欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>加法交换律教案

加法交换律教案

2024-02-08 09:04:23 收藏本文 下载本文

“sandy1000”通过精心收集,向本站投稿了19篇加法交换律教案,小编在这里给大家带来加法交换律教案,希望大家喜欢!

加法交换律教案

篇1:《加法交换律和结合律》教案

《加法交换律和结合律》教案

教学内容: 教科书第56―57页的命题及58页的“想想做做”。 教学目标: 1、使学生经历探索加法去处律的过程,理解并掌握加法的交换律和结合律,并初步感知加法运算的价值,发展应用意识。 2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维的水平。 3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。 教学过程: 一、课前一分钟: 师:同学们,我们来玩个语言游戏好吗?老师说个词,你们把它倒过来说一遍,比如,我说“喜欢”,你们就说“欢喜”,会说吗? 好,现在开始:“千万”(生:万千);“语言”(生:言语)。很好,接着来,回答声音再响亮些!“好听”(生:听好);“好说”(生:说好);“好学”(生:学好)。(贴出) 师:好!这可都是你们自己说的哦!“听好!说好!学好!”老师希望大家在这节课的学习中都能做到这三点。 二、创设情境、探究例题 学习好,身体也要棒才行!为了增强体质,同学们都积极投入到体育锻炼中去。让我们去看看吧!(出示例题图) 从这张图片中,你获得了哪些数学信息? 你能根据这些信息,提出几个用加法计算的问题吗? 我们先来研究第一个问题:参加跳绳的一共有多少人? 你们能马上口头列式并口算出结果吗?还有其他的方法来解决吗? 这两道算式的得数相同,我们可以把这两道版式写成这样的等式。 (板书)28+17=17+28 2、引导发现,  提问:请大家认真观察,右边的算式和左边的算式相比较,有什么共同点,有什么不同点? 帮助学生发现交换加数位置,和不变。 3、验证 其它的式子有没有这样的规律呢?出示: 38+12○12+38 450+50○50+450 7000+0○0+7000 你们也能再写几个这样的等式吗?   指名读一下。 总结通过那么的例子可以证明这句话是对的,  4、个性创造,构建模型。 问:用语言表示这一规律要说一句很长的话,比较难记忆。你能不能自己喜欢的符号、图形或用字母把这个规律表示呢? 学生尝试用符号、图形或用字母来表示加法交换律,教师巡视,并选一些典型的进行板书。(学生可能有类似以下一些表示方法:√+×=×+√ ▲+■ =■ + ▲ 甲数+ 乙数=乙数+甲数 a+b=b+a 等) 小结:同学们都自己用自己的喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:a+b=b+a。 这就是加法的第一个运算律:加法交换律。板书:加法交换律。 6、联系旧知,简单应用。 这个规律其实是我们的老朋友了,你们记得以前在什么地方见过它吗? 小练习:计算并验算 690+174= 提问:怎么验算,根据什么运算律? 三、探索加法结合律 1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究第二个问题。看看我们有没有新的发现?读题。参加活动的一共有多少人?   学生列式计算,教师巡视。注意发现用不同的方法解答,并指名两人板演不同方法的算式,说说每个算式各是先算什么。 2、让学生观察和比较两个不同算式的计算结果。说明由于两个算式的结果相同,所以可以写成等式。板书。 (28+17)+23=28+(17+23) 3、提问:这两个算式有什么相同的地方?有什么不同的地方? 小结:这两个算式中三个加数分别相同,加数的'位置也相同。但两个算式加的顺序不同:左边的算式是先把前两个数相加;右边的算式是先把后两个加数相加。不管是哪两个数先加,最后的结果都一样。 4、算一算,下面的○里能填上等号吗? 其他的式子是不是也有这样的规律呢?我们来验证一下。 (45+25)+13○45+(25+13) (36+18)+22○36+(18+22) 5、归纳加法结合律: (1)观察这三个等式, 最后你能发现什么规律?向你的同桌说一说? (2)如果用a、b、c分别表示这三个加数,这个规律可以怎么样表示呢? (独立写一写)板书:(a+b)+c=a+(b+c) a、b、c代表什么?(a+b)+c表示什么?a+(b+c)表示什么? 小结:这就是加法结合律。板书:加法结合律。 全课总结:这节课我们一起探索了加法的哪两个运算律?有哪些发现? 指出:交换律和结合律都是在加法运算中存在的,涉及到的数都是加数。加法交换律只是交换加数的位置,和不变;加法结合律是改变运算顺序,和不变。 四、巩固练习1、“想想做做”1 同学们能不能分清什么是交换律什么是结合律呢? 下面的等式各运用了加法的什么运算律? 82+0=0+82 47+(30+8)=(47+30)+8 (84+68)+32=84+(68+32) 75+(48+25)=(75+25)+48 最后一题让学生体会在一个式子里既应用了加法的交换律又应用了加法的结合律。 插入“朝三暮四”的故事(机动) 下面我们来轻松一下,听个小故事。 (1)、美猴王孙悟空从天宫带了许多跆业交ü山,他把这些多鲜美的桃子分给山上猴子。他对身边一只小猴说:“从明天起,我每天早上给你3只桃子,晚上给你4只桃子”。贪心的小猴一听不满意地说:“早上才3只桃子,大王太少了。请你多给点。”悟空灵机一动说:“那这样吧,早上4只,晚上3只吧!”小猴连忙高兴地说:“多谢大王。” (2)、其实同学们一定很明白这两种分法,桃的总和是……(生:一样多或不变的。) (3)、孙悟空在这则朝三暮四的故事中运用了我们数学中的运算律是(生:加法交换律),满足贪心小猴的要求。 我们同学今天学会了加法交换律,一定不会像故事里的小猴那么愚蠢了。   2、想想做做2。 说说其中的第二题和第四题是根据什么填的。 3、想想做做4。   把学生分成两小组完成下面两组题目。   38+76+24 (88+45)+12   38+(76+24) 45+(88+12) 每组中哪题更简便,为什么?使用了什么规律? 小结:看样子在加的过程中使用加法交换律和加法结合律把能得整十整百的数先算,可以达到简便的效果。   五、全课总结,评价反思。

篇2:加法交换律 加法结合律教案

加法交换律 加法结合律(教案)

加法交换律 加法结合律 教学内容:P28例1(加法交换律) P29/例2(加法结合律) 教学目标: 1.引导学生探究和理解加法交换律、结合律。 2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。 3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。   教学过程: 一、主题图引入 观察主题图,根据条件提出问题 (1)李叔叔今天一共骑了多少千米? (2)李叔叔三天一共骑了多少千米?等等。 引导学生观察主题图 教师根据学生提出的问题板书。 二、新授 练习本上用自己的方法列出综合算式,解答黑板上问题。 教师巡视,找出课堂上需要的'答案,找学生板演。 学生观察第一组算式,发现特点。 引导学生观察第一组算式,总结出:40+56=56+40 试着再举出几个这样的例子。根据学生的举例,进行板书。 通过这几组算式,你们发现了什么? 学生发现规律:两个加数交换位置,和不变。这叫做加法交换律。 教师根据学生的小结,板书。 你能用自己喜欢的方式表示出加法交换律吗?板书:a+b=b+a 学生用多种形式表示。符号表示:△+☆=☆+△ 引导学生观察第二组算式,总结出:(88+104+96)=88+(104+96) 学生观察第二组算式,发现特点。 学生继续观察几组算式。 出示:(69+172)+28 69+(172+28) 155+(145+207)(155+145)+207 通过上面的几组算式,你们发现了什么?学生总结观察到的规律。 教师板书:先把前两个数相加,或者先把后两个数相加,和不变。这叫做叫法结合律。 学生用自己喜欢的方式表示加法结合律。 符号表示:(△+☆)+○=△+(☆+○)   教师板书: (a+b)+c=a+(b+c) 学生根据这两个运算定律,举一些生活中的例子。 三、巩固练习P28/做一做 P31/4、1 四、小结 学生小结本节课学习的加法的运算定律。 今天这节课你们都有什么收获? 你能把这些运用于以后的学习中吗? 五、作业: P31/3   板书设计: 加法的运算定律 (1)李叔叔今天一共骑了多少千米?(2)李叔叔三天一共骑了多少千米? 40+56=96(千米) 56+40=96(千米)88+104+96 104+96+88 40+56=56+40 =192+96 =200+88 两个加数交换位置,和不变。=288(千米)  =288(千米) 这叫做加法交换律。(88+104)+96=88+(104+96) a+b=b+a (69+172)+28=69+(172+28)  155+(145+207)=(155+145)+207 先把前两个数相加,或者先把后两个数相加, 和不变。这叫做加法结合律。 (a+b)+c=a+(b+c)

篇3:数学教案-加法交换律

教学内容:六年制小学数学第七册第22页。

教学目标

1.能从实际例子中,观察、概括出加法交换律。

2.理解掌握加法交换律,会用字母公式表示加法交换律。

3、提高观察、概括能力。

教学过程

(一)呈现事实,形成问题

1.出示准备题:

27+73      73  +27

58+37      37+58

2.学生计算得数。

3、请学生观察两组算式,说说有什么发现?是否任意一个加法算式中调换两个加数的位置,都会出现和不变的现象?

4、根据学生回答板书:猜想――两个数相加,交换加数的位置它们的和不变。

5.问题:这个猜想正确吗?

(二)验证猜想,形成结论

1,验证我们的猜想是否正确,我们可以举更多的例子,符合猜想的例子越多,猜想将被认为越可靠。

女生完成:3024+76     96+237

男生完成:76+3024     237+96

学生汇报答案。加数相同,调换位置,得数也相同,符合猜想。

2、同学自己设计一组式题验证,小组交流结果,汇报结论。

3、这种猜想看起来比较可靠,但我们不可能把符合猜想的例

全部举完过就给我们的证明留下了遗憾,有没有其他的办法呢?我们来看生活实例。

例:一家电影院,走廊的左边是476个座位,走廊的右边有518个座位,一共有几个座位,(用两种方法计算)

(1)口答列式:476+518      518+476

为什么这样列式?

