欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>长方体和正方体体积统一的计算教案

长方体和正方体体积统一的计算教案

2023-11-30 08:50:34 收藏本文 下载本文

“zhpw”通过精心收集,向本站投稿了13篇长方体和正方体体积统一的计算教案,下面就是小编给大家带来的长方体和正方体体积统一的计算教案,希望大家喜欢阅读!

长方体和正方体体积统一的计算教案

篇1:第三课长方体和正方体体积统一的计算 教案教学设计(人教新课标五年级上册)

长沙开福区自安小学      石将敏

教学内容 教材第43页的内容

教学目标

知识与技能

(1)在理解底面积的基础上,使学生掌握长方体和正方体体积统一计算公式

(2)提高学生综合运用知识的能力,发展学生的空间观念。

过程与方法

(1) 通过探索研究将长方体和正方体体积的计算公式统一起来。

(2) 通过解决实际问题加深对所学知识的理解。

情感态度与价值观

(1) 体验合作探究的乐趣。

(2) 感受数学与现实生活的密切联系,发展学生的思维。

教学重点 理解底面积的含义,统一公式的推导。

教学难点 对长方体和正方体统一的体积公式的理解和运用。

教学准备 课件

教学过程

一、创设情境

1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)

2、填空。

(1)长、正方体的体积大小是由       确定的。

(2)长方体的体积=                 。

(3)正方体的体积=                。

二、探索研究

1.观察。

(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)

结论:长方体的体积=底面积×高

正方体的体积=底面积×棱长

2.思考。

(1)这条棱长实际上是特殊的什么?

(2)正方体的体积公式又可以写成什么?

结论:长方体(或正方体)的体积=底面积×高,用字母表示:

V = sh

三、课堂实践

1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。

2.做第35页的“做一做”的第2题。

首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。

3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。

四、课堂小结

学生小结今天学习的内容

五、课后实践

做练习七的第10、11、12题。

旁批:

后记:

篇2:长方体和正方体的体积计算教案

教学要求

使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。

教学重点

篇3:五年级数学《长方体和正方体统一的体积公式》教案

目标

在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。

教学及训练

重点

理解底面积。

仪器

教具

投影仪

教学内容和过程

教学札记

一、创设情境

1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)

2、填空。

(1)长、正方体的体积大小是由确定的。

(2)长方体的体积=。

(3)正方体的体积=。

二、探索研究

1.观察。

(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)

结论:长方体的体积=底面积×高

正方体的.体积=底面积×棱长

2.思考。

(1)这条棱长实际上是特殊的什么?

(2)正方体的体积公式又可以写成什么?

结论:长方体(或正方体)的体积=底面积×高,用字母表示:V=sh

三、巩固练习

1.做第20页的“练一练”。学生独立做后,学生讲评。

2.补充:一段长方体方铜,长1.2米,横截面是一个边长1厘米的正方形。这段方铜的体积是多少立方厘米?

首先帮助学生理解:什么是横截面?再让学生做后学生讲评。

3.做练习三的第9、10题,学生独立解答,老师个别辅导,集体订正。

四、课堂小结

学生小结今天学习的内容

五、课后练习

做练习三的第11、12、13题。

篇4:五年级数学《长方体和正方体统一的体积公式》教案

长方体的体积=底面积×高

正方体的体积=底面积×棱长

长(正)方体的体积=底面积×高,

用字母表示:V=sh

篇5:长方体、正方体的体积教案

三、练习

1、出示课本30页的例一:生独自完成,集体订正。

2、课本31页做一做。

四、课堂总结

今天你有哪些收获?还有什么疑问?

板书设计:

篇6:长方体和正方体的体积计算教学设计

《长方体的体积》教学设计

辽宁省大石桥市周家镇中心小学

李丽娟

【教学目标】

1、结合具体情景和实践活动,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积,解决一些简单的实际问题。

2、学生在动手操作,主动参与学习活动过程中发现知识的规律,掌握数学知识、思维能力培养,学生的学习能力得到训练。

3、在观察、操作、探索的过程中,学生的动手操作能力得到提高,空间观念得到进一步的发展。

【教学重点】长方体和正方体体积的计算方法. 【教学难点】长方体体积公式的推导

【教具准备】课件 大小不一的两个物体 大小相近的长方体与正方体 【学具准备】正方体小方块

教学实施具体过程:

一、创设情境 发现问题

1、大家都爱吃水果,那么西瓜和苹果哪个大?哪个小?(西瓜大苹果小)

其实刚才我们在比它们的什么?(比较它们的体积)体积指的是什么?(体积是指物体所占空间的大小)

2、那么常见的体积单位有哪些呢?

