人教版八年级数学上册一个重要的内容,也是初中阶段必考易错的知识点,也是难点,学习时节奏应该放慢一些,讲课的时候是一节课讲一种方法,先分析符合条件的形式再练习,主要是以练习为主。讲课的过程是非常顺利的,我以为学生的掌握程度还好。就出了一些综合性的练习题,此时才发现效果是不太好的。他们只是看到很表层的东西,而对于较为复杂的式子,却无从下手。做作业时公式用错,应该注意的地方都没有注意,做完以后判断不出来是不是已不能再分解了,做题错误不断。
一、反思出现错误的原因
1、思想上不重视,觉得太简单,只是将它作为一个简单的内容来看,课后没有以足够的练习来巩固。忽略了学生的接受能力,也没有注意到灵活运用方面的巩固及题型的多样化。
2、在学习过程中太过于强调形式,按照教师的思路,直接教给学生解决问题的方法,忽略了学生对方法的理解。导致他们对于与公式相同或者相似的式子比较熟悉而需要转化的或者公式混合使用的式子就难以入手。
3、灵活运用公式的能力较差,没有建立整体观念,对于公式的形式、字母的含义没有真正理解,究其原因,和我布置的作业难度大与随堂练习的单一性及难度低的特点有关。
4、因式分解没有先想提公因式的习惯,在结果也没有注意是否进行到每一个多项式因式都不能再分解为止。
二、反思教改措施
1、备课时认真备学生。在数学教学过程中,知识的传授不应只是教师单纯地讲解与学生简单的模仿,而应通过教学活动,让学生经历知识的形成与应用过程,从而使学生更好的理解知识的意义,掌握必要的技能,发展应用数学的意识,增强学好数学的愿望与信心。在以后的教学中应该更多结合学生的学习情况去调整教学进度,多发现学生在学习方面的优势和不足之处,做到有的放矢。
2、大胆让学生参与,让学生在错误中成长。在新课学习过程中,首先让学生回忆前面在整式的乘法中遇到的乘法公式,比如平方差公式,让学生讨论怎样的多项式能用平方差公式因式分解?真正理解公式中的a和b,理解整式乘法与因式分解的关系。使学生形成了一种逆向的思维方式。采取由浅入深的方法,让学生大胆探索,经历思维过程,使学生对新知识不产生任何的畏惧感,通过例题的讲解、练习的巩固、错题的纠正,让学生逐步掌握运用平方差公式进行因式分解。
3、注重总结做题步骤。这章节知识看起来很简单,但操作性很强的,相同或者相似的式子比较熟悉而需要转化的或者多种公式混合使用的式子就难以入手,基础不好的学生需要手把手的教,因此,应该引导学生总结多项式因式分解的一般步骤:①如果多项式的各项有公因式,那么先提公因式;②如果各项没有公因式,那么可尝试运用公式;③如果用上述方法不能分解,那么可以尝试变形后选择分解方法;④分解因式,必须进行到每一个多项式因式都不能再分解为止。另外,解题步骤教师应在黑板上示范,多做题、多小考,反复强调,在复习时还要加以巩固。
总之,通过这次反思,回顾教学、分析成败、查找原因、寻求对策、以利后行的过程,我认识到了平时教学中的不足,也给我指明了努力的方向,我认识到一个教师的成长过程中离不开不断的教学反思。在反思中,已有的经验得以积累,成为下一步教学的能力,日积月累,这种驾驭课堂教学的能力将日益形成。
篇6:分解因式的教学反思
《整式的乘除——用公式法分解因式》是八年级上整式乘除一章中,属于因式分解的内容,本课是在学生学习了整式乘除中的平方差公式和完全平方公式的基础上提出来的,实际上是逆用平方差公式和完全平方公式进行因式分解,本课的教学目标十分明确,就是让学生会判断何时用公式法进行因式分解,并会用平方差公式和完全平方公式分解因式。
因式分解虽然与整式的乘法是互逆运算,但是对于学生而言,它是一个新的知识,学生在前面的学习中虽然已经掌握平方差公式和完全平方公式,然而受思维定势的影响,学生对公式的逆用会产生混淆,学生的惯性思维是:平方差公式是 ,完全平方公式是 ,一旦要将公式逆向,部分学生就比较难以接受,特别是学习能力较弱的学生,难度就更大一些。在练习中,根据学生的个体差异,我设置A、B、C组题,有效分层,开展课内技能训练,让每个学生都学有所成。
篇7:分解因式教学方案
分解因式教学方案
1.分解因式
总体说明
因式分解是进行代数恒等变形的重要手段之一,它在以后的代数学习中有着重要的应用,如:多项式除法的简便运算,分式的运算,解方程(组)以及二次函数的恒等变形等,因此学好因式分解对于代数知识的后继学习具有相当重要的意义.