(2)判断:得数会相同吗?

(3)计算结果,得出结论:476+518=518+476

为什么会相等呢?固为根据加法的.意义,这两个算式都是把两个相同的部分数合并起来,所不同的只是加数在算式中的位置,它们的意义是一样的。所以,在加法算式中,交换加数的位置,和不变。

4.揭题:这就是我们今天要学习的“加法交换律”(板书)

5.学生自学书本、质疑。

6.小结:

(1)什么是加法交换律?

(2)用字母a、b表示加法交换律。板书:a+b=b+a

(三)应用成果,巩固新知

1.学习加法交换律的最终目的是用。

问:验算加法,我们用什么方法?根据什么?

2.“练一练”1,先计算出得数,再用加法交换律进行验算。

问:验算方法运用什么运算定律?

3、“练一练”

(1)分组完成。(每组一生板演,比赛形式进行)

(2)指名说出验算方法和根据。

4、放录音、做游戏――“我该在什么位置”

470+830=830+    101     3+214=       十

256+214=          +256               十 367=367 +

(1)将卡片470、880、1013、214、58、58发给六个同学。

(2)伴随音乐,寻找自己的位置,并贴上。

(3)小结:这些算式都用等号连接,两边都有相同加数,那就意味着另一个加数也相同,我们并用了加法交换律。

(四)反思过程,学会学习

1.这节课我们发现了什么?是怎样获得证明的?  (举例证明一意义论证) 2.这一规律已有哪些运用?

3.质疑:满足“和不变”这一要求,有没有其他可能?

如:37+73=     +          在     中可以填哪些数据?

(五)作业

篇4:《加法交换律与结合律》教案

《加法交换律与结合律》教案

教学内容:苏教版小学数学第七册第七单元运算律

第56――58页例题,“想想做做”的第1――5题。

教学目标:1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会运用加法交换律进行加法验算,初步感受到应用加法交换律和结合律可以使一些计算简便。

2.在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。

3.让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心,初步形成独立思考、合作交流的意识和习惯。

教学重点:发现规律,理解和掌握运算律。

教学难点:概括运算律并用字母表示。

教学过程:

一.师生合作,探索加法交换律

1.创设情境,解决问题

(1).谈话:随着学校开展的“植根童趣,放飞童心”的活动以来,课间同学们的活动变得更加丰富多彩了。(出示挂图)

提问:从这张图片中,你获得了哪些数学信息?

(2).你能根据这些信息提出一些用加法计算的问题吗?

指名口答。

(3).今天这节课,我们就一起来研究其中的这两个问题

(出示问题)

(4).先解决第一个问题:参加跳绳的一共有多少人?

①应怎样列式计算?

指名回答,教师板书:28+17=45(人)

②追问:还可以写成什么?

指名回答,教师板书:17+28=45(人)

2.观察、比较、发现规律

(1).这两道算式都是求什么的人数?结果都是多少?

(2).你能用一个符号把它们连接起来吗?

板书:28+17=17+28

(3)仔细地观察这个算式,在等号的两边,什么变了?什么不变?你有什么发现?

同桌交流

(4).你们能够自己模仿写出几个这样的算式吗?试试看。

追问:这样的算式能写几个?

指名回答,教师板书。

(5).你能用自己喜欢的方法把我们发现的规律简单明了地表示出来吗?可以用符号、字母、文字等。

学生试着写一写。

指名回答,教师板书。

(6).谈话:刚才同学们能用自己喜欢的方式表示了我们发现的规律,这些规律叫运算律。但是自己创造的'符号只有自己明白,还要学习数学界公认的表示方法,那就是用字母a、b分别表示两个加数,我们发现的规律就可以写成a+b=b+a,这个规律我们给它起个名字叫加法交换律。

(7).谁来说说加法交换律用字母怎样表示?用语言怎样表达?

齐读。

(8).其实加法交换律我们早就会用了,想想看,什么时候我们用过?

指出:在验算加法时用的就是加法交换律。

3..练习:

96+35=35+

204+57=()+204

a+45=45+()

二.学法迁移,探索加法结合律

1.解答例题,发现规律

(1).刚才通过解决第一个问题,我们得到了加法交换律,现在我们再来研究第二个问题,看看有没有新的发现?

(2).齐读问题。你会列式解决这个问题吗?

你打算先求什么?再求什么?

学生练习,教师巡视。

学生汇报,教师板书:(28+17)+23=68(人)

28+(17+23)=68(人)

……

(3).比较一下这两道算式,他们有什么相同点和不同点?

(4).这两道算式结果相同,我们可把它写成怎样的算式?

板书(28+17)+23=28+(17+23)

(5).练习:

下面的○里能填上等号吗?

(45+25)+23○45+(25+23)

(36+18)+22○36+(18+22)

(6).观察这三个等式,每组的两个算式有什么相同的地方?有什么不同的地方?你从这些等式中能发现怎样的规律,和你的同桌交流一下。

和不变,这就是我们今天所学的第二个运算律――加法结合律。

3.练习

(45+36)+64=45+(□+□)

560+(140+70)=(560+140)+□

a+(27+b)=(□+□)+b

三.组织练习

1.第58页想想做做第1题。

仔细观察,同桌交流后汇报。

重点讨论第四个等式,引导学生发现这里同时运用了两种加法运算律。

2.想想做做第3题。

学生计算第1小题,并用加法交换律验算,请学生板演。

评讲,让学生体会加法交换律的价值。

3.想想做做第4题

(1).下面我们来比一比谁做得对又快。

男生计算每组题中的第1小题,女生计算每组题中的第2小题。

(2)交换题目再来比一比。

(3).问:如果让你来选,你愿意做哪一题?为什么?

(4).小结:因为运用了加法运算律可以使计算简便,而每组中的第2小题都运用了加法运算律,所以第2小题做得快。

4.想想做做第5题

(1).谈话:在做第4题时,大家觉得先把和是100的两个数加起来,下一步就容易算了,那么什么样的两个数和是100呢?下面我们来做第5题,你能很快找出哪两片树叶上数的和是100吗?

(2).学生独立连线,同桌互相校对。

(3).提问:什么样的两个数和是100?

(4).小结:看来,在计算过程中,要有一双敏感的眼睛,看到数字就能很快地判断出能不能凑成整百数。

四.回顾总结

有个成语叫“学有所成”,请同学们说说看,这节课你学到了什么?有什么新的收获?

五.作业:想想做做第3题剩下的题目。

教学反思:这节课主要教学加法的交换律和结合律,创设学生熟悉的生活情境出发,让学生根据信息自由地提问,培养了学生的发散性思维,以及问题意识,同时也符合新课程“创造性地使用教材”的理念。在教学中通过对两个算式的观察比较,唤醒学生已有的知识经验,使学生感知加法交换律,组织学生写出类似的等式,帮助学生积累感性材料,丰富学生的表象,同时鼓励学生用自己最喜欢的方法总结出加法交换律和加法结合律,学生能较快的体会出这两种运算律,使学生体会到符号的简洁性和概括性,发展学生的符号感。通过几个层次的练习,使全体同学都参与到有趣的数学学习中,体会到数学的乐趣,又复习巩固了全课的内容,为以后教学应用运算律进行简便计算作好铺垫。

篇5:四年级数学《加法交换律、加法结合律》教案

教学内容:P28例1(加法交换律)P29/例2(加法结合律)

教学目标:

1.引导学生探究和理解加法交换律、结合律。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学过程:

一、主题图引入

观察主题图,根据条件提出问题

(1)李叔叔今天一共骑了多少千米?

(2)李叔叔三天一共骑了多少千米?

等等。

引导学生观察主题图

教师根据学生提出的问题板书。

二、新授

练习本上用自己的方法列出综合算式,解答黑板上问题。

教师巡视,找出课堂上需要的答案,找学生板演。

学生观察第一组算式,发现特点。

引导学生观察第一组算式,总结出:

40+56=56+40

试着再举出几个这样的例子。

根据学生的举例,进行板书。

通过这几组算式,你们发现了什么?

学生发现规律:两个加数交换位置,和不变。这叫做加法交换律。

教师根据学生的小结,板书。

你能用自己喜欢的方式表示出加法交换律吗?

板书:a+b=b+a

学生用多种形式表示。

符号表示:△+☆=☆+△

引导学生观察第二组算式,总结出:

(88+104+96)=88+(104+96)学生观察第二组算式,发现特点。

学生继续观察几组算式。

出示:

(69+172)+28

69+(172+28)

155+(145+207)

(155+145)+207

通过上面的几组算式,你们发现了什么?

学生总结观察到的规律。

教师板书:先把前两个数相加,或者先把后两个数相加,和不变。这叫做叫法结合律。

学生用自己喜欢的方式表示加法结合律。

符号表示:(△+☆)+○=△+(☆+○)

教师板书:

(a+b)+c=a+(b+c)

学生根据这两个运算定律,举一些生活中的例子。

三、巩固练习

P28/做一做

P31/4、1

四、小结

学生小结本节课学习的加法的运算定律。

今天这节课你们都有什么收获?

你能把这些运用于以后的学习中吗?

五、作业:P31/3

板书设计:

加法的运算定律

(1)李叔叔今天一共骑了多少千米?(2)李叔叔三天一共骑了多少千米?