3、出示长方体、正方体学具:那你能猜猜这个长方体学具的体积是多少吗?那这个正方体的体积和长方体比较,哪个会大一些呢?

4、看来同学们的意见出现了分歧,那么怎样才能准确的比较出它们的大小呢?谁说说看?(看看它们哪个体积大哪个就大?)

5、同学们说的都有道理,今天这节课我们就一起来研究长方体(正方体)体积的计算方法。

二、观察思考 提出猜想

1、猜想:我们学过长方形面积计算公式,谁来说说长方形面积与什么有关?(长方形面积与长和宽有关),长方体的体积可能与什么有关?下面请看课件。

出示三组长方体进行比较引导学生使学生初步认识到长方体的体积与它的长、宽、高都有关。

三、观擦实验,验证猜想

1、那么长方体的体积与它的长、宽、高到底有怎样的关系呢?凭空想象是不行的,数学是要讲究依据的,要通过反复的实践证明才行 课件演示

(1)看一看下面的长方体的体积是多少?为什么?

体积是4立方厘米。为什么?因为他它含有4个1立方厘米的体积单位。

我们已经知道,长方体的体积就是指长方体所含有的体积单位数。所以求长方体的体积就是求长方体所含有多少个这样的体积单位。下面我们运用1立方厘米的体积单位来研究长方体的体积计算方法。

(2)再加上这样的两排,这个长方体的体积是多少?你是怎么想的?

学生1:12立方厘米。追问怎么得到的?

学生2:一排是4立方厘米, 3排就是4×3=12立方厘米。??

(3)再加上这样的一层,这个长方体的体积是多少? 学生1:24立方厘米。 追问:能说说你是怎么计算的?

学生2:一层是12立方厘米,2层就是

12×2=24立方厘米 再追问:这个长方体的长宽高分别是多少? 学生3:长是4厘米,宽是3厘米,高是2厘米。

2、启发:生活中计量物体的体积,都用“切成若干个体积单位”来计算,是不行的,同学们通过观察刚才老师在课件上的演示你发现了没有长方体的体积与它的长、宽、高到底有怎样的关系?谁能把你的发现大胆的说给大家?

学生1:长方体的体积就等于长、宽、高的乘积。 学生2:长方体的体积=长×宽×高??

3、用字母表示长方体的体积公式

4、长方体的体积计算公式的应用

(1)师问:在生活中,怎样计算长方体的体积? 课件出示习题

(3)迁移推导,再次尝试 推导正方体的体积计算公式 正方体的体积=棱长×棱长×棱长, 用字母表示:V=a×a×a = a3 应用公式计算

(4)继续观察

使学生明确阴影部分的面积是上面各个图形底面的面积,称为底面积。然后导出

长方体(正方体)的体积=底面积×高

V=S×h 四.学以致用

巩固提高

1、填一填

2.判断(判断对错,说明理由)

(1)一个正方体的棱长是2米,它的体积是8立方米。(

) (2)一个长方体的长30厘米,宽2分米,高5厘米,它的体积是30×2×5=500(立方厘米)。

(

)

(3)一个棱长为6分米的正方体,它的表面积和体积相等。(

) 3.提高题

(1)一块砖的长是24厘米,宽是长的一半,厚是6厘米,它的体积是多少立方厘米?(只列式)

(2)一个正方体的棱长总和是36厘米,它的体积是多少? 4.实际应用

(1)雄伟的人民英雄纪念碑矗立在__广场上,石碑的高是14.7米,宽2.9米,厚1米。这块巨大的花岗岩石碑的体积是多少立方米?

解:V=abh =2.9×1×14.7

=42.63(m3)

答:这块巨大的花岗岩石碑的体积是42.63立方米。 (2)有一种正方体形状的魔方,棱长是6厘米,体积是多少立方厘米?