本节是因式分解的第1小节,占一个课时,它主要让学生经历从分解因数到分解因式的过程,让学生体会数学思想——类比思想,让学生了解分解因式与整式的乘法运算之间的互逆关系,感受分解因式在解决相关问题中的作用.
一、学生知识状况分析
学生的技能基础:学生已经熟悉乘法的分配律及其逆运算,并且学习了整式的乘法运算,因此,对于因式分解的引入,学生不会感到陌生,它为今天学习分解因式打下了良好基础.
学生活动经验基础:由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对于八年级学生还比较生疏,接受起来还有一定的困难,再者本节还没有涉及因式分解的具体方法,所以对于学生来说,寻求因式分解的方法是一个难点.
二、教学任务分析
基于学生在小学已经接触过因数分解的经验,但对于因式分解的概念还完全陌生,因此,本课时在让学生重点理解因式分解概念的基础上,应有意识地培养学生知识迁移的数学能力,如:类比思想,逆向运算能力等。因此,本课时的教学目标是:
知识与技能:
(1)使学生了解因式分解的意义,理解因式分解的概念.
(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法.
数学能力:
(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想.
(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力.
(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力.
情感与态度:
让学生初步感受对立统一的辨证观点以及实事求是的科学态度.
三、教学过程分析
本节课设计了六个教学环节:看谁算得快——看谁想得快——看谁算得准——学生讨论——反馈练习——学生反思.
第一环节看谁算得快
活动内容:用简便方法计算:
(1)=
(2)-2.67×132+25×2.67+7×2.67=
(3)992–1=.
活动目的:如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.
注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式.
第二环节看谁想得快
活动内容:993–99能被哪些数整除?你是怎么得出来的?
学生思考:从以上问题的解决中,你知道解决这些问题的关键是什么?
活动目的:引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备.
注意事项:由于有了第一环节的铺垫,学生对于本环节问题的理解则显得比较轻松,学生能回答出993–99能被100、99、98整除,有的同学还回答出能被33、50、200等整除,此时,教师应有意识地引导,使学生逐渐明白解决这些问题的关键是——把一个多项式化为积的形式.
第三环节看谁算得准
活动内容:
计算下列式子:
(1)3x(x-1)=;
(2)m(a+b+c)=;
(3)(m+4)(m-4)=;
(4)(y-3)2=;
(5)a(a+1)(a-1)=.
根据上面的算式填空:
(1)ma+mb+mc=;
(2)3x2-3x=;
(3)m2-16=;
(4)a3-a=;
(5)y2-6y+9=.
活动目的:在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力.
注意事项:由于整式的乘法运算是学生在七年级已经学习过的内容,因此,学生能很快得出第一组式子的结果,并能很快发现第一组式子与第二组式子之间的联系,从而得出第二组式子的结果.
第四环节学生讨论
活动内容:
比较以下两种运算的联系与区别:
(1)a(a+1)(a-1)=a3-a
(2)a3-a=a(a+1)(a-1)
在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?
结论:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.
辨一辨:下列变形是因式分解吗?为什么?
(1)a+b=b+a(2)4x2y–8xy2+1=4xy(x–y)+1
(3)a(a–b)=a2–ab(4)a2–2ab+b2=(a–b)2
活动目的:通过学生的讨论,使学生更清楚以下事实:
(1)分解因式与整式的乘法是一种互逆关系;
(2)分解因式的结果要以积的形式表示;
(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;
(4)必须分解到每个多项式不能再分解为止.
注意事项:学生通过讨论,能找出分解因式与整式的乘法的联系与区别,基本清楚了“分解因式与整式的乘法是一种互逆关系”以及“分解因式的结果要以积的形式表示”这两种事实,后两种事实是在老师的引导与启发下才能完成.