40+56=96(千米)56+40=96(千米)88+104+96104+96+88

=192+96=200+88

=288(千米)=288(千米)

40+56=56+40(88+104)+96=88+(104+96)

┆(学生举例)(69+172)+28=69+(172+28)

两个加数交换位置,和不变。155+(145+207)=(155+145)+207

这叫做加法交换律。先把前两个数相加,或者先把后两个数相加,

和不变。这叫做加法结合律。

a+b=b+a(a+b)+c=a+(b+c)

篇6:四年级数学《加法交换律、加法结合律》教案

设计说明

本节课在教学设计上主要突出以下几点:

1.加法结合律这部分内容是在加法意义的基础上进行教学的,是继加法交换律之后加法的第二个运算定律。学好加法结合律,对于加法的简便计算,提高运算速度和准确程度都有很大的帮助。创设连贯的生活情境,让学生体会到数学知识来源于生活。

在生活情境下学习知识,可以使学生感受到数学知识在生活中应用的广泛性。因此,加法结合律的教学同样在李叔叔骑车旅行的情境下进行,让学生根据笔记本上记录的三天行程的数据提出要解决的现实问题。在这一过程中,使学生充分感受到数学知识来源于生活。

2.调动已有的学习经验,自主发现规律。

因为本内容的学习是在刚刚学习了加法交换律的基础上进行的,所以引导学生迁移运算定律学习经验是学好本内容的基本策略。教学中,利用情境引导学生理解两种运算顺序的意义,在比较运算意义和计算结果的基础上得到等式,并请学生根据此等式的特点,举一些例子,对此类等式的特点展开讨论,然后初步小结得到加法结合律的内容。

课前准备

教师准备多媒体课件课堂活动卡

学生准备学情检测卡

教学过程

⊙复习导入

1.根据加法交换律填空。

20+34=+20

36+()=64+()

a+700=()+()

2.下面的算式哪些符合加法交换律?

(1)230+270=300+200

(2)60+80+40=60+40+80

(3)48+d=d+48

师:上节课我们学习了加法交换律,知道了两个数相加,交换加数的位置,和不变。那么加法还有没有其他运算定律呢?这些运算定律又有什么用途呢?这节课我们就来学习加法结合律。(板书课题:加法结合律)

设计意图:通过复习加法交换律,唤起学生对已有知识的回顾,同时激发学生探究加法的另一个重要运算定律

篇7:小学数学《加法交换律和加法结合律》教案

小学数学《加法交换律和加法结合律》教案

教材分析:

本教材是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。学生从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律的基础。教材安排这两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。教材有意识地让学生运用已有经验,经理运算律的发现过程,让学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地构建知识。

“想想做做”先安排了一些基本练习,以填空、判断等形式巩固对加法运算律的理解;接着通过题组对比和凑整等练习,为学习简便计算作适当渗透。

教学目标:

1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。

3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

教学难点:使学生经理探索加法结合律和交换律的过程,发现并概括出运算律。

教学准备:配套课件。

教学过程:

一、课前谈话。

有牛顿因为看见苹果落地,进行思考,经过坚持不懈的努力,最后得出了万有引力定律这个伟大的成果。引导学生得出:要注意观察、思考生活中一些习以为常的问题,并从中探索出一些规律。

设计意图:由科学家从一个平常的现象得出伟大的发现,引导学生应注意观察身边的一些平常的、习以为常的现象,并从中的出一些规律,对学生进行良好学习习惯的教育。

二、教学加法交换律。

1、随着气候渐渐转凉,从下个月开始,同学们都将投入到冬季锻炼中去了。电脑出示第54页的例题,这是某个班级进行冬锻的情况,提问:从这张图片中,你获得了哪些数学信息?

你能根据这些信息,提出几个用加法计算的问题吗?根据学生的回答,电脑依次出示:①参加跳绳的一共有多少人?

②参加活动的女生一共有多少人?

③跳绳的男生和踢毽子的女生一共有多少人?

④参加活动的一共有多少人?

设计意图:从创设的贴近学生的生活情境出发,让学生自由地提问,可以培养学生的发散性思维,并培养学生的问题意识。同时,也符合新课程“创造性使用教材”的理念。

2、今天这节课,我们就一起来研究其中的这两个问题:

在黑板上张贴:参加跳绳的一共有多少人?

参加活动的一共有多少人?

我们先来解决第一个问题:参加跳绳的一共有多少人?

3、你们能马上口头列式并口算出结果吗?

指名回答,教师板书:28+17=45,追问:还有其他的方法来解决吗?在学生回答后,教师完成板书:17+28 =45(人)

为什么这两个算式的结果一样?

4、你们能用一个符号把它们连接以来吗?教师继续板书:28+17=17+28

仔细地观察一下这两个算式,你们有什么发现?在等号的两边,什么地方相同?什么地方不同?

5、你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师相机板书算式,并追问:这样的算式能写几个?

6、我们再仔细的观察这几个算式,从中你们有什么发现?你们能用一个算式来表示你们的发现吗?

教师巡视,并作相应的辅导,在学生交流后板书出示:两个数相加,交换加数的位置,它们的和不变。并板书学生回答的一些符号表示的算式。并追问:你这样表示,每个符号分别表示什么?

7、同学们都自己用自己的喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:a+b=b+a。

8、教师小结知识点:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书:加法交换律),学生齐读一遍。

小结研究方法:刚才我们在研究加法法交换律的时候,我们是怎样一步一步开展研究的?引导学生能得出:列式计算――观察思考――猜测验证――得出结论。

9、练习:

完成想想做做第一题前面两小题。

设计意图:教师是教学的组织者和引导者,而不仅仅是解题指导者。本环节的设计,层层递进,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用字母表示,最后还归纳出了研究方法,都让学生有一种成就感。

三、学习加法结合律。

1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究问题“参加活动的一共有多少人?”看看我们有没有新的发现?

2、你们会自己列式解决这个问题吗?想想你为什么这样列式?学生练习,教师巡视指导。

3、学生回答,教师有意识地板书:

(28+17)+23=68(人)

28+(17+23)

(28+23)+17

28+(23+17)

(23+17)+28

23+(17+28)

让回答的同学说说这么列式是怎么思考的?

下面,我们就来针对这两个算式开展研究:(28+17)+23 28+(17+23)

设计意图:本环节又是“用教材教”的一个很好体现,比较好地注意了关注学生的生成与教师预设之间的联系,并很好地引导到需要的算式。

4、根究研究方法,接下来我们应该进行哪一步?(观察思考)那你们观察一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:

(28+17)+23=28+(17+23)

5、电脑出示:下面的Ο里能填上等号吗?

(45+25)+13Ο45+(25+13)

(36+18)+22Ο36+(18+22)

学生回答,教师板书:(45+25)+13=45+(25+13)

(36+18)+22=36+(18+22)

6、看着黑板上的板书,你们从中有了什么新的`发现?学生小组交流后大堂再交流,教师张贴:三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。

7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。

板书:(a+b)+c=a+(b+c)

教师揭示:这就是我们今天所学的第二个运算律――加法结合律(板书:加法结合律)。

8、完成“想想做做”第1题的后面两个小题。

设计意图:通过引导学生运用得到的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。

四、巩固练习。

1、完成“想想做做”第2题。

第4小题引导学生发现是运用了加法交换律和加法结合律。

2、完成“想想做做”第3题第1行。

3、插入“朝三暮四”的故事,让学生通过故事得出:猴子很愚蠢,因为总量不变,只是老头采用了加法交换律。

4、完成“想想做做”第4题。

使学生初步感受应用加法运算律可以使计算简便。

设计意图:几个层次的练习,内容丰富,提供了具有价值的学习内容,使全体同学都参与到有趣的数学学习中,从验算中明白了其理论依据,从故事中分析出了其中蕴涵的运算律,既体会到了数学的乐趣,又复习巩固了全课的内容。

五、课堂总结。

通过本节课的学习,你有什么新的收获?

设计意图:体现了教师的主导作用和学生的主体作用,使学生在自己的整理总结中再次巩固了本节课的重难点。

板书设计:         运算律

加法交换律           加法结合律

28+17=45(人)  17+28=45(人)     (28+17)+23   28+(17+23)

28+17=17+28            =45+23   =28+40

(学生说的算式)          =68(人)  =68(人)

(28+17)+23=28+(17+23)

(45+25)+13=45+(25+13)

(36+18)+22=36+(18+22)

a+b=b+a               (a+b)+c=a+(b+c)

篇8:加法交换律和结合律 教案 (苏教版四年级下册)

第六单元  运算律

课题:加法交换律和结合律  第 1 课时  总第  课时

教学目标:

1.在解决实际问题的过程中,发现加法交换律和结合律,学会用字母表示加法交换律和结合律。

2.在探索运算律的过程中,发展学生的分析比较、归纳概括的能力,渗透建模的数学思想,培养学生的符号感。

教学重点:理解并掌握加法交换律、结合律。

教学难点:归纳、概括出加法交换律和结合律。

教学准备:课件

教学过程:

一、谈话引入

1.师生谈话。

同学们,你们喜欢跳绳和踢毽子吗?我们班哪位同学跳绳比较强?谁踢毽子比较强?

学生自由发言。

2.课件出示教材第55页例题1情境图,你能从图中获取哪些数学信息?(学生自由说)

追问:你能根据这些信息,提出哪些用加法计算的问题?

(1)跳绳的有多少人?

(2)参加活动的女生有多少人?

(3)参加活动的一共有多少人?

3.导入新课。

在过去的学习中,我们进行过很多的加法运算,你知道在加法运算里有哪些基本规律吗?今天我们就一起来探索加法中的运算规律。(板书课题)

二、交流共享

1.加法交换律。

(1)提出问题:求跳绳的有多少人,应该怎样列式计算?

(2)列式解答。

指名学生回答,教师板书:28+17=45(人)

追问:还可以怎样列式?

教师板书:17+28=45(人)

(3)观察发现。

提问:这两道算式都是求什么的人数?结果都是多少?再观察算式,说说它们有何相同点和不同点。

引导学生发现:这两道算式都是求跳绳的总人数,加数相同,得数也一样,只不过是把两个加数的位置调换了一下。

引导:我们可以用什么符号将这两道算式连起来呢?(等号)

师板书:28+17=17+28

(4)照样子写一写。

让学生试写等式,并投影展示。

提问:观察这些等式,你有什么发现?

(两个加数交换位置,和不变)

(5)指导学生用自己喜欢的方法表示出这种规律。

学生在各自的练习本上表示规律后,交流各自的表示方法。

(6)用字母表示加法交换律。

明确:如果用字母a、b分别表示两个加数,上面的规律可以写成:

a+b=b+a

教师指出:两个数相加,交换两个加数的位置,和不变。这就是加法交换律。(板书:加法交换律)

2.加法结合律。

(1)课件出示问题:跳绳和踢毽子的一共有多少人?