V= a =6×6×6

=216(cm3)

答:这种魔方的体积是216立方厘米。

五、谈谈你今天的收获 板书设计:

长方体的体积

长方体的体积=长×宽×高

V=a×b×h

= abh

正方体的体积=棱长×棱长×棱长

V=a×a×a

a

= 3

长、正方体的体积=底面积×高

V=S×h

篇7:长方体和正方体的体积计算教学设计

教材解读 体积对学生来说是一个新概念。由认识平面图形到认识立体图形,是学生空间观念的一次发展。教材加强了对体积概念的认识。教材通过学生更熟悉、更直观的“乌鸦喝水”的故事、石头放入盛水的杯子里的实验等,以生动形象的方式,为学生体会物体占有空间,理解体积概念提供丰富的感性经验。然后,引导学生观察比较电视机、影碟机和手机的大小,说明不同的物体所占空间的大小不同,从而引入体积概念。

学习目标 1、理解体积的意义,认识常用的体积单位:立方米、立方分米、立方厘米。

2、理解并掌握长方体和正方体体积的计算方法。

3、正方体的体积计算解决一些简单的实际问题。培养学生归纳推理,抽象概括的能力

教学重、难点 体积的含义和常用的体积单位。

教、学具准备 前置作业、多媒体设备、红笔、12个体积1厘米的小正方体

预习提 纲

1、什么叫做体积?

2、常用的体积单位有哪些?

3、长方体(或正方体)的体积该怎样计算?

教 学 流 程

学生学习活动 教学板块或教师活动

一、独立自学

结合预习提纲自学课本27至31页。 1、1米、1分米、1厘米是( )单位。

1平方米、1平方分米、1平方厘米是( )单位。

2、乌鸦是怎样喝到水的?说明了什么?

3、电视机 影碟机 手机哪个所占的空间大?哪个体积?哪个最小?

4、物体所占空间的大小叫做( )

二、互动交流

学生分小组进行讨论交流 1.实验观察

观察(1):把一块石头放入有红色水的玻璃杯中,水位有什么变化?这是为什么?

图片观察:投影出示课本上的洗衣机、影碟机、手机,哪一个物体所占的空间大?

2.教学体积单位。

(1)介绍体积单位。

常用的体积单位有:立方米、立方分米、立方厘米。

(2)1立方米、1立方分数、1 立方厘米的体积各有多大。

1立方厘米:一个指尖的大小

1立方分米:一个粉笔盒的体积

3、推导体积公式

(1)分别用8个、12个小正方体摆成不同的长方体,,观察发现,每排小正方体的个数相当于长方体的长,排数相当于长方体的宽,层数相当于长方体的高

(2)发现规律得出长方体的体积公式

(3)根据长方体和正方体的关系推导正方体的体积公式

学生学习活动 教学板块或教师活动

三、总结评价

总结这一节课的收获,并提出自己的问题 1、物体所占空间的大小叫物体的

体积。

2、常用的体积单位有立方厘米、立方分米、立方米。

3、长方体的体积=长×宽×高

4、正方体的体积=棱长×棱长×棱长

四、巩固或提高

完成同步指导上的相关作业。 独立完成,核对时说一说自己是怎样想的?怎样做的?

教 学 反 思

长方体和正方体的体积计算教学设计

篇8:《长方体和正方体体积的计算》教学设计

《长方体和正方体体积的计算》精品教学设计

[教学内容]

教科书第27页的内容,练习六第4-8题

[教材简析]

这部分教材是学生已经掌握长方体和正方体的特征,了解体积的意义,初步掌握长方体和正方体体积公式的基础上,引导学生进一步探索长方体和正方体的体积公式,在探索中通过分析、比较、归纳,掌握“长方体(正方体)的体积=底面积×高”这一直棱柱体积的通用公式。

“练一练”和练习六第4—8题,先直观看图计算,再比较长方体(正方体)的体积=底面积×高与前面所学长方体、正方体体积计算方法的不同和联系,在比较中巩固上述公式的推理过程,然后在练习中解决一些实际问题。这样由浅入深,既巩固了长方体(正方体)的体积=底面积×高的体积公式,又使学生学会解决实际问题,体会到数学在日常生活中的应用,感受数学的价值,还发展学生的空间观念。

探索并掌握长方体(正方体)的体积=底面积×高的计算是本节课的重点。

[教学目标]

1、使学生在具体的情境中,经历比较、讨论、验证、归纳等数学活动过程,探索并掌握长方体(正方体)的.体积=底面积×高的计算方法,能解决与体积计算有关的一些简单实际问题。

2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。

3、使学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好书学得的自信心。

[教学过程]

一、观察直观图形,认识并计算长方体、正方体的底面积

(出示长方体、正方体)谈话:同学们,我们学过了长方体、正方体的特征和表面积。请同学们在小组中找出这两个图形的底面分别是哪两个面?