第五环节反馈练习
活动内容:
1、看谁连得准
x2-y2.(x+1)2
9-25x2y(x-y)
x2+2x+1(3-5x)(3+5x)
xy-y2(x+y)(x-y)
2、下列哪些变形是因式分解,为什么?
(1)(a+3)(a-3)=a2-9
(2)a2-4=(a+2)(a-2)
(3)a2-b2+1=(a+b)(a-b)+1
(4)2πR+2πr=2π(R+r)
活动目的:通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏.
注意事项:从学生的反馈情况来看,学生对因式分解意义的理解基本到位.
第六环节学生反思
活动内容:从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?
活动目的:通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解,对矛盾对立统一的观点有一个初步认识.
注意事项:从学生的.反思来看,学生掌握了新的知识,提高了逆向思维的能力,对于类比的数学思想有了一定的理解,对于矛盾对立统一的哲学观点也有了一个初步认识.
巩固练习:课本第45页习题2.1第1,2,3题
思考题:课本第45页习题2.1第4题(给学有余力的同学做)
四、教学反思
传统教学中,总是先介绍因式分解的定义,然后通过大量的模仿练习来强化巩固学生对因式分解概念的记忆与理解,其本质上是对因式分解的概念进行强化记忆.
在新课程的教学中,对因式分解的记忆退到了次要的位置,它把因式分解作为培养学生逆向思维、全面思考、灵活解决矛盾的载体.在教师的指导下,学生通过因数分解类比出因式分解,对学生进行类比的数学思想培养,由整式的乘法与因式分解的对比,对学生的逆向思维能力进行培养,也使得学生对于因式分解概念的引入不至于茫然.
尽管新旧两种教法的对比上,新课程的教学不一定马上显露出强劲的优势,甚至可能因为强化练习较少,在短时间内,学生的成绩比不上传统教法的学生成绩,但从长远目标看来,这种对数学本质的训练会有效地提高学生的数学素养,培养出学生对数学本质的理解,而不仅仅是停留在对数学的机械模仿记忆的层面上.
总之,教学的着眼点,不是熟练技能,而是发展思维,使学生在学习的情感态度与价值观上发生深刻的变化.
篇8:公式法分解因式教学方案
公式法分解因式教学方案
1.学习目标
(1)经历从分解因数到分解因式的类比过程。
(2)了解分解因式的意义,以及它与整式乘法的关系。
(3)感受分解因式在解决相关问题中的作用。
2.学习重点:了解分解因式的意义。
3.学习难点:分解因式与整式乘法的关系。
[课前导学]
1.课前预习:阅读课本P43—P45,并完成课前检测。
2.课前检测
(1)用简便方法计算:
①=
②-2.67×132+25×2.67+7×2.67=
③992–1=.
(2)因为15=3×5,所以15能被________或___________整除。
(3)把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式__________。
3.课前学记(课前学习疑难点、教学要求建议)
[课堂研讨]
1.新知探究
(1)新课引入:
①能被100整除吗?你是怎样解决这个问题的?
方法一:__________________________________________________________;
方法二:___________________________________________________________;
②你对小明的做法有何见解:
____________________________________________________________________________
___________________________________________________________________________;
③想一想:还能被哪些正整数整除?
__________________________________________________________;
(2)新课讲解
①议一议:你能尝试把化成几个整式的乘积的形式吗?与同伴交流。
=_________________________;
②做一做:计算下列各式:
;;
;;
;
③根据上面的算式填空:
;;
;;
;
④议一议:
由得到的变形是什么运算?
__________________________________________;
由得到的变形与整式的乘法运算有什么不同?你能再举一些类似的例子吗?
不同点:________________________________________________________________;
例子:______________________________________________________________;
⑤结论:由一个______________化成__________________的形式,这种变形叫做把这个多项式___________________________;
⑥想一想:分解因式与整式乘法有什么关系?
____________________________________________________________________________
___________________________________________________________________________;
2.学习过关
(1)看谁连得准
y(x-y)
(3-5x)(3+5x)
(x+y)(x-y)
(2)下列由左边到右边的变形,哪些是因式分解,为什么?
①(a+3)(a-3)=a2-9
②a2-4=(a+2)(a-2)
③a2-b2+1=(a+b)(a-b)+1
④2πR+2πr=2π(R+r)
(3)求在一个边长为27.55cm的正方形内剪去一个边长为2.45cm的正方形的.剩余面积.
