欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>五年级数学《长方体的体积》优秀教学设计

五年级数学《长方体的体积》优秀教学设计

2023-09-18 09:43:53 收藏本文 下载本文

“yumiki”通过精心收集,向本站投稿了15篇五年级数学《长方体的体积》优秀教学设计,这次小编给大家整理后的五年级数学《长方体的体积》优秀教学设计,供大家阅读参考,也相信能帮助到您。

五年级数学《长方体的体积》优秀教学设计

篇1: 五年级数学《长方体的体积》优秀教学设计

教学内容:

教科书第32~34页,长方体、正方体体积计算公式的推导,例1、例2及相应的“做一做”。练习七的第4~7题。

教学目的:

1、使学生经历长方体、正方体体积计算公式的推导过程,在具体情境中发现规律,理解和掌握长方体、正方体的体积计算公式、并能正确运用公式进行计算。

2、通过推导公式的实践活动,发展学生的空间想象,培养学生归纳、类比、进行逻辑推理的能力。

3、使学生初步会运用长方体、正方体体积计算的知识,解决有关的简单实际问题。

教具、学具准备

1、教师准备:多媒体课件。(复习题示图,推导长方体体积公式的示意图)

2、学生准备:①每人准备1立方厘米的小方块若干。②每个学习组准备一个长8厘米、宽5厘米、高3厘米的长方体模型,一个棱长8厘米的正方体模型。

教学过程:

一、复习引入

1、下面图中各是什么计量单位?它们之间有联系吗?

问:除了立方厘米,还有那些体积单位?

2、问:什么是物体的体积?

(物体所占空间的大小叫做它的体积)

3、下面的图形都是用棱长1厘米的小正方体拼成的,它们的体积各是多少?你是怎样数出来的?

问:需要一个一个的数吗?有没有简单方便的数法?

(只要数出每层长有几个,宽有几个,算出一层几个,再数有几层。)

4、完成练一练 1、2。

二、学习新课

1、探究长方体体积计算方法,推导公式。

(1) 小组合作,用棱长1厘米的小正方体拼成长方体,把每次拼的情况记录在下面的表里。

用小正方体个数

长方体的体积

(立方厘米)

长方体的棱长(厘米)

(2)汇报,师板书填表。

(3)讨论:通过拼摆,你发现了什么?

长方体所含体积单位的数量与它的长、宽、高有什么关系?

(4)尝试:根据刚才的发现,试一试算出发给各组的长方体的体积。想一想,要先做什么?

各组试算后,汇报计算方法:

先量长方体的长、宽、高。(长8厘米、宽5厘米、高3厘米)

8×5×3=120(立方厘米)

(5)归纳:通过上面的实验,你得出什么结论?你能归纳出长方体的体积计算公式吗?

教师根据学生发言归纳并板书:

长方体所含体积单位的个数等于长、宽、高的乘积。

长方体的体积=长×宽×高

V=abh

2、教学例1

(1) 出示

(2) 生试做

(3) 集体订正

3、练习

21页 第4题

4、教学例2

出示,生试做

总结公式

5、练习

22页,第6题

三、巩固练习

补充练习

1、求下列各长方体的体积

(1) 长10厘米,宽8厘米,高3厘米

(2) 长2.5米,宽1.2米,高0.4米

2、求下列各正方体的体积

(1) 棱长8厘米

(2) 棱长0.5分米

3、一块长方体石料长3分米,宽2分米,高5分米。已知每立方米石料重2.7千克,这块石料重多少千克?

4、一个长方体形状的食品盒,长30厘米,宽20厘米,高18厘米。做这个食品盒至少需要硬纸板多少平方厘米?这个食品盒的体积是多少立方厘米?

四、总结

今天学习了什么?

五、课堂作业

21页第5题,22页第7题。

板书设计:

长方体、正方体的体积计算

长方体 正方体

长 宽 高 长、宽、高相等

8厘米 5厘米 3厘米 (棱长)

8×5×3=120

长方体的体积=长×宽×高 正方体的体积=棱长×棱长×棱长

V=abh V=a3

篇2:五年级数学《长方体的体积》教学设计

五年级数学《长方体的体积》教学设计

教学目标:

知识目标:

探索并掌握长方体、正方体体积的计算方法,能正确熟练计算长方体、正方体体积。

能力目标:

在观察、操作、探索的过程中,提高动手操作的能力,进一步发展空间观念。

情感目标:

学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。

教学重点、难点:

在观察、操作、探索的过程中,找出长方体的计算方法。

教学策略:教师引导学生进行自主探究。

教学准备:长方体模型多个、直尺等.