根据学生的回答,教师在图中涂色呈现出底面。

提问:这两个图形的底面积是哪两个面的面积?

根据学生的回答,教师板书“底面积”定义。

再提问:怎样计算长方体和正方体的底面积?

根据学生的回答,明确长方体、正方体底面积的计算方法,教师板书计算公式。

[评:《数学课程标准》要求:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上,在学生理解和掌握长方体、正方体特征和表面积基础上,让学生自己归纳、探索底面积的定义和计算公式,体现数学学习是一个再创造过程。]

二、探索长方体(正方体)的体积=底面积×高的计算方法

1、提问:我们前面学习的长方体、正方体体积是如何计算的?

根据学生的回答,教师板书体积公式

2、谈话:长方体和正方体的体积也可以这样来计算:长方体(正方体)的体积=底面积×高

3、提问:在小组中讨论为什么可以这样来计算长方体、正方体的体积?

学生在小组中讨论得出结论,教师帮助学生进行相应整理

4、请同学们尝试用字母表示这个公式

根据学生的回答,教师板书字母公式

[评:观察、思考、讨论、交流等都是《数学课程标准》所提倡的数学活动。在这里,先把公式直接告诉学生,让学生在借助已有知识的基础上,凭借他们自己的经验,在小组中充分交流、合作,在探索、比较中充分理解长方体(正方体)的体积=底面积×高的推理过程。]

三、分析、比较加深长方体(正方体)的体积=底面积×高的理解

1、出示“练一练”第1题

⑴、学生独立思考完成

⑵、讨论:这样计算长方体和正方体的体积与原来的计算方法有什么不同?有什么联系?

2、出示“练一练”第2题

独立做题,在班内共同订正

[评:在学生独立解决问题中,关注这种计算公式与原来计算公式的不同与联系,进一步巩固长方体(正方体)的体积=底面积×高的计算方法,感受数学的魅力。]

四、巩固练习、拓展应用

1、做练习六第4题

⑴、借助实物帮助学生理解占地面积的实际含义

⑵、使学生明确“所占空间”就是储物柜的体积

⑶、独立做题,在班内共同订正

[评:让学生在实际应用中,巩固用“底面积×高”计算长方体体积的方法,感受这种方法在解决实际问题过程中的作用。]

2、做练习六第5题

⑴、结合图让学生指一指这根横截面的位置

⑵、引导学生想象:如果将这根木料竖起来,木料的横截面就是这个长方体的哪个面?木料的长与竖起来的长方体的高有什么关系?可以怎样计算它的体积?

[评:引导学生联系“长方体体积=底面积×高”这一方法,理解用“横截面面积×长”计算长方体体积的方法,有利于学生从不同角度加深对体积计算方法的理解。]

3、做练习六第6题

⑴、使学生明确黄沙铺成的形状是长方体,铺的厚度是长方体的高

⑵、明确要求“用方程解”

[评:这是一个在长方体沙坑铺黄沙的实际问题,让学生根据长方体的体积以及长和宽(或底面积),求它的高,既体现了知识的综合应用,又有利于提高学生应用公式解决实际问题的能力。]

4、做练习六第7题

⑴、弄清题中两个问题的联系与区别

⑵、引导学生寻找计算花坛所占空间大小以及花坛内泥土体积所需要的条件

⑶、提示:从里面量,花坛的高没有变,但底面正方形的边长只有1.3-0.3×2=0.7(米)

[评:通过让学生计算花坛所占的空间和花坛里有多少泥土这两个问题,让学生在比较中进一步明确体积和容积的不同意义。]