(4)已知关于x的二次三项式2x2-mx-n分解因式的结果是(2x+3)(x-1),试求m,n的值.
(5)分解因式x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x-1),乙看错了b的值,分解的结果为(x-2)(x+1),求a,b的值.
[课外拓展]
1.课后记(收获、体会、困惑)
2.分层作业(班级:_____________,学生姓名:____________)
A必做题(限时10分钟,实际完成时间:_______分钟)
(1)连一连
(2)下列由左边到右边的变形,哪些是分解因式?
①②
③④
(3)求代数式的值,其中,,=35.4,I=2.5。
(4)①能被整除吗?能被整除吗?
②能被4整除吗?
B选做题
(1).(巧题妙解题)已知a2-a-1=0,求-a3+2a2+7的值.
(2).(一题多解)用简便方法计算2-2006×.
C思考题
(1).(结论开放题)多项式x2+px+12可分解为两个一次因式的积,整数p的值可以是_______.[提示:可设x2+px+12=(x+a)(x+b),只写出一个即可]
(2).(规律探究题)试探究817-279-913能否被45整除.
更多初二数学教案,请点击
篇9:用平方差公式分解因式课后反思
用平方差公式分解因式课后反思
在新课引入的过程中,我首先让学生复习了因式分解的概念、用提公因式法分解因式,接着就让学生尝试分解 ,题目一出来,有几个学生就回答出来了。待学生回答完之后,我马上追问“为什么”时,学生轻而易举地讲出是将原来的平方差公式反过来运用,马上使学生形成了一种逆向的思维方式。之后,我就利用几个等式和同学们一起分析了因式分解中的平方差公式――两数的平方差等于这两个数的和与这两个数的差的积,讨论了“怎样的多项式能用平方差公式因式分解?”可以说,对新问题的引入,我是采取了由浅入深的方法,使学生对新知识不产生任何的畏惧感。接下来,通过例题的讲解、练习的巩固让学生逐步掌握了运用平方差公式进行因式分解。例题及练习呈现的次序尽量本着由简入难螺旋上升的原则,1、代表单独的数字或字母,如
2、代表单独的数字或字母,或只含数字或字母的`单项式,如
3、先提公因式再用公式分解的,如
尽管课上讲了大量的题目也做了相应的练习,但是作业中仍暴漏了很多问题,他们只是看到很表层的东西,而对于较为复杂的式子,却无从下手,课后我总结的原因有以下三点:
1、思想上不重视,因为对于公式的互换觉得太简单,只是将它作为一个简单的内容来看,所以课后没有以足够的练习来巩固。
2、灵活运用公式(特别与幂的运算性质相结合的公式)的能力较差,如要将 化成 然后应用平方差公式这样的题目却无从下手。究其原因,和我布置的作业及随堂练习的单一性及难度低的特点有关。
3、因式分解没有先想提公因式的习惯,在结果也没有注意是否进行到每一个多项式因式都不能再分解为止,比如最简单的将 提公因式后应用平方差公式,但很多同学都是只化到 而没有化到最后结果。
因式分解是一个重要的内容,也是难点,我认为我对教材内容的把握和讲解是比较到位的,但是我忽略了学生的接受能力,也没有注意到计算题在练习方面的巩固及题型的多样化。在以后的教学中应该更多结合学生的学习情况去调整教学方法和内容,多发现学生在学习方面的优势和不足之处。
篇10:《分解质因数》的教学反思
在教学分解质因数时,如何让孩子自己建构出短除法?一直困扰着我,构思了几天,一直没有好办法。
把一个合数分解质因数,大部分学生都能通过图表的方式进行分解,但怎样把图表转化为短除呢?带着这么一个旋而未解的疑问走上了讲台。心想大不了,直接告诉学生得了。
果然,学生很快能用图表的形式把合数分解质因数,当我想把短除法教给学生的时候,一个学生突然说,老师这种方法不好,太麻烦了!这么一说,得到了全班同学的认可。我心想,既然他们认为不简单,干脆,就算他们自己讨论不出来,一节课损失也不大,于是我说:“既然你们认为不简单,能不能想出一个计算的方法,把合数的质因数求出来呢?”全班学生积极的行动起来。(在小组交流的时候,我适当的给学生一定的启示:计算质因数跟哪一种计算比较接近呢?)