(2)学生独立列式计算。教师巡视,注意不同的解答方法,并指名两人板演不同的方法。

(3)组织汇报交流。

解法一:先算出跳绳的有多少人。

(28+17)+23

= 45+23

= 68(人)

解法二:先算出女生有多少人。

28+(17+23)

= 28+40

= 68(人)

提问:这两道算式有什么相同的地方和不同的地方?

学生观察、比较这两个不同算式的计算结果。

追问:这两道算式的结果相同,我们可以把它写成等式吗?怎样写?

根据学生的回答,师板书:(28+17)+23=28+(17+23)

(4)加深认识、探索规律。

①课件出示下面两道算式,让学生算一算,判断下面的○里能不能填等号。

(45+25)+16○45+(25+16)

(39+18)+22○39+(18+22)

②组织观察:这几组算式有什么共同的地方?有什么不同的地方?你从这些例子中可以发现什么规律?

学生交流得出:这两个算式中,三个加数分别相同,加数的位置也相同;先把前两个数相加,或者先把后两个数相加,和不变。

追问:如果用字母a、b、c分别表示三个加数,这个规律可以怎样表示?

师板书:(a+b)+c=a+(b+c)

小结:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。这就是加法结合律。(板书:加法结合律)

三、反馈完善

1.完成教材第56页“练一练”。

让学生说说每个等式各运用了什么运算律及判断的依据。

第三小题既交换了位置,又改变了运算顺序,所以该小题运用了加法交换律和加法结合律。

2.完成教材第58页“练习九”第1、2、3题。

(1)第1题中的最后一小题运用了加法交换律和加法结合律。

(2)第2题是运用加法交换律进行验算,这在过去的计算过程中有学习过,通过这几题的练习加深学生的认识。

(3)第3小题让学生通过计算和观察、比较,进一步认识加法交换律和结合律。

让学生计算,并说说每组中两题的联系。

比较每组中的两题,说说哪一题计算起来更加简便。

四、反思总结

通过本课的学习,你有什么收获? 还有哪些疑问?

第六单元  运算律

课题:加法运算律的应用  第 2 课时  总第  课时

教学目标:

1.让学生经历运用加法运算定律进行简便计算的探索过程,掌握方法,会正确地进行简便计算。

2.在教学过程中,培养学生思维的灵活性,培养学生初步的逻辑思维能力。

教学重点:理解并掌握如何运用加法运算律进行简便计算。

教学难点:能灵活运用加法运算律进行简便计算和解决问题。

教学准备:课件

教学过程:

一、谈话引入

谈话:上节课我们学习了加法的两条运算律,你们还记得是哪两条吗?各是什么意思?

我们在上节课还说到了加法运算律的用途,我们已经知道运用加法交换律可以进行加法验算,这节课我们将学习加法运算律的另一项用途,那就是运用加法运算律进行简便计算(板书课题)。谁知道简便是什么意思?你们喜欢简便运算吗?既然大家都喜欢,我们就一起去探索怎样进行简便运算,我们仍然从解决现实问题做起。

二、交流共享

1.教学例2。

(1)出示例题。提问:谁能说出算式?学生说出算式后,教师板书。

(2)谈话:这道算式,按照运算顺序应该怎样算?你觉得还可以怎样算?你能    用两种不同的方法计算吗?要注意的是,要从这个算式接着往下算,而不是另列 算式。

(3)学生计算,教师巡视,选择不同算法的学生把自己的算式抄在黑板上。

学生的算式可能有:

29+46+54    29+46+54       29+46+54

=75+54      =29+(46+54)      =46+54+29

=129(人)     =29+100       =100+29

=129(人)        =129(人)

(4)让抄写算式的学生说说自己如此计算的理由,包括运算的根据,以及怎么想到把46和54先相加的。

(5)讨论:你认为哪种算法简便?为什么?

(6)教师小结:在计算几个数连加时,把和是整百的数先加起来,可以使下一步的计算简便。

2.教学“试一试”。

(1)出示算式并提出要求:

①65+79+21    ②78+(47+22)

用简便方法计算,写出计算过程。

(2)学生计算,教师巡视,对有困难的学生进行指导。

(3)指名把自己的算式写在黑板上。

(4)全班共同检查黑板上的算式。

提问:两道题各应用了什么运算律?(第l题应用了加法结合律,第2题应用了加法交换律和加法结合律)你是怎样看出78和22、79和21的和是100的?(十位上数的和是9,个位上数的和是10)

三、反馈完善

1.完成教材第57页“练一练”第1题。

这道题是找凑成整百数的专项练习。决定是否运用运算律,关键看题中有没有可凑整的数。因此要正确迅速地做出决定,必须加快学生分辨凑整数的速度。

2.完成教材第57页“练一练”第2题。

这道题是运用加法运算律进行简便计算。

第一小题先进行后两个数的计算比较简便;

第二小题先进行前两个数的计算比较简便;

第三、四题要同时运用加法交换律和结合律才能使计算简便。

四、反思总结

通过本课的学习,你有什么收获? 还有哪些疑问?

第六单元  运算律

课题:练习九  第 3 课时  总第  课时

教学目标:

1.通过练习,进一步加深对加法运算律的理解,使学生能灵活运用加法运算律进行简便计算。

2.通过练习,理解和掌握减法的性质,能运用减法的性质进行简便计算。

3.培养学生根据具体情况选择算法的意识与能力,发展思维的灵活性。

教学重点:能熟练运用加法运算律和减法的性质进行一些简便运算。

教学难点:运用加法运算律和减法的性质进行简便运算。

教学准备:课件

教学过程:

一、知识再现

1.谈话:

提问:我们学习的加法运算律有哪些?用字母怎么表示?

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

追问:运用这些运算律可以给我们带来哪些方便呢?

2.揭题。

今天这节课我们就来完成一些和加法运算相关的练习。(板书课题)

二、基本练习

加法运算律的练习

1.完成教材第58~59页“练习九”第4、7、8、9、12题。

这些都是学生所熟悉的题型,可以先让学生独立完成,再组织学生进行汇报交流,最后集体讲评。

2.完成教材第58页“练习九”第5、6题。

这两题是前面的学习中没有涉及到的,教师需进行必要的指导。

(1)第5题:

①课件出示两组题目。

②让学生计算每组中两道题的得数,并观察每组中上、下两题有什么联系。

③组织思考并交流。

提问:两道题的计算结果相同吗?你有什么发现?

(2)第6题:

①学生独立进行计算。教师巡视,进行个别辅导。

②组织汇报交流。

交流时,让学生说说各自的想法。

三、综合练习

探究减法的性质

1.完成教材第59页“练习九”第10题。

(1)课件出示题目。

(2)让学生独立计算出每组中两道题的得数。

(3)组织观察、比较,交流各自的发现。

引导学生发现:一个数连续减去两个数等于一个数减去这两个数的和。

2.完成教材第59页“练习九”第11题。

出示题目后,让学生独立计算。教师巡视,组织学生说一说自己是如何进行简便计算的。

反馈时,主要要求学生说一说自己是运用了哪些运算律进行简便计算的。把自己的发现和简便计算的经验和全班同学一起交流。

探索发现

3.完成教材第59页“练习九”第13题。

提问:观察表格,说说你从表格中获得了哪些信息。

学生独立计算,填写表格。

追问:观察表格,说说你有哪些发现。

引导学生通过观察发现:两个数相加,一个加数不变,另一个加数增加多少,和也增加多少;两个数相减,被减数不变,减数增加多少,差就减少多少。

四、反思总结

通过本课的学习,你有什么收获? 还有哪些疑问?

五、课堂作业

《补》

第六单元  运算律

课题:乘法交换律和结合律  第 1 课时  总第  课时

教学目标:

1.创设生活情境,让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

2.让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算律的应用价值,培养学生的探索意识和问题解决的能力,增强数学的应用意识。

3.培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。

教学重点:理解乘法交换律、结合律,引导学生概括出运算律并能进行简便计算。

教学难点:经历规律的探索过程,掌握乘法交换律和结合律的特点。

教学准备:课件

教学过程:

一、谈话引入

1.课件出示问题。

(1)加法的运算律,用字母怎样表示?

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

(2)用简便方法计算下面各题。

67+87+13    46+(59+54)

2.揭题。

在加法运算中,有加法交换律和加法结合律,那在其他运算中,是不是也存在这样的规律?乘法运算中又会有什么规律?(板书课题)

二、交流共享

1.探索乘法交换律。

(1)课件出示教材第60页例题3情境图。

让学生看图,说说题目中的已知条件和所求的问题。

(2)学生独立解答,全班交流。

列式得出:5×3=15(人)或3×5=15(人)

(3)建立等式。

让学生把这两个算式写成一个等式:

3×5=5×3

追问:你能再写几个这样的等式?

(4)观察发现:观察这些等式,说说有什么发现。

引导学生发现:两个数相乘,交换两个乘数的位置,积不变。教师指出这就是乘法交换律。

(5)用字母表示乘法交换律。

如果用字母a、b分别表示两个乘数,上面的规律可以写成:

a×b=b×a(板书)

2.探索乘法结合律。

(1)课件出示教材第61页例题4。

让学生独立列式解答。全班交流,学生可能有以下几种算法:

算法一:先算出一个年级参加的人数。

(23×5)×6

=115×6

=690(人)

算法二:先算出全校有多少个班。

23×(5×6)

=23×30

=690(人)

(2)观察这两道算式的数据和结果,你发现了什么?

学生汇报:

①每组两道算式中的三个乘数相同。

②先把前两个数相乘,或者先把后两个数相乘,积不变。

(3)下面我们再来算一算,比一比。课件出示:下面每组中的两个算式是否存在这样的规律?