5、做练习六第8题

⑴、合理选择相应的信息解决实际问题

⑵、独立思考,在班内共同订正

[评:通过跑道上铺三合土和塑胶的实际问题,培养学生合理选择信息解决有关体积计算的实际问题的能力。]

五、激励评价,问题延伸

谈话:请同学们说说这节课你有什么收获?你是怎样知道的?回家后选择你身边的长方体或正方体,测量并用今天学习的知识计算它的体积。

[评:课堂总结不但关注学生知识与技能的掌握,而且关注了学生的学习过程,还把课堂中学到的知识延伸到生活中,体现了生活中处处有数学的理念。]

篇9:《长方体和正方体的体积计算》教学设计

教学目标:

1、理解并掌握长方体和正方体体积的计算方法。

2、能运用长、正方体的体积计算解决一些简单的实际问题。

3、培养学生归纳推理,抽象概括的能力。

教学重点和难点

长方体和正方体体积的计算方法,以及其体积公式的推导。

教学用具

1立方厘米的正方体若干块,正方体和长方体教具

教学过程设计

(一)复习准备

1.提问:什么是体积?常用的体积单位有哪些?

2.请每位同学拿出4个1厘米3的正方体,摆成一个长方体。

教师:这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由 4个 1厘米3的正方体拼成,所以它的体积是 4厘米3。)

教师:如果再拼上一个1厘米3的正方体呢?

教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。如果想知道我们这间教室的体积应该怎么办呢?(引导学生理解有的物体是不能切开的,能不能运用学过的知识来解决。)能不能通过测量、计算来求出教室的体积呢?今天我们来学习怎样计算长方体和正方体的体积。板书课题:长方体和正方体的体积。

(二)引导探索

1.长方体的`体积。

师:“要想求长方体的体积,你们猜想可能与什么有关呢?”

(1)教师:请同学取出12个1厘米3的小正方体。问:它们的体积一共是多少?

教师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。

同学分小组活动,教师巡视。教师:观察上表,你发现了什么?看一看这些数据与长方体的体积有什么关系?

学生讨论后回答:长方体的体积正好等于它的长、宽、高的乘积。

进一步验证:同桌合作,用小正方体摆出自己喜欢的长方体,看看长方体的体积是否等于长、宽、高的乘积。

教师板书:长方体的体积=长×宽×高

教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

板书:V=abh。

(2)练习:(学生口答。)出示老师的长方体教具,给出长、宽、高,求体积。

师:现在老师测量了教室的长是7、5米,宽是6米,高是3米,教室的体积是多少,你们知道吗?学生快速计算。

2.正方体体积。

根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?

学生口答,老师板书: 正方体体积=棱长×棱长×棱长。

用字母表示公式:用V表体积,a表示棱长,公式可写成:V=a·a·a或者V=a3。

(2)教学例2

学生试做,指名板演。

做一做:出示老师的正方体的教具,求体积。(学生口答)

(三)巩固反馈

练习七5、6题。

(四)课堂总结

篇10:《长方体和正方体的体积计算》的教学反思

《长方体和正方体的体积计算》的教学反思

一、利用实际生活中的实物,引导学生解决实际问题。

长方体和正方体体积的实际应用,学生是在掌握了体积的概念和单位等内容的基础上进行学习的。教师在教学过程中,可以运用日常生活中常见几何体来进行教学,如粉笔盒、课本和长方体的橡皮擦等实物,教学前教师可以先准备一立方厘米的正方体若干个,运用这些小正方体按小组分给学生,然后让学生分小组进行摆成不同长宽高的长方体,再数出这些长方体各含有多少个1立方厘米的体积单位,接着引导学生找出自己摆成的长方体的长宽高各是多少,再观察这个长方体的长宽高三个条件的积与数出来的小正方体的个数有什么关系,然后让学生进行小组讨论,找出长方体的体积的的计算方法。这时教师可以在每个小组中提问学生,你们找出的长方体的计算方法是怎样的?你们是怎样找出来的?在这提问中学生答对的教师要给予肯定,答错的也要给予鼓励,然后师生共同把长方体的体积公式归纳出来:长方体的体积=长×宽×高,用字母表示:V=abh。这样教学,教师就把学生带到了从实践知识上升到理论知识,并找到解决问题的`一般规律。另外,教师也可以用如此类推的方法引导学生归纳出正方体的体积公式。