教学过程:

一、导入新课:同学们上节课我们学习了”,长方体的体积长方体的体积的计算方法“那个同学起来说一下?多让几个同学回答。

二、教学新知:

1、让学生摆出第1题的图形先让学生数出图形体积是多少立方厘米,再用公式计算出结果进行验证。

2、第2题让学生利用计算公式计算体积。

(1)一个长方体,长20厘米,宽12厘米,高5厘米

(2)一个正方体,棱长是6分米。

(3)一个长方体,底面积是60平方厘米,高7厘米。

(4)一个长方体,底面是边长为2分米的.正方形,高5分米。

学生独立计算,集体订正。

3、第4题:首先让学生多读几遍题理解题意,再计算。

30

大的体积除以小的体积等于牙膏合数。

4、第5题要让学生明白一个长方体截成一个体积最大的正方体,必须知道棱长是最短一条边,即:3×3×3=27(立方厘米)

5、第7题:计算结果是立方分米必须换算成容积单位。

三、课堂练习:教科书49页第6、8题

四、课堂小结:

学习了这节课,同学们有什么感受和体会?

板书设计:

长方体的体积(2)

一个长方体,长20厘米,宽12厘米,高5厘米

一个正方体,棱长时6分米。

一个长方体,底面积是60平方厘米,高7厘米。

一个长方体,底面是边长为2分米的正方形,高5分米

篇3:五年级数学《长方体的体积》教学设计

【教学目标】

1.知识与技能目标:使学生理解并掌握长方体的体积计算方法,能运用长方体的体积计算公式求出长方体物体的体积。培养学生的归纳、抽象概括能力。

2.情感目标:培养学生学习数学的兴趣,使学生热爱数学,提高学生的问题意识,增强学生应用数学的意识,使学生学会与人交往与人合作。

3、价值目标:使学生体会数学与生活的联系,初步学会运用所学的数学知识和方法解决一些简单实际问题。

【设计思路】

《数学课程标准》中强调要让学生“人人学习有用的数学,”“把数学作为人们日常生活中交流信息的手段和工具,”“重视从学生的生活经验和已有知识中学习数学和理解数学。”“要让学生体会数学与生活的联系,初步学会运用所学的数学知识和方法解决生活中简单的实际问题。”因此在教学设计上我们应从学生已有的生活经验和认知水平出发,善于挖掘数学中的生活原型,选择学生熟悉的身边生活事例作为教学资源,作为学生研究实践的“源”,大胆尝试使用分组实践操作的教学方法,为学生提供动手实践的机会,最大限度地激发学生参与学习过程,以“动”促“思”,改变传统的班级授课模式,使学生享受到学习的快乐,领悟到知识的情趣。

【课前准备】

每组准备一个盒装牛奶的箱子,一盒牛奶,12个1立方厘米的小正方体,一张学习记录卡。

【教学流程】

一、

挖掘生活原型,创设问题情境。

1.先让学生猜一猜一个箱子最多能装多少盒牛奶?

2.通过摆一摆验证自己的猜测。

3.撕开被教师事先封住的标签,再次验证猜与摆的结果。

4.还有其它方法能算出一个箱子最多能装多少盒牛奶吗?如果要算出一车能装多少箱牛奶,也这样把整箱的牛奶搬到车上摆一摆吗?

[策略建议:数学来源于生活,生活中存在的实际问题易激发学生对知识探索的必需性与迫切性,也更能让学生体会生活中处处有数学,体会数学与生活的联系。学生摆放牛奶的方式可能不尽相同,结果可能也不相同,教师都应给予肯定,因为这一环节的设计除了创设探究新知的问题情境,并为后面推导长方体的体积计算公式作了铺垫。]

二、

引导动手实践,自主探索新知。

(1).步步设疑,层层推进。

先让学生说说还有什么其它的方法可求出一箱能装多少盒牛奶,学生如果说出可用体积计算这种方法,教师追问“你是怎么知道的?”对学生的回答给予适当的评价后,继续追问“为什么长方体的体积等于长乘宽乘高呢?”

[策略建议:在让学生用其它方法求出一箱能装多少盒牛奶时,学生可能还不同的方法,教师都应给予肯定,并可让学生反思其所提方法的可行性。如果学生都不知道长方体的体积计算公式,教师可让学生进行猜测:长方体的体积和什么有关系?]

(2).实践操作,合作交流。

1.介绍学具,并提出操作要求。

这些是边长1厘米的小正方体,它的体积是多少?

2个这样的小正方体拼成一个长方体,这个长方体的体积是多少?

4个这样的小正方体拼成一个长方体,这个长方体的体积是多少?

12个呢?

⑤能用这些小正方体能摆成一个长方体吗?动手摆一摆,并把所得的数据填在学习卡中。

2.小组合作,交流汇报。

一共用了几个小正方体?

摆成的.这个长方体的体积是多少?

是怎么摆的?

摆成的这个长方体的长是多少?宽是多少?高是多少?

还有不同的摆法吗?

从摆的过程和结果中,你发现了什么?

3.归纳概括,推导公式。

用12个小正方体可以摆成几种不同的长方体?

这些长方体的形状不一样,可它们的体积怎样?为什么?