讨论了十分钟,学生真把方法想出来了。
大部分小组采取了两步除法,个别小组把两个除法算式合并成了一个,讨论之后全班同学都认可了第二种方法,在统一意见之后,我问:“同学们你们发现什么问题了吗?”(由于这种算式是从下往上做,由于算式的长度不是预知的,所以往往会出现不知道从本子的什么位置做起的问题,少了,纸张不够,多了就会浪费)孩子们都为他们的发现高兴,根本不会去思考他们的方法有什么缺点,我没有直接点出问题,而是让学生把64分解质因数,孩子们高兴的拿起笔来就做。大部分孩子是擦了做,做了擦,问题发现了。“老师,这样做不行!”“为什么不行呢”“太长了,写不开。”“怎么办?”这时有个学生提供了一条建议:“老师,我们反过来做行不行?”“试试看!”结果孩子们陆续讨论出第三、四种结果。有个孩子还说道:“这样做才舒服。”“为什么舒服了呢?”“它跟我们写字的顺序一样。”
问题解决了,没想到这么简单,赶紧回到办公室,把它记下来,心上石头终于落地了!
篇11:《分解质因数》的教学反思
有以下几个问题值得反思:
第一,质因数、分解质因数的意义和用短除法分解质因数的教学落实不到位。
通过学生的观察发现,引出了质因数的定义后,学生对质因数的理解还是可以的,但对分解质因数的意义就处理得不够好,我只是通过60=2×2×3×5这个例子指出60这个合数可以通过2、3、5这几个60的质因数相乘的形式表示出来,像这样的表示方法就叫做分解质因数,接着课件显示分解质因数的意义,指出分解质因数的书写格式要注意的地方后就直接进入几个式子是否是分解质因数的判断练习。其实在练习之前,我还可以抓住质因数和分解质因数这两个意义的重点词提出质因数和分解质因数是两个不同的概念,指出质因数是一个质数,这个质数是对应合数的因数,而分解质因数是一个合数的表示形式,是用几个质因数想乘的形式表示一个合数。经过这一强调后再来做相关练习可能效果会更好。
第二,要明白什么时候该老师讲,什么时候该学生讲。在教学短除法分解质因数时,我本来的设想是想让学生去说,想经过他们的思考去认识短除法分解质因数的一般规律,这样印象会更深刻。想不到这种方法并没有收到很好的效果,即使后来老师的点评中也强调了各步骤中的细节问题,但在学生练习时还是出现了很多问题。所以像短除法这样操作性步骤性强的基础性的知识,刚开始还是由老师来讲解比较好,因为学生的第一印象很重要,最初灌输的知识它们很快就会定型,所以繁琐性的问题还是由老师讲比较好。但如果是学生完全可以通过观察发现的知识点,还要由学生自己去发现,老师作引导便可。
第三,清楚课堂上学生才是主角,多给学生展示的机会。在学生回答问题时,没有给太多的时间让学生思考,有几次在发现学生迟疑了一点,我就会忍不住提示他。整节课下来,个人感觉也是我讲得多,学生讲得少。用拍电影做个比喻,老师既是编剧,又是导演,更身担策划,舞台设计等多重身份,但即使这样,主角永远都是学生,学生才是学习的主体。在学生学习过程中,老师只起到穿针引线的作用。时刻记住要把学习的主动权还给学生。
篇12:《分解质因数》的教学反思
本节课的教学目标有三点:
1、在自主写算式、小组合作验证等学习活动中,经历认识质因数、分解质因数的过程。
2、知道质因数,会把一个数分解质因数。
3、在小组合作中积极与他人交流,体验合作学习的收获和乐趣。
认识质因数、会分解质因数是本节课知识技能目标的重点和难点。而自主探究、合作交流恰恰是突破难点的有效手段,在突破难点的过程中有效地落实过程性目标和情感目标。