二、运用找到的规律,进行实际操作。

体积对学生来说是一个新概念,他们是由认识平面图形上升到认识立体图形,是空间观念的一次质的飞跃。然而此时,学生对立体的空间观念还比较模糊,教师应特别注意到加强实物或教具的演示和学生的动手操作,以发展学生的空间观念,加深对长方体和正方体计算公式的理解。在教学时,教师结合实际的教具,引导学生进一步对长方体和正方体体积公式的强化记忆,如粉笔盒的体积是多少?怎样求它的体积?要求它的体积必须有哪些条件?(教师可以请几个学生到讲台上实际量出粉笔盒的长宽高,并把这些条件板书在黑板上,让全体学生进行计算粉笔盒的体积),当学生准确算出粉笔盒的体积后,教师话峰一转,你们知道自己的数学课本的体积有多少吗?你能求出数学课本的体积吗?要求出数学课本的体积是多少?必须有哪些条件?你能找出这些条件吗?下面请同学们求出自己数学课本的体积是多少?看谁做得又对又快。通过实际观察、操作等活动,学生清楚地理解长方体和正方体的体积计算公式,并能够根据所给的已知条件正确地计算有关图形的体积,动手能力也得到了相应的提高。

篇11:第三单元长方体和正方体体积教案

第三单元长方体和正方体体积教案

第一课时

教学目标:

1、使同学理解体积的意义,认识常用的体积单位:立方米、立方分米、立方厘米,培养初步的空间观念。

2、使同学知道计量一个物体的体积有多大,要看它包括多少个体积单位。

教学重点:

1、建立体积概念。

2、认识体积单位。

教学难点:

建立体积概念。

教学用具:学具袋。

教学过程:

一、导入:你们都听说过乌鸦喝水的故事吧,聪明的乌鸦是怎么喝到水的?这其中有什么道理?

二、新授:

1、体积的意义。

(1)、准备:我们也来做一个实验,取两个同样大小的玻璃杯。先往一个杯子里倒满水;取一块鹅卵石放入另一个杯子,再把第一个杯子里的水倒到第二个杯子里,会出现什么情况?为什么?这说明了什么?(鹅卵石占了一定的空间。)

(2)、每一个物体都占有一定的空间。下面的电视机、影碟机和手机,哪个所占的空间大?

〔3〕、启发同学概括:物体所占空间的大小叫做物体的体积。(板书)

上面三个物体,哪个体积最大?哪个体积最小?

(4)、比较:用同学手中的文具比。谁的体积大?谁的体积小?

师:教室是一个较大的空间,课桌、讲台、同学、老师等占教室空间的一局部。整个[url=]学校[/url]是一个大空间,教师、办公室、操场、花池、领操台、旗座等都占有一定的空间,既有自身的体积。而整个宇宙是一个大空间,地球只是宇宙空间的一局部,而地球上的山、川、河流、一切建筑物、人等占地球的一局部。

2、体积单位:

(1)、讲:丈量长度要用长度单位,丈量面积要用面积单位,丈量体积要用体积单位。(板书)

认识体积单位:

常用的体积单位有:立方米、立方分米、立方厘米。可以分别写成

( 2)、认识立方厘米:

出示:棱长是1厘米的正方体,量一量它的棱长是多少?

说明:它的体积是1立方厘米。

谁的体积近似的接近1立方厘米?(色子或一个手指尖的.体积大约是1立方厘米)

(3)、认识立方分米: (方法同立方厘米)

粉笔盒的体积接近于1立方分米。

(4)、认识立方米:

①出示1立方米的棱长的教具。观察后总结:边长是1米的正方体的体积是1立方米。

②认识1立方米的空间大小。

1立方米水约可以装满500个暖瓶。1立方米的木材约可以做课桌50张。

小结:

常用的体积单位有哪些?哪个体积单位大?哪个体积单位小?

体积单位的用途是什么?

(5)、练一练:选择恰当的单位:

橡皮的体积用( ),火车的体积用( ),书包的体积用( )。

(6)、比一比:

到现在为止,我们都了学哪些丈量单位?(板书)

长度、面积、体积三种单位的区别:

(7)、练习:

①说一说:丈量篮球场的大小用( )单位。

丈量学校旗杆的高度用( )单位

丈量一只木箱的体积要用( )单位。

②、一个正方体的棱长是1( ),外表积是( ),体积是( )。(你想怎样填?)