①18×5×2        18×(5×2)

②13×25×4       13×(25×4)

③24×(125×8)  24×125×8

学生通过比较明确:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。教师指出这就是乘法结合律。

(4)用字母表示乘法结合律。

如果用字母a、b、c分别表示三个乘数,上面的规律可以写成:

(a×b)×c=a×(b×c)(板书)

三、反馈完善

1.完成教材第61页“试一试”。

第一小题,可以运用乘法结合律先算“15×2”的积;第二小题,可以运用乘法交换律和乘法结合律先算“25×4”

2.完成教材第61页“练一练”。

先让学生在教材上填一填,然后说说运用了什么运算律。

3.完成教材第65页“练习十”第1题。

先让学生读题,明确题意,然后指名说说怎样运用乘法交换律进行验算,最后让学生独立进行计算和验算,指名板演。

4.完成教材第65页“练习十”第3题。

让学生说出每组气球上三个数的乘积,并交流计算的方法。

四、反思总结

通过本课的学习,你有什么收获? 还有哪些疑问?

第六单元  运算律

课题:乘法分配律  第 2 课时  总第  课时

教学目标:

1.在解决问题的基础上探索乘法分配律,理解和掌握乘法分配律的意义,能用字母表示出乘法分配律。

2.进一步体验探索规律的过程,培养解决实际问题的能力。

3.在学习活动中培养学生的探索意识和抽象概括能力。

教学重点:在解决问题的过程中探索并掌握乘法分配律的意义。

教学难点:正确表述乘法分配律,并能运用乘法分配律进行简便计算。

教学准备:课件

教学过程:

一、谈话引入

1.复习乘法交换律和乘法结合律。

提问:我们已经学习了乘法的哪些运算律?这些运算律用字母怎么表示?

乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

2.揭题。

通过前面的学习,我们已经掌握了乘法交换律和乘法结合律,今天我们要继续来探索乘法的运算律。(板书课题)

二、交流共享

1.课件出示教材第62页例题5情境图。

学生观察情境图,收集信息。

2.解决问题。

(1)学生独立思考,解决问题。

教师引导学生用多种方法解答。

(2)小组讨论,交流不同的解题思路和解题方法。

教师参与个别小组交流,了解学生的解题情况。

3.组织全班汇报交流。

指名学生汇报自己的解法,然后让学生说说解题思路。教师结合学生的汇报情况进行板书。

汇报预测:

解法一:先算出四、五年级一共有多少个班。

(6+4)×24

=10×24

=240(根)

解法二:先算出四、五年级各领多少根跳绳。

6×24+4×24

=144+96

=240(根)

4.观察比较。

(1)以上两种不同的解题方法,它们 计算得数相同,我们可以用什么符号将这两个算式连起来?

板书:(6+4)×24=6×24+4×24

(2)比一比,等号两边的算式有什么联系?

引导学生发现:等号左边先算6加4的和,再算10个24是多少;等号右边

先算6个24与4个24各是多少,再求和。

5.探索规律。

(1)提出假设:是否任意两个数的和与第三个数相乘,都会等于这两个数分别与第三个数相乘,再把所得的积相加呢?

(2)举例验证。

让学生独立举例验证,验证后把自己举的例子在小组内和其他同学一起分享。

全班交流,可以分两个层次:一是交流所举例子是否符合要求;二是交流不同算式的共同特点。

(3)总结规律。

仔细观察每组的两个算式,它们有什么联系与区别?你发现了什么规律?

师生交流后小结:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再相加,结果不变。教师指出这就是乘法分配律。

6.用字母表示。

如果用字母a、b、c分别表示三个数,乘法分配律可以写成:

(a+b)×c=a×c+b×c

三、反馈完善

1.完成教材第63页“练一练”第1题。

这道题是运用乘法分配律改写算式,通过改写准确把握乘法分配律。其中有顺向的改写,也有逆向的改写。学生在逆向改写时可能会有困难,教师在组织练习时可以给予适当的帮助。

2.完成教材第63页“练一练”第2题。

这道题呈现了学生初学乘法分配律时可能出现的错误,如40×50+50×90与40×(50+90)让学生辨析,从而进一步明晰概念。还选择了比较特殊的情况,如74×(20+1)与74×20+74,有助于学生从本质上而不是形式上理解乘法分配律。

3.完成教材第65~66页“练习十”第6、7题。

第6题,让学生通过计算和比较进一步感受乘法分配律的优越性。

第7题,让学生用两种不同的方法计算长方形菜地的周长,并用乘法分配律沟通不同算法间的联系,既能加强对长方形周长的理解,又能加强对乘法分配律的理解。

四、反思总结

通过本课的学习,你有什么收获? 还有哪些疑问?

第六单元  运算律

课题:运用乘法分配律进行简便计算  第 3 课时  总第  课时

教学目标:

1.让学生在解决实际问题的过程中发现并理解乘法分配律,学会用乘法分配律进行简便计算。

2.感受乘法分配律的价值,发展学生思维的灵活性。

3.在交流活动中,培养学生与他人合作、交流的能力。

教学重点:掌握乘法分配律的应用过程。

教学难点:灵活运用乘法分配律进行简便计算。

教学准备:课件

教学过程:

一、谈话引入

1.在□里填上合适的数,在○里填上运算符号。

27×6+27×4=27○(□+□)

25×(2+4)=□○□○□○□

2.提问:你是根据什么规律来填的?仔细观察两个等式,每个等式中是左边的算式计算简便还是右边的算式计算简便?

3.揭题。

上一节课我们学习了乘法分配律,这节课我们将一起来探究运用乘法分配律进行简便计算的知识。(板书课题)

二、交流共享

1.课件出示教材第63页例题6情境图。

提问:观察情境图,说说你从图中获得了哪些信息。

引导学生从题目中收集已知条件和所求问题。

已知条件:中国象棋一副32元,围棋一副58元。

所求问题:买102副中国象棋一共要付多少元?

2.解决问题。

(1)列出解决问题的算式。

指名说说可以怎样列式,教师板书:32×102

(2)提问:32×102可以怎样进行计算呢?先想一想,算一算,再将你的想法和算法在小组内进行交流。

学生独立思考并计算,计算后在小组内进行交流讨论。

3.组织全班汇报。

请几个小组派代表参与全班交流,教师结合学生的交流情况适时板书。

汇报预测:

算法一:用竖式计算。

32×102=3264

1 0 2

×     3 2

2 0 4

3 0 6

3 2 6 4

算法二:先算100乘32,再算2乘32,最后把它们的得数相加。

教师引导学生重点观察算法二,强调:算法二中的每一步计算我们都可以通过口算得出,这就是用简便方法计算32×102。

32×102

=32×(100+2)

=32×100+32×2

=3200+64

=3264

提问:回顾计算的过程,谁来说说,我们计算的步骤是什么?这样计算的根据是什么?

引导学生发现这样计算运用了乘法分配律。

4.教学“试一试”。

(1)出示题目,让学生独立计算。

展示部分学生的答案,组织评议。

(2)小组讨论。

提问:什么样的算式能够运用乘法分配律进行简便计算呢?

教师结合学生的交流情况进行小结:两个数相乘,其中的一个乘数接近整十或整百数时,我们可以将这个乘数写成整十或整百数加(减)几的形式,再运用乘法分配律进行计算;当两个相加(减)的乘法算式中有相同的乘数时,我们可以运用乘法分配律进行计算。

三、反馈完善

1.完成教材第64页“练一练”第1题。

这道题是运用乘法分配律改写算式,让学生通过改写准确把握乘法分配律。第一小题是顺向的改写,第二小题是逆向的改写。

2.完成教材第64页“练一练”第2题。

这道题是运用乘法分配律进行简便计算,有的是乘法分配律的顺向应用,有的是乘法分配律的逆向应用。让学生在计算过程中,先对各个算式进行观察分析,从而加深对这些算式的特点的理解。

3.完成教材第66页“练习十”第8、13题。

第8题,巩固运用乘法分配律进行口算的方法。

第13题,这道题和“练一练”第2题类似。

四、反思总结

通过本课的学习,你有什么收获? 还有哪些疑问?

第六单元  运算律

课题:练习十  第 4 课时  总第  课时

教学目标:

1.通过练习进一步巩固学过的乘法运算律,能够熟练运用这些运算律进行简便计算。

2.在练习过程中,能灵活运用乘法运算律解决计算问题,培养学生良好的思维能力。

3.满足不同层次的学生对知识的需求,开拓学生的思维,培养学生良好的合作意识和探究意识。

教学重点:熟练地运用乘法运算律进行简便计算。

教学难点:培养简便计算的意识,在解决实际问题的过程中灵活运用乘法运算律进行简便计算。

教学准备:课件

教学过程:

一、知识再现

1.提问:我们学过的乘法运算律有哪些?用字母怎么表示?

2.揭题。

今天这节课我们就来完成一些和乘法运算律有关的练习。(板书课题)

二、基本练习

1.完成教材第65页“练习十”第3题。

这道题是运用乘法结合律来进行简便计算,通过这样的练习,在巩固乘法结合律的同时,也培养了学生的数感。

2.完成教材第65页“练习十”第5题。

(1)课件出示练习题。

(2)组织观察,收集题目中的信息。

(3)学生独立解答。

(4)交流各自的计算方法。

3.完成教材第66页“练习十”第12题。

这道题是通过观察等式让学生对各种各种乘法运算律进行回忆。

练习时,可以指名让学生说说每个等式各运用了什么运算律,是怎样运用这些运算律的。

4.完成教材第67页“练习十”第15题。

这道题是根据题目特点灵活运用运算律进行简便计算。教师在组织计算时,只要学生的计算方法是正确的,计算过程是简便的,都应给予肯定。

三、综合练习

1.完成教材第67页“练习十”第16、17题。

这两题是乘法分配律的拓展。从两个数的和乘第三个数拓展到两个数的差乘第三个数。

第16题,先让学生算一算每组的两道算式是否相等;然后组织观察,交流各自的发现;最后总结得出:两个数的差乘第三个数,等于这两个数分别与第三个数相乘,再把所得的积相减。

第17题,这道题是利用第16题的规律来进行简便计算,35×98这道题要先把“98”转化成“100-2”,然后再利用上面的规律进行简便计算。

2.完成教材第67页“练习十”第18题。

这道题是让学生在解决问题的过程中,运用乘法分配律进行简便计算。

练习时,可以让学生独立解答,再在小组内交流各自不同的算法,比一比谁的算法更简便。

3.自主练习。

让学生独立完成“练习十”其余的练习。

四、反思总结

通过本课的学习,你有什么收获? 还有哪些疑问?