在认识质因数的教学中,利用课前学生猜老师的年龄、身高、体重的数据,选取其中具有代表性的数据开展研究。如先研究老师的年龄(36),通过学生自主写算式、比较、分析、交流得出36=2×2×3×3是与众不同的,从而引出“质因数”的概念,而此时学生对质因数的概念并不是真正了解。因为概念的形成大致要经过以下几个过程:展示大量的感性材料——分析、比较、综合、抽象——得出一类事物的本质属性——初步形成概念的表象——试误辨析充分理解概念的内涵和外延——形成概念——付诸实践应用——加深概念的理解。而上述过程中学生只是初步形成了概念的表象。所以,此时,充分利用黑板上板书的大量数据,让学上按要求把他们写成几个质数相乘的形式,使学生在实际的操作过程中、在自我试误辨析中、在同学间的交流中形成质因数的概念。在质因数概念的形成过程中,对分解质因数的基本方法也已基本形成。下面关于分解质因数的教学主要是指导学生书写方法和格式方面的问题了。水到渠成,迎刃而解。
篇13:力的分解教学反思
力的分解教学反思
《力的分解》是整个高中物理力学的基础之一,与“力的合成”内容相辅相承,理解力的分解是力的合成的逆运算,利用平行四边形进行力的分解,也是对今后对矢量分析的基础。
一、课堂设计思路
本次课堂设计,我的思路源于“新课改”的教育思想,将“情景设置”引入教学中,设计多个简单的小实验,引导学生关注身边的物理象,辅以多媒体现代教育手段,增强师生间的课堂互动,让学生融入一个“情,景,理”的思考与钻研的过程,将以往的学生适应课堂的模式转化为课堂适应学生的模式,以期达到学而有趣,知识固化的目的。
二、课堂进行过程
在上课之初,我先设置一个有趣的实验,激发学生的学习兴趣,实验效果明显,实验有趣,让学生带着问题进入新课的学习。
然后我们回顾了力的合成的内容,并再次强调了力的合成满足平行四边形法则,从而引出力的分解是力的合成的逆运算。通过橡皮绳中间吊一个钩码,改变夹角,让学生总结出,同一个力可以分解为无数对大小方向不同的分力。
通过两个简单易行的小实验:实验一是体验绳子对手指有拉力的作用效果;实验二让学生信手拈来的书本放在手掌上体验重力的作用效果。通过亲身的体会理解力的分解。在这个探索的情景里,学生有了知识的准备以及兴趣的激发,给整节课的学习氛围奠定了良好的基调。
而后,通过对滑梯和引桥的倾角分析,巩固刚才的.力的分解知识。至此,学生已经具有了一定的力的分解的知识,从而让学生分析上课初进行的挑战大力士的实验的原理。最后通过课本的“讨论与交流”进一步巩固平行四边形定则在力的分解中的应用。最后,对课堂进行小结。
课后作业的布置再次体现了关注身边的事物,引导学生学以致用的思想,布置了一题探究题。
三、课堂实施效果
本堂课完整的完成了教学任务。整堂课志在提高学生的学习兴趣,并促使其在兴趣驱使下对物理规律进行深入探讨和研究并掌握新学知识。本堂课的实施基本上达到了预期的目的,学生由情景实验入手,表现了极大的学习兴趣,给整堂课奠定了良好的氛围基调。
在课上,黑板的板书辅以适当的多媒体,表现了较高的教学效率,充分解放学生的形象思维,更快接受物理情景,从而有更多的精力投入物理问题思考。
知识与巩固练习均环环紧扣,难度递增,有代表性,使整堂课虽氛围轻松却知识紧凑,符合学生对知识的认知和理解掌握过程,体现了国家对于高中教育新课改的指导思想。
课堂上教师在授课方式上的激情投入和引导,也在一定程度感染了学生;师生间的互动,也使学生了有学习的“主人翁”精神,并从中提出了创新的思维,如学生主动上台进行挑战大力士实验,在练习中学生积极参与讨论与交流,是本堂课的亮点。
课后学生反映以及作业练习情况均表现出本堂课在知识的授予基本上达到了预期的教学目标,学生大体上掌握了“力的分解”方法,并“按需分解”。
篇14:一年级数学《分解合成》教学反思
一年级数学《分解合成》教学反思
布鲁纳说:“学习的最好刺激是对所学材料的兴趣。”在教学中我安排了各种形式的游戏活动,通过游戏激发学生的兴趣,是他们在玩中学,在乐中悟。学生在自由、轻松的课堂气氛下,主动地参与到教学游戏中。学生对分解合成已有一定的认识,我重视让学生从已有的生活经验和已有的'知识中学习和理解数学,从他们熟悉的生活中挖掘活动的素材,通过学生的动一动、摆一摆、说一说等活动,加深对数的分解合成的理解,使他们感受到数学的趣味和作用,对数学产生亲切感。从课堂的反馈来看,学生对游戏活动比较感兴趣,参与性强,情感体验积极,对本节课教学目标的完成起到很好的促进作用。