③、判断:一只长方体纸箱,外表积是52平方分米,体积是24立方分米,它的外表积大。( )

3、体积初步认识:

①决定体积大小,是看它含有体积单位的个数。

A 、演示:用棱长1厘米的4个正方体,拼一个长方体,说出它的体积是多少?

B、说出下面物体的体积(3个体积单位,4个体积单位,)

C 、摆一摆:请你也摆出一个体积是3立方厘米的物体。摆出体积是4立方厘米的物体。

D、小结:怎样知道一个长方体的体积是多少?

同一个体积数,可以摆出不同的形状。

②动手摆一摆:

请大家用手中的小正方体拼一个体积是8 立方厘米的长方体(或正方体)。(想一想你拼的物体体积是多少?)可以怎么摆?

三、总结:

这节课我们学习了体积的意义和体积单位。你有什么收获?

四、作业

篇12:“长方体和正方体的体积计算(二)”教学反思

“长方体和正方体的体积计算(二)”教学反思

第二单元 ( 长方体和正方体) 第八课时(长方体和正方体的体积计算(二))

今天教学的是长方体和正方体的通用公式(以前教学时都这样叫)。

长方体(或正方体)的体积=底面积×高

这节课的内容都是在学生已的知识基础进行的,学生心中有体积公式,底面积的认识,学生学习这一部分的内容很是容易,只要适当点引,学生都能掌握好这一知识。

内容是很简单,但是还是有些地方值得在教学中注意,我想谈下面三点:

第一:“底面积”前后好像重复

今天教材27页第一行就是“底面积”的定义。接下来,追问:怎样计算长方体和正方体的底面积?

再打开书到前面的练习三,其中的第5题:分别计算出下图中长方体、正方体的底面的面积。在这题里,既有形象的直观图,又有“底面”一词,当时学生就能熟练计算底面积了,为什么一直到今天才好像又像从未算过似的那样,又来一遍呢?记得那一条,当时还是花了一些时间的,对于这两处,不知编者是什么意图,难道说前面的练习是为了今天的准备吗?总觉得,今天的教学有故弄玄虚,当然由于有了前面的基础,也没有花多大的时间。

想下来,不当之处在练习三,第5题可以去掉,因为其中的第2题已经求了底面的`面积了(只不过用的是下面――此处用“下面”比用“底面”好)。

第二:底面积、横截面积

练习六第5题――木料的横截面面积,依照教参上的说明,是引导学生想像:如果将这根木料竖起来,看木料的横截面就是这个长方体的哪个面?木料的长与竖起来的长方体的高有什么关系?……

但是从课堂上学生的反馈来看:

生:(学生自己理解题意后)

师:这道题自己会算吗?

生:会(自己独立解答)

师:你是怎样算的?

生:长×宽×高

师:不错,这儿宽和高都是0。3米,长3米。

师:有没有其它的方法?

生:(好多位学生齐说)有,用“横截面面积×长”

师:谁能说说这样算的理由?

生:“横截面面积”相当于“宽×高”,用“横截面面积”替换体积公式中的“宽×高”。

师:(指黑板上的画好的同书面27页上的长方体直观图)――这一题与这个直观图有联系吗?

生:有联系,可以把……

(接下来,就是转动这两个长方体,合二为一的思考过程。)

反思:有了上面的铺垫过程,再引导想象,我觉得能让学生对长方体的体积计算又有更深层的认识,使体积计算得以贯通。

第三:厚度的问题

还是练习六中的问题,其中的第6、7、8题中都提到“厚度”的问题

――第6题“可以铺多厚?”――第7题“厚度0。3米“――第8题“再铺上0。03米厚的塑胶”。

部分学生在练习中一不注意也把第8题中的“厚”理解成高了。因而在三题练习结束后――

师追问:这三题中都有“厚度”它们的意思一样吗?