五、课堂作业

《补》

第六单元  运算律

课题:相遇问题  第 5 课时  总第  课时

教学目标:

1.理解“相遇问题”的意义,探究发现“相遇问题”的数量关系,掌握解题思路和解答方法,正确解答求路程的实际问题。

2.感受“相遇问题”的解题方法和乘法分配律之间的联系。

3.培养学生的观察、分析、推理、判断能力,以及自主探究和创新精神。

教学重点:理解“相遇问题”的意义,掌握解题思路和解答方法。

教学难点:用列表、画图的方法整理题目中的信息,分析数量关系。

教学准备:课件

教学过程:

一、谈话引入

1.回答下面各题并说出数量关系。

(1)小明每分钟走70米,走了4分钟,一共走了多少米?

(2)小芳每分钟走60米,走了4分钟,一共走了多少米?

学生回答并说出数量关系,教师板书:速度×时间=路程

2.导入新课。

(1)课件出示教材第68页例题7情境图。

(2)理解“相遇问题”的意义。

请两名学生到讲台前演示当时的情境。

组织学生进行观察,并思考:他们在出发的时间、地点、方向上有什么特点?

追问:他们的距离有什么变化吗?

(3)导入:这两个同学从两地同时出发,相向而行,最后两人在途中相遇,这就是我们这节课要研究的“相遇问题”。(板书课题)

二、交流共享

1.收集信息。

请同学们再次阅读题目,观察情境图,说说题目中的已知条件和所求的问题分别是什么。

已知条件:小明每分钟走70米;小芳每分钟走60米;经过4分钟两人相遇。

所求问题:他们两家相距多少米?

2.整理信息。

(1)引导:我们找到了这么多信息,想一想,我们学过了哪些解决问题的策略呢?(列表、画图)你打算用什么策略把这些信息整理出来?

(2)学生自主进行信息整理。

教师巡视,进行个别辅导。

(3)组织全班交流。

学生可能用画图或列表的方法进行整理,教师投影展示学生的线段图或表格,组织进行评议和订正。

画图整理:

70米  70米   70米  70米 60米 60米 60米 60米

小明家                                          小芳家

?米

列表整理:

小明从家到学校 每分走70米 走了4分钟

小芳从家到学校 每分走60米 走了4分钟

3.分析解题思路。

提问:你能根据整理的结果,分析数量关系并确定先算什么吗?

思路一:小明走的路程加上小芳走的路程就是他们两家相距的路程,可以先分别算出小明和小芳走的路程,再把两个人走的路程相加,就是他们两家相距的路程。

思路二:两人4分钟一共走的路程,就是两家相距的路程,可以先算两人的速度和,再把“速度和×相遇时间”就等于总路程。

4.解决问题。

学生根据以上两种解题思路,用两种不同的方法进行解答。

组织汇报交流。

解法一: 70×4+60×4

=280+240

=520(千米)

解法二: (70+60)×4

=130×4

=520(千米)

5.观察比较,感受联系。

提问:两种解法有什么联系?

引导学生从以下几方面进行交流:

(1)两种方法的得数相同,可以用什么符号将它们连起来?

(2)观察等式,你想到了哪个运算律?

(乘法分配律)

6.回顾反思,交流体会。

提问:回顾解决问题的过程,你有什么体会?

交流体会:画图和列表都可以帮助我们理解题意;线段图可以帮助我们找到不同的解题方法;要注意寻找不同解法之间的联系。

三、反馈完善

1.完成教材第69页“试一试”。

这道题是例题7的补充,题中一个向东走,一个向西走,可以理解为是“相背而行”,“相背而行”求总路程的方法和“相遇问题”求总路程的方法相同。

2.完成教材第69页“练一练”。

这道题和例题7相似,进一步巩固画线段图整理信息的策略,加深对“相遇问题”的理解。

3.完成教材第70页“练习十一”第2题。

这道题是“工程”问题,也可以用“相遇问题”的解题思路来思考,“第一队每天开凿12米”可以看作是第一队的速度,“第二队每天开凿15米”就看作是第二队的速度,“经过8天正好凿通”可以看作是相遇时间,“这条隧道长多少米”看作是总路程。

四、反思总结

通过本课的学习,你有什么收获? 还有哪些疑问?

篇9:《加法交换律》说课稿

本课是苏教版小学数学四年级上册第56—58页运算律第1课时,是一节新授课。教学内容有两个:一个是加法的交换律,另一个是加法的结合律。例题主题图是“28个男生在跳绳”、“17个女生在跳绳”、“23个女生在踢毽子”。通过提问:“跳绳的有多少人?”引入加法交换律;通过提问:“参加活动的一共有多少人?”引入加法结合律的教学。运算律是小学数学最基础的一种规律性知识,学习加法的运算律,不仅有助于加深对加法计算方法的理解,还能使一些计算简便,而且以后学习也要经常用到。因此,在教学中我们积极引导学生学好这一部分知识。

设计本课教学的基本思想:

一是紧密联系学生的生活实际,引导学生在已有经验的基础上发现和归纳出运算律。

二是重视让学生在探索中经历运算律的发现过程,大致应该经过以下几步:观察、猜测、举例、验证,得到规律。

三是让学生在具体的情境中逐步学会合理灵活地应用运算律,使计算简便。

因此教学目标制定如下:

1.使学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,并初步感知加法运算律的价值。

2.使学生在学习用符号、字母表示自己发现的加法运算律的过程中,初步发展符号感,初步培养分析、比较、抽象、概括的思维能力。

3.使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识与习惯。

下面说说主要的教学过程及设计意图。

课前:创设了一个“朝三暮四”的故事情景,调动学生的学习热情,通过这个情境让学生们在笑猴子受骗的同时也得到了一点启示,同时通过此例使得学生在愉悦的氛围中轻松提前感知了加法交换律。

参考县里的小学数学新授课“激趣·引探·释疑·导练·启思”教学模式,本课的教学过程主要分成四个大环节。

一、情境激趣——提出问题

通过谈话“学校每天上午都会进行大课间活动,你们喜欢大课间活动吗?瞧,这些同学也在开展活动呢”然后,让学生自由地提问,培养学生的发散性思维和问题意识。学生提出的一些问题,为后面的探究学习做了素材提供与铺垫。创设情境是为了引出问题,情境要为问题服务。这里的的设计,既有学生的提问,又考虑到教学内容的提问,做到了教学内容与学生思维对接,也符合新课程“创造性使用教材”的理念。

二、尝试探索——互动释疑

(一)探索加法交换律

1.解决第一题“跳绳的有多少人?”由问题得到两个算式,计算结果相等,写成等式28+17 = 17+28

2.解决第二题“女生有多少人?”由问题再次得到两个算式,写成等式,加强感知

3.举更多案例

我以为,教学运算律主要让学生经历不完全归纳的过程,我想努力让广阔的数学王国展现在学生的视野中,一位数加一位数、两位数加一位数、两位数加两位数,甚至更大的数和特殊的0,都满足这样的规律。

对于运算律的教学,不少教师只注意让学生举出实例进行验证,而忽视了能否找到反例的问题。对于不完全归纳法来说,举出的正例越多,则意味着结论的可靠性越大;但若发现了一个反例,则可推翻结论。因此,我设提了“刚才老师和同学们举了这么多例子,有没有不符合这个规律的例子?”这个问题,学生通过无法找到反例,加深了对结论可靠性的认识。在这个过程中,学生不仅获得了数学结论,更重要的是学到了获得数学结论的思想方法和体悟到科学研究方法的严谨性。

4.概括规律

教学运算律,有效地引导学生进行概括与提升是教学的关键。虽然新课程现在不要要求学生用完整的语言叙述加法交换律,但我觉得适度的强化语言表述对于理解和表达式有好处的。因此,我指黑板上等式问:那谁来说说,像这样的等式,都有什么共同的特点?(生自由说)大家看,等式的左边和右边都是几个数相加?(两个)两个数相加,交换加数的位置,它们得数和变不变?(和不变)谁能连起来说一说这个规律?哪个会?引导学生大致说到:两个数相加,交换加数的位置,和不变。

5.表达规律

根据教材的要求,让学生用自己喜欢的方式表达对规律的认识,让学生经历由数上升到用符号、字母表示的一种抽象过程,既是对加法交换律的概括与提升,又能发展符号感。学生在此过程中感受到了方法的形成,并且能把这种方法迁移到加法结合律的学习上。这也就是完成一个培养学生符号意识的任务(指能够理解并且运用符号表示数、数量关系和变化规律)

6.回顾旧知

得出加法交换律和结合律后,我启发学生回顾一下以前学习什么知识时已用过了这两个规律,以利于学生巩固知识,形成知识结构。

(二)探索加法结合律

也是差不多教学流程。

有一点说明,就是:学生在得出(28+17)+23=28+(17+23)后,教师没有要求让学生自己写出这样的等式,而是出示了类似结构的几组等式,引导学生通过算一算,思考这些等式之间是否相等。毕竟,加法结合律这一数学模型相对而言要复杂些,由学生举例有一定困难。

三、分层练习、巩固深化

当我们的教学使学生经历了在情境中提出问题,在问题的控制下解决问题之后,为了促进学生对知识的掌握,并形成技能,教学要十分重视设计新知学习过程中的基础性练习和探究新知后的变式练习、发展性练习,巩固学生对新知的掌握和理解,培养他们运用新知解决实际问题的能力。

(一)基本题

1.完成“想想做做”第1题。

下面的等式各应用了什么运算定律?

2.完成“想想做做”第2题。

你能在□里填上合适的数吗?

这里就是,借助媒体演示加数交换和结合过程,充分发挥了多媒体的优势,让学生把抽象的思维过程转化成了形象的思维过程,突破了难点。

(二)提高题

1.游戏“快速反应”。

通过这道题,你对同学们有什么想说的?(看题要仔细)

2.比赛。

⑴不公平

⑵公平

师指出:看来,运用刚才所学的加法运算律进行凑整,凑成整百数再加,可以使计算简便!