但还有一些问题需要进一步研究,如学生原有的经验不够一致,甚至差别很大,少数学生在活动中处于旁观者的态度或是人云亦云,教师还需适时点拨、提醒、帮助他们,但在课堂上时间和精力毕竟有限,难免有时会注意不到,因此在提倡个体化学习、小组合作学习的今天,如何关注“学困生”的发展,仍是我们需要进一步研究的课题。
篇15:4的分解和组成教学反思
由于幼儿刚刚学习了2和3的分解和组成,前两次主要是由老师拿实物进行分合,帮助幼儿理解分合的含义,然后让孩子们能用语言进行表达分和合的过程,初步理解整体与部分的关系。在已具备这样的条件下,在学习4的分解和组成时,我就设计了这样一个活动,让幼儿们通过自己的尝试、来探索学习4的组成,把时间和空间还给孩子,让他们在自己的摸索中去获得知识,找寻答案。
这个活动我设计了四个环节:第一环节是复习3的分解和组合。第二环节:小组活动、学习4的分解。这个环节是本活动的重点,也是难点,我为幼儿准备了一份水果(四个)、两个盘子、记录表。第三环节,是集体观察发现问题,学习有规律地分合一个数。第四环节:活动延伸。
在整个活动中我尝试着改变以往数学活动中“老师教,幼儿学”的教学模式,利用幼儿日常熟悉喜欢的水果作为学具,让幼儿在分一分、记一记的同时快乐学习,激发幼儿的学习兴趣。整个活动都通过幼儿的自主尝试探索,学习4的分解组合。但活动过程中也出现了许多不足之处,通过这节课的学习还有少数幼儿没有掌握,在课后经过反思我又作了以下的调整:
1.第一环节中在幼儿说分法时,老师板书示范中应及时穿插图形和数字的记录,为幼儿下一环节的记录作好铺垫,降低难度。
2.在第二环节中幼儿操作记录后,把作业纸展示于黑板上讲评,这样更好地集中幼儿注意力。
3.按顺序分合4的组成不能完全体现,暂时不做要求。(放到以后的学习活动中)。
4.老师应给孩子更多的空间,相信孩子的能力,让孩子在活动中自主地发现问题、总结问题、归纳出结果。
总之,通过这节课的活动孩子们的收获也不小。
5、《逆用完全平方和(或差)公式进行因式分解》教学反思
公式法进行因式分解,除了逆用平方差公式之外,还有两个相对来说较难的公式逆用即完全平方和(或差)公式:(a+b)2=a2+2ab+b2。
逆用完全平方公式进行因式分解关键同样是搞清完全平方公式的结构特点:等号左边是一个二项式的平方,等号右边是一个二次三项式,其中有两项是公式左边二项式中每一项的平方,另一项是左边二项式中那两项乘积的2倍。或等号右边记作:首平方,尾平方,2倍之积中间放。
有了前边学习完全平方公式为基础,逆用完全平方公式进行因式分解只需要“颠倒使用”即可:等号右边作为“条件”,左边作为“结果”,但对学生来说,还是相当困难的。
逆用完全平方公式进行因式分解的步骤可分三步:
1、写成“首平方,尾平方,2倍之积中间放”的形式
2、按公式写出“两项和的平方”的形式,即因式分解
3、两项和中能合并同类项的合并。
例题及练习的呈现次序尽量本着先易后难、先单一后综合的螺旋上升原则。
1、a、b代表单独单项式,如:(1)m2-6m+9(2)4a2-4ab+b2
2、a、b代表多项式,如:(1)(a+2b)2-8a(a+2b)+16a2
(2)4(x+y)2+25-20(x+y)
在此要有“整体思想”的意识,注意:相同部分作为一个整体然后再套用公式。
3、先提取公因式,再用完全平方和(或差)公式如:
(1)ay2-2a2y+a3
(2)16xy2-9x2y-y2
4、先转化一步,再用完全平方和(或差)公式,如:
(1)-m2+2mn-n2(2)3a2+6a+27
尽管课前进行了充分的准备工作,但是学生作业中仍暴露出许多问题,如部分学生直接感到无从下手。
6、因式分解与组成教学反思
导语:因式分解是人教版八年级数学上册一个重要的内容,也是初中阶段必考易错的知识点,也是难点,学习时节奏应该放慢一些,讲课的时候是一节课讲一种方法,先分析符合条件的'形式再练习,主要是以练习为主。以下是小编整理因式分解与组成教学反思的资料,欢迎阅读参考。
在数学教学过程中,知识的传授不应只是教师单纯地讲解与学生简单的模仿,而应通过教学活动,让学生经历知识的形成与应用过程,从而使学生更好的理解知识的意义,掌握必要的技能,发展应用数学的意识,增强学好数学的愿望与信心。根据新课程标准要求和学生的起点能力,本节课的具体目标有两个,一个是会用完全平方公式分解因式,一个是会综合运用提取公因式法、公式法分解因式。
在新课引入的过程中,我以 “ 问题情境 —— 建立数学模型 —— 解释、应用与拓展 ” 的模式组织课堂教学。对新问题的引入,我是采取了由浅入深的方法,使学生对新知识不产生任何的畏惧感。接下来,通过例题的讲解、练习的巩固让学生逐步掌握了运用完全平方进行因式分解。整堂课教下来我觉得自己做的比较好的几点是 :
1 、突显特点。这节课的重点是运用完全平方公式分解因式,而完全平方式的判定是关键。所以我比较重视完全平方式特点分析,应用。尤其强调完全平方式标准模式的书写,这也是学生思维过程的暴露,有利于中等及中等以下学生对新知识的掌握 , 提高学生解题的准确率 , 对提高那些偏理科的数学尖子生的表达能力也有好处。对以后灵活掌握用配方法解一元二次方程,求代数式最值等知识有正向迁移作用。有利于学生思维能力的发展。
2 、自主训练。我以先引导学生分析多项式特点,再让学生尝试分解因式的方式完成例题教学。对课本上的练习题放手让学生自己完成,体现了以教师为主导,以学生为主体,及时反馈,及时巩固教学方式。
3 、及时归纳。根据初二学生认知特点,教学中我给予学生及时的多归纳,总结,使学生掌握一定的条理性和规律性,有利于学生的创新和发展。如完全平方式特点形象概括(口诀记忆法,结构的对称美),因式分解步骤概括(一提二套三查),以及换元思想,配方法的提出。
4 、重视动态生成。教学中我发现学生们思维很活跃,接受能力比较强,我对例题教学作了及时调整,由师生合作完成改为先引导学生观察、分析多项式特点,再让学生自主完成解题过程。
5 、根据学生的心理特点和实践认知水平,努力为他们创造成功的条件。在教学过程中采用类比、探索式教学,辅以讲练结合,师生互动,总而言之,努力营造出平等、轻松、活泼的教学氛围。从新课标评价理念出发,抓住学生语言、思想等方面的亮点给予帮助、鼓励、提高学生学数学,用数学的信心。
不足之处:
1 、探索用于因式分解的完全平方公式及特点分析时,没有把握好时间,这是导致后面时间不够的原因之一。
2 、课堂预设没有完成,根据学生特点,我设计了这样一个教学环节:根据完全平方式特点,请学生构造一个完全平方式,并分解因式。当学生基本完成后,组织学生同桌交流,交流方式为:请把你的构思告诉同伴,先一个听,一个评。然后调换角色。由于时间没把握好,导致本环节没有完成。
3 、语言不够简练,说得太多,没有注意纠正学生书写错误。学生作业过程中有两处出错,我没发现。
4 、公式中的字母 a,b 可以表示数 , 单项式 , 多项式的广泛意义只是让学生体验,没有让学生开口表达。
以上是我上这节课的一些教学反思,在以后的教学中我会更多的结合学生的学习情况,多发现学生在学习方面的优势和不足,因材施教,更好的提高课堂效率。
【分解因式教学反思】相关文章:
6.目标分解范文
7.任务分解范文
9.力的分解教案
10.党风廉政建设责任分解方案






文档为doc格式