生:……

篇13:长方体与正方体体积计算优秀教学设计

长方体与正方体体积计算优秀教学设计

教学要求

使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。

教学重点

长方体、正方体体积公式的推导。

教学用具

教师准备: 1立方厘米的正方体木块24块;课件。

学生准备:1 立方厘米的正方体12个

教学过程

一、创设情境

填空:

1、___叫做物体的体积。

2、常用的体积单位有:__、__、__。

3、计量一个物体的体积,要看这个物体含有多少个____。

师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)

二、实践探索

1.小组学习------长方体体积的计算。

课件演示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。

提问:通过观察,你能说出它的体积是多少?

实验:都拿出准备好的12个1立方厘米的小正方块,先说一说它们的体积是多少?师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。

观察结果:

(1)摆成了一个什么?

(2)它的长、宽、高各是多少?

板书:长方体:长、宽、高(单位:厘米) 体积(单位:立方厘米)

师:这些长方体有什么共同点?不同点?

问:为什么这些长方体的长、宽、高不同,即形状不相同而体积相同呢?

体积怎么计算出来的呢?

含体积单位数:4×3×1=12(个)

体积:4×3×1=12(立方厘米)

(3)它含有多少个1 立方厘米?

(4)它的体积是多少?

通过上面的实验,你发现了什么?(可让学生分小组讨论)

有许多物体不能切开,怎样计算它的体积?

结论:长方体的体积=长×宽×高。

用字母表示:V = a×b×h=abh

应用:出示例1,让学生独立解答。

2.小组学习——正方体体积的计算。

思考并回答:长方体和正方体有什么关系?正方体的体积该怎样计算呢?

结论:正方体的体积=棱长×棱长×棱长

用字母表示为:V=a3

说明:a×a×a可以写成a3,读作:a的立方。

应用:出示例2,让学生独立做后订正。

三、课堂实践

1.做第34页的“做一做”的第1题。

(1)先让学生标出每个长方体的长、宽、高。

(2)再根据公式算出它们各自的体积。

(3)集体订正。

2、做第34页的“做一做”的第2题。

3、判断正误并说明理由。

①0.2 = 0.2×0.2×0.2; ( )

②5X×2=10X; ( )

③一个正方体棱长4分米,它的体积是:4 =12(分米 ); ( )

④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米 。( )

4、做练习七的第4、6题。

四、课堂小结

五、课后实践

做练习七的第5、7题。

课堂教学设计说明

数学课程标准对“空间与图形”的内容,以“图形的认识、图形与变换、图形与位置、图形与证明”等四条线索展开,并且都以图形为载体,以培养学生空间观念、推理能力,以及更好地认识与把握我们生存的现实空间为目标,不仅着眼于学生理解和掌握一些必要的几何事实,而且强调学生经历自主探索和合作交流的过程,形成积极的学习态度和情感。提倡以“问题情境——建立模型——解释、应用与拓展、反思”的基本模式展现内容,让学生经历“数学化”和“再创造”的过程。

鉴于新课标的要求,本节内容是在学生已掌握了体积的概念和体积单位的基础上进行的。教学过程中主要通过学生操作的'方式,调动学生积极参与长方体体积公式的推导,推理和最后的结论,都由学生得出,老师只起“导”的作用。正方体体积公式,采用小组合作的方式引导学生把它归为长方体的特殊情况来学习,这样既加深了对长、正方体之间包含关系的理解,同时也加深了对其体积计算公式的理解。总之,新课力求体现两个特点:1、给学生更多的动手操作实验与实践的空间。2、课堂教学的组织,将突出探究性活动,使学生亲历“做数学”的过程,并在这一过程中,通过自主探索,认识和掌握图形性质,积累数学活动的经验,发展空间观念和推理能力,其间特别注意给学生提供充分的数学活动交流的机会。

【长方体和正方体体积统一的计算教案】相关文章:

1.长方体和正方体的体积

2.“长方体和正方体的体积计算(二)”教学反思

3.《长方体和正方体统一的体积公式》六年级数学教学反思

4.《长方体和正方体的体积》教学设计

5.西施教材10册数学长方体和正方体的体积计算教案设计

6.《长方体和正方体的表面积》教案

7.长方体和正方体专项练习题

8.长方体体积公式

9.长方体正方体表面积公式

10.《长方体和正方体的认识》的教学反思

下载word文档
《长方体和正方体体积统一的计算教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部