⑶凑整专项练习(完成“想想做做”第5题)

师:你能很快找出哪两片树叶上数的和是100吗?培养学生凑整的意识和能力。

四、总结全课——拓展启思

1.全课总结。

2.阅读质疑。

引导学生回顾课堂学习的内容,进行归纳总结,看书内化,比较反思,让学生体验成功。

3.练习启思。

“考考你”:在下面的○里填上合适的运算符号。

4○10=10○4(2○3)○5=2○(3○5)

在恰当的练习中,发现新的问题,引出“加法有交换律和结合律,乘法是否也有交换律和结合律呢?”为后续学习打下伏笔。这样,既总结当课的教学内容,又产生悬念,把课堂延伸到课外,激发学生强烈的求知欲望,激励学生在今后的学习中不断地探索、发现、创新。

篇10:《加法交换律》说课稿

加法的交换律和结合律一课在人教版和苏教版中都是布置在四下上这个内容,在现在的苏教国标版教材也是布置在四年级。加法的交换律和结合律一课是属于第二学段中的数的运算中的一个重要内容。是在同学经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。同学从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律结合律的基础。

新教材布置这两个运算律都是从同学熟悉的实际问题的解答引入,让同学通过观察、比较和分析,找到实际问题不同解法之间的一起特点,初步感受运算规律。然后让同学根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示动身现的规律,笼统、概括出运算律。教材有意识地让同学运用已有经验,经历运算律的发现过程,让同学在合作与交流中对运算律的认识由感性逐步发展到理性,合理地构建知识。新教材教学目标:

1、知识技能目标:使同学理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。使同学在学习用符号、字母表示自身发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高笼统思维能力。

2、过程方法目标:使同学经历探索加法交换律和结合律的过程,通过对熟悉的实际问的解决,进行比较和分析,发现并概括出运算律。

3、情感、态度、价值观目标:使同学在数学活动中获得胜利的体验,进一步增强对数学的兴趣和信心,初步形成独立考虑和探究问题的意识、习惯。

教学重点:使同学理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

教学难点:使同学经历探索加法结合律和交换律的过程,发现并概括出运算律。

旧教材教学目标:

1、使同学理解并掌握加法交换律和结合律。

2、使同学理解和掌握加法交换律与加法结合律的异、同点,和其特点。

3、能利用加法的交换律进行加法的验算。

4、培养同学观察、概括、分析推理的能力。

教学重点:引导同学概括、总结加法的加法交换律和结合律,会用字母表示。

教学难点:在理解的基础上概括加法交换律和结合律,并能用文字和字母表示。

从新旧教材的目标比较以和例题设计中可以看出两者的目标定位是不一样的。

1.旧教材的目标比较单一,主要的目标是知识技能方面的目标,如能口头表达加法交换律和结合律的意义,能用字母去表示,并会运用于验算。新教材的目标设定不只仅体现了知识技能方面的目标,更多的体现了过程和方法,情感态度方面的目标以和对于数学思想方法(不完全归纳法,符号感)的渗透。目标的设定是使各项目标与具体的学习相结合起来,成为一个有机的整体。

2.旧教材的目标体现不出教学的方法和同学的学法,而新教材的教学目标中能体现出一些具体的做法,如通过对熟悉的实际问的解决,经历探索加法交换律和结合律的过程,数学活动过程始终作为重点贯穿与教学中。

韩玲老师在上加法的交换律和结合律这课时,也充沛考虑到了新旧教材目标定位的不同。从课堂的引入韩老师就以最贴近生活的实际体育要闻十运会金牌数为题,一下子激起了同学学习的“兴奋点”,很自然的进入了后面的学习。在同学提出一些列的数学问题并列出算式之后,教师开始引导同学比较和分析这两道算式之间有什么相同的地方?有什么不同的地方?可以用等号连接吗?问:观察黑板上的这三道等式,你发现了什么规律?问:是不是其他的数之间也存在这种规律呢?请你再举一个这样的例子验证验证。举了这么多的例子,你找到规律了吗? 这个规律用语言叙述比较长,你能够用自身喜欢的方式把这个规律简单明了地表达出来吗?(生口述,教师板书)在这样一个教师引导,同学进行比较、分析、举例、验证,表达的过程中,充沛发挥了同学主体的作用,也让同学感受到了发现规律的一般过程,从而达到经历过程,讨论提升,归纳概括的目的。结合律的教学过程则更多的体现了同学自主探索,推导,验证的一个完整过程。

新教材的目标设定和教学过程,更多的体现了动态生成,寓数学考虑,探究,发现于一体的数学活动过程,教师只有掌握住了这个精髓才干去上好课,发展同学的综合能力。

篇11:《加法交换律》教学反思

今天完成了加法交换律的教学,由于借班上课,上完后感觉自己前半节课发挥得不如后半节课,不过学生对交换律的理解和应用以及对交换律对减法、和加减混合的应用掌握的还是不错的。这节课,我从学生以学知识入手,引导学生发现加法交换律,理解知识就在我们身边,进而提出除了帮助我们验算外还有什么强大的功能!接下来利用加法交换律使计算简便,进而发现还可以使减法简便,加减混合简便!使交换律得以推广!

听完课后,赵老师没来得及喝水就结合这节课进行了评析。

赵老师首先肯定了我的素质,作为骨干教师课堂扎实,教学思路清晰!

同时赵老师提出这节课可以从经验拓展的角度,让学生从更多的生活实例入手,从道理上理解“交换”,如8+74+2、想:原来有8本作业,先拿来74本又拿来2本,我们可以这样,先拿来2本,又拿来74本,都表示现在有的,因此8+74+2和8+2+74是相等的。再如:35-17+5,可以这样想公交车原来有35人,下去17人,上来了5人,可以这样想有35人,上来了5人,又下去了17人。这样的结果都表示现在有的因此人数是一样的。结果是相等的。

“理”上的理解更容易让学生从根上明白算理。我在教学时,用计算的方法验证下的工夫多了一些,学生举例少了点,这样总感觉形式上稍多了点,另外“验证”更多的是验证这种方法可以,但不能在道理上理解,赵老师提出可以看看马刚老师的课例。也鼓励我们多去看看名师的课例。

从第一次听课得到王宏主任的指导,指出“苹果”的贯穿,课堂练习的量,今天得到赵老师的指导,自己感觉收获很多,发现了自己身上的不足,从备课到上课,用了两天的时间,昨晚还熬夜制作课件到11点多,虽然累,但自己有了收获,此时感觉一切累都值得!

【《加法交换律》教学反思(通用6篇)】

篇12:《加法交换律和加法结合律》说课稿

教学内容:

北师大版小学数学四年级上册第三单元乘法探索与发现(三)加法交换律与结合律P47。

教学目标:

1、经历探索过程,推导出加法交换律和结合律,会用字母表示数。

2、会运用加法交换律和结合律对一些算式进行简便计算。

3、激发学生的学习兴趣,培养学生的思维能力和科学的学习方法。

教学重点:

引导学生探索概括出加法交换律和结合律,并初步理解运用、进行简便计算。

教学难点:

篇13:《加法交换律和加法结合律》说课稿

教具准备:

PPT课件等。

教学过程:

一、复习导入,回忆旧知。

要求学生回忆一下上一节课学过的乘法的运算规律。

(我们上节课学习了《乘法交换律和乘法结合律》,那么,大家回忆一下,乘法交换律和乘法结合律的公式又是什么呢?)

a×b=b×a

(a×b)×c=a×(b×c)(黑板板书)

(那么加法是否也有同样的规律呢?让我们现在来探讨一下)

二、创设情境、操作体验

1、由生活引入,通过对话的形式与学生共同探讨交换的含义。

数一数:本班男生的人数和本班女生的.人数,求本班一共有多少人?

男生+女生:(26+17)人

女生+男生:(17+26)人

结果无论哪一种计算方法,计算出来的结果都是相等的。

再举书本上两个例子来说明。

26+17=17+26

3+2=2+3

15+20=20+15

a+b=b+a(黑板板书)

让学生列出不同的算式,分析比较两个算式的共同点和不同点。

突出强调“交换”的意思。结果表明:两个式子的加数交换了位置,但和不变。再要求学生自己举一两个例子来试试看。

2、出示题目:同学们的课间活动很丰富,看,有28个男生在跳绳,17个女生在跳绳,23个女生在踢毽子,参加活动的一共有多少人?

方法一:先算跳绳的一共有多少人:28+17人,再算全部的人数:(28+17)+23人。

方法二:先算一下女生,再算一下他们加起来一共是多少人:28+(17+23)人。

那么得出:(28+17)+23=28+(17+23)整十

(3+2)+5=3+(2+5)

(19+12)+38=19+(12+38)整十

(a+b)+c=a+(b+c)

结果表明,计算出来的结果都是相等的。

3、再举书本中的例子来说明结合的两个数的条件和原因。

57+49

=50+7+40+9

=50+40+7+9

=(50+40)+(7+9)因为50+40=90,90是一个整十数。

=90+16

=106

三、巩固练习,加深记忆。

1、书本P47(3)利用你发现的规律,计算下列各式。

2、想一想:下面的等式各应用了什么运算律?

82 + 0 = 0 + 82

47 +(30 + 8)=(47 + 30)+ 8

(87 + 68)+ 32 = 84 +(68 + 32)

75 +(48 + 25)=(75 + 25)+ 48

3、比一比:谁算得又快又对!

38+76+24 (88+45)+12

四、布置作业。

五、板书设置。

篇14:加法交换律教学反思

在学校举行的一人一节研究课展示活动中,我执教的苏教版四上《加法交换律和结合律》这一课题,通过活动我收获颇多,现将我的反思呈现如下:

具体做法是:

一、学生经历有效地探索过程。

在探索知识形成的过程中,以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察发现——举例验证——得出结论”这一数学学习全过程。教学这两个运算律都是从学生解决熟悉的实际问题引入的,让学生通过观察、比较和分析,初步感受运算的规律。然后让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律。我有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律认识由感性逐步发展到理性,合理地构建知识。

二、注意数学学习方法的渗透。

加法结合律是本课教学难点,由于在探索加法交换律时,学生经历了“观察发现——举例验证——得出结论”的学习过程,在此基础上,再让学生探索加法结合律,教师加以适当的引导,为学生提供足够的自主探索的时间和空间,学生将已有学习方法渗透到探索加法结合律中,很容易感受到三个数相加蕴含的运算规律。学生不但理解了加法运算律的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。

三、教学中注意沟通知识间的联系。

在教学完加法交换律时,我及时把新学的知识和加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律之间的联系。在教学完加法结合律时,又出示了两道口算题9+7、34+27,让学生回忆口算过程。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。在最后的提高巩固阶段,结合练习为下节课学习加法简便计算垫下了基础。

总的来说,这堂课取得了较好的效果。通过本课的学习,学生不但掌握了加法交换律,加法结合律的知识,更重要的是学会了数学方法,所以到课尾出现了学生由加法运算律联想到减法、乘法、除法运算中,是否也存在一定的规律呢这一想法。并产生运用这一数学方法进行探索的愿望和热情。这些数学方法是学生终身学习必备的能力。同时,在教学过程中,我也发现了一些问题,这些问题有些是客观的,有些是由于本人的教学机智和教学设计还不够。总之,在学习洋思经验及实施新课改中,我会不断地反思,及时地总结,适时地改进,充分地完善自我,相互学习,取长补短,不断提高自己的教育教学水平。

篇15:加法的意义和加法交换律

例1(略) 7+0=7 0+7=7 0+0=0

(画示意图) 一个数加上0,还得原数

137+357=494(千米)

137+357=494(千米) 137+357=357+137

加数 加数 和                              18+17㈡17+18

答:(略)               两个数相加,交换加数的位置,它们的和不变,这就是加法交换律。

把两个数合并成一个数的运算,叫做加法。   a+b=b+a

篇16:加法交换律教学反思

加法的运算定律是运算体系中的普遍规律。为了让学生能够理解并掌握这一规律,以便为今后的应用服务。我在教学中从学生的已有知识经验的实际状态出发,通过抽象建模,大胆猜测,操作验证,合作总结这四个环节,让学生能够理解加法运算定律的含义,并从过程中体验成功的喜悦或失败的情感。

本课我把凑整简算的思想贯穿始终,让学生从学习中体验选择简便的方法是学习的最好途径。对于小学生来说,运算定律的理解与运用是培养和发展学生抽象的极好时机。本节课,我引导学生在知识的形成过程中提升学生的思维能力,在课堂上充分调动学生积极性,让孩子们大胆猜想,举例验证、得出结论。

1、在复习引用中,巩固学生的思维基础。

通过一组口算练习,让学生明确能够凑整十或整百数的两个数加起来比较简便,这个为后面学习结合律打下基础。

2、大胆猜想,自主探究,培养学生独立思考的能力。

在教授新课的过程中,我通过提问、设疑,让学生观察―猜测―举例―验证四个环节,同时通过小组合作得出结论。这样既培养了学生的抽象概括能力,同时让学生的思维得到了有效的训练和发展。

篇17:加法交换律教学反思

整个教学过程学生从已有的知识经验的实际状态出发,通过质疑、猜想、例证、观察、交流、归纳,亲历了探究加法交换律和乘法交换律这个数学问题的过程,从中体验了成功解决数学问题的喜悦或失败的情感。

1.注重教学目标的整合化。

根据时代的发展和要求,数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,了解数学的价值,增强数学的应用意识,获得数学的基本思想方法,经历问题解决的过程。在教学中要处理好知识性目标和发展性目标平衡与和谐的整合,在知识获得的过程中促进学生发展,在发展过程中落实知识。在“交换律”这节课中,教师在目标领域中设置了过程性目标,不仅和学生研究了“交换律”“是什么”,更重要的是让学生体验了数学问题的产生、碰到问题“怎么办”和“如何解决问题”。花更多的时间关注学生的学习过程,有意识地引导学生亲历“做数学”的过程。引导学生用数学的眼光看待身边的事情并提出疑问:这种交换位置、结果不变的现象在我们的数学知识中有没有呢?激励学生从已有的知识结构中提取有效的信息,加以观察、分析,主动获得“加法交换律和乘法交换律”,在问题解决的过程中既获得了解决问题的方法,又体验了成功的情感。

2.注重教学内容的现实性。

新课标里曾指出,教学时应从学生熟悉的情境和已有的知识出发进行,开展教学活动。这为我们的教学改革在操作层面上指出了方向。“交换律”这节课在以下几个方面进行了尝试。

(1)找准教学的起点。对学生学习起点的正确估计是设计适合每个学生自立学习的过程的基本点,它直接影响新知识的学习程度。加法交换律和乘法交换律在浙教版小学数学教材中分别安排在第七册和第八册,而在过去的学习中,学生对加法和乘法交换律已有大量的感性认识,并能运用交换加数(因数)的位置

来验算加法(乘法),所以这节课教师把重点放在引导学生发现并用数学语言表述数学规律和总结怎样获得规律的方法上,使学生的认识由感性上升到理性。

(2)找到生活的原型。加法交换律和乘法交换律的实质是交换位置,结果不变,这种数学思想在生活中到处存在。本节课教师首先引导学生用辨证的眼光观察身边的现象,渗透变与不变的辩证唯物主义的观点;然后采撷生活数学的实例:同桌两位同学交换位置,结果不变。引导学生产生疑问:这种交换位置结果不变。

篇18:加法交换律教学反思

前段时间听了四年级的一节研讨课――“加法交换律”。课中,教师让学生“用自己喜欢的方式表示加法交换律”,很简单的要求,学生十拿九稳的不会出错,但是学生表现出乎我意料之外:

学生1:√+×=S,×+√=S,√+×=×+√;

学生2:a+b=w=b+a=w

回顾课堂,执教者老师笑容甜美,语言亲切,精心设计了这节研讨课:

教师从学生熟悉的生活情境“李叔叔一天共骑了多少千米?”引入新课,学生列式后分析得出:40+56=56+40,在此基础上教师又利用天平的直观演示,引导学生得到两个等式:50+10=10+50、100+20=20+100,学生观察三个等式交流总结初步体验“加法交换律”。接着教师让学生自主举例子,学生积极踊跃:1+3=3+1,789+121=121+789……,教师再次让学生观察黑板 上的7个算式,结合算式让学生进一步的理解“加法交换律”,并比较辨析加法交换律中的“变”和“不变”,最后教师才水到渠成的在黑板上板书课题“加法交换律”。

对于“加法交换律”的得出教师真是花了心思,下足了功夫。可是从学生“用自己喜欢的方式表示加法交换律”这个环节的表现看得出,学生对“加法交换律”的理解没有到位。问题在哪里呢?我认为,加法交换律的内容比较简单,学生在一、二年级已经有了大量的感性认识,只是到四年级才开始总结提升“把零散的感性认识上升为理性认识”。用语言表述加法交换律,以及用字母表示加法交换律,对学生来说也不是很困难的。因此这节课,对于“加法交换律”的得出,可以更简洁,只用一个情境就可以,天平的效果不是很好,天平小,很多同学没有看见,因此天平的环节可以取消;黑板的板书也可以更简洁,只板书等式;要让学生体会符号表示“加法交换律”的简明以及让学生体验运用“加法交换律”可以使有些计算简便。

【思考】我们在平时的教学中是不是把探究新知的过程搞复杂了?探究新知的时候,为了追求“完美”,为了讲得“透彻”,我们会步步为营,取各家“精华”放在一起,舍不得“丢弃”,于是,很简单的知识点的探究,在我们的设计下,就……。有位哲人说:“简约到极致,就是美丽。”正所谓:“大道至简”,其实,教学也是如此,“简约”更美,简约的数学课堂必然是美丽的课堂,这种美丽同样有着多层的解读:它是教师个性化教学思想光辉的折射;它是数学学科本身逻辑、严谨、充满理性精神的魅力凸现;它是“简约而不简单”这样一句流行语的生动注解;它是学生在教师引导下用“四两拨千斤”方式自主学习的完美演绎……设计简洁的教学环节,采用简便的教学方法,也能有效,也能让学生喜欢而轻松愉快、积极主动地欣然接纳!

篇19:“加法交换律”教学反思

加法交换律是运算定律这一单元的第一节课,本单元不再仅仅给出一些数值计算的实例,学生通过计算,发现规律,而是结合学生熟悉的问题情境,帮助学生体会运算定律的现实情景。教学时,应遵循由个别到一般,由具体到抽象的认知过程,引导学生由感性认识上升到一定的理性认识。

在教学时,以下两点我做得较好:1.遵循了儿童的认知规律。首先练习了口算加法,如25+12 12+25这样的题目,以唤起学生的感性认识。接着创设情境,出示李叔叔骑车旅行的主题图,提出问题,从解决问题中引出计算,符合课程标准的要求,即计算是解决问题的`需要。之后照样子举例子,观察发现,通过小组合作得出加法交换律。这样循序渐进,学生从具体到抽象,水到渠成建构了新知。2.教学时注重学习方法的指导。本节课内容比较简单,学生易于接受,因此我认为应把重点放在学法指导上。学生掌握了学习方法,会受到事半功倍的效果。在小组合作之后,引导学生梳理:"我们是怎样得出加法交换律的?”总结出“发现猜想―举例验证―得出结论”的方法。为本单元后续学习其他运算定律做好充分准备。

存在不足:对学生的激励评价方式单一,学生的积极性没有调动起来。以后可以采取小组间的比赛,对表现优秀的小组给以适当奖励,如发证书、减少作业量、量化加分等。

今后工作中,还要坚持集体备课,优化教学,促进学生的思考。

【加法交换律教案】相关文章:

1.加法交换律教学随笔

2.人教版加法交换律教学设计

3.乘法交换律教案

4.加法交换律和结合律小学四年级数学教案

5.数学教材章节《加法交换律和结合律》教学反思

6.加法的交换律和结合律教学设计--刘小云

7.20以内加法教案

8.有理数的加法教案

9.5的加法中班教案

10.池仁松老师公开课教案-《交换律》

下载word文档
《加法交换律教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部