长方体的体积就等于什么?(所含的体积单位的数量)

④长方体所含的体积单位的数量怎么计算?(每排的个数×每层的排数×层数)

⑤每排的个数就是长方体的(长),每层的排数就是长方体的(宽),一共摆几层就是长方体的(高)。

⑥长方体所含的体积单位的数量等于(长×宽×高),长方体的体积就等于(长×宽×高)。

⑦如果用V表示体积,用a表示长,用b表示宽,用h表示高,长方体的体积可以写成(V=abh)。

[策略建议:在让学生交流汇报各组操作的结果时,教师应为学生提供足够的空间与时间,让学生畅所欲言,尽情地展现自我,把各种不同的摆法呈现出来,再从中发现规律,归纳概括。在引导学生推导公式时,应尽量让学生自己归纳,概括,推导,教师只是引导,点拨,不能一手包办。长方体的体积公式的推导比较抽象,教师应尽可能地运用多媒体技术,结合课件的展示,让学生更直观形象地理解长方体的体积公式。]

三、

应用数学知识,解决生活问题。

1.根据教师所提供的长、宽、高的数据,运用长方体的体积计算公式求出一盒牛奶的体积。

2.用体积计算的方法求出一箱能装多少瓶牛奶。(测量结果取整厘米数)

3.据调查显示,泉州地区每天大约要消费3万盒伊利牛奶,一辆长2.5米,宽1.6米,高1.8米的卡车一次能运完吗?

[策略建议:在第2个练习中,学生的计算结果会出现误差,可让学生质疑,为什么为出现这样的情况?引出容积与体积的差别,但不出现容积这一概念,为后面容积的教学设下伏笔。在第3个练习中,学生解决问题的策略可能不尽相同,教师应鼓励学生用不同的方法解决问题,体现解决策略的多样性。]

篇4:五年级数学下学期《长方体和正方体体积》教学设计

五年级数学下学期《长方体和正方体体积》教学设计

第一课时:

教学目标:

1、使学生理解体积的意义,认识常用的体积单位:立方米、立方分米、立方厘米,培养初步的空间观念。

2、使学生知道计量一个物体的体积有多大,要看它包含多少个体积单位。

教学重点:

1、建立体积概念。

2、认识体积单位。

教学难点:

建立体积概念。

教学用具:学具袋。

教学过程:

一、导入:你们都听说过乌鸦喝水的故事吧,聪明的乌鸦是怎么喝到水的?这其中有什么道理?

二、新授:

1、体积的意义。

(1)、准备:我们也来做一个实验,取两个同样大小的玻璃杯。先往一个杯子里倒满水;取一块鹅卵石放入另一个杯子,再把第一个杯子里的水倒到第二个杯子里,会出现什么情况?为什么?这说明了什么?(鹅卵石占了一定的空间。)

(2)、每一个物体都占有一定的空间。下面的电视机、影碟机和手机,哪个所占的空间大?

〔3〕、启发学生概括:物体所占空间的大小叫做物体的体积。(板书)

上面三个物体,哪个体积最大?哪个体积最小?

(4)、比较:用学生手中的文具比。谁的体积大?谁的体积小?

师:教室是一个较大的空间,课桌、讲台、同学、老师等占教室空间的一部分。整个学校是一个大空间,教师、办公室、操场、花池、领操台、旗座等都占有一定的空间,既有自己的体积。而整个宇宙是一个大空间,地球只是宇宙空间的一部分,而地球上的山、川、河流、一切建筑物、人等占地球的一部分。

2、体积单位:

(1)、讲:测量长度要用长度单位,测量面积要用面积单位,测量体积要用体积单位。(板书)

认识体积单位:

常用的体积单位有:立方米、立方分米、立方厘米。可以分别写成

(2)、认识立方厘米:

出示:棱长是1厘米的正方体,量一量它的棱长是多少?

说明:它的体积是1立方厘米。

谁的体积近似的接近1立方厘米?(色子或一个手指尖的体积大约是1立方厘米)

(3)、认识立方分米:(方法同立方厘米)

粉笔盒的体积接近于1立方分米。

(4)、认识立方米:

①出示1立方米的棱长的教具。观察后总结:边长是1米的正方体的体积是1立方米。

②认识1立方米的空间大小。

1立方米水约可以装满500个暖瓶。1立方米的木材约可以做课桌50张。

小结:

常用的体积单位有哪些?哪个体积单位大?哪个体积单位小?

体积单位的用途是什么?

(5)、练一练:选择恰当的单位:

橡皮的体积用,火车的体积用(),书包的体积用()。

(6)、比一比:

到现在为止,我们都了学哪些测量单位?(板书)

长度、面积、体积三种单位的`区别:

(7)、练习:

①说一说:测量篮球场的大小用()单位。

测量学校旗杆的高度用()单位

测量一只木箱的体积要用()单位。

②、一个正方体的棱长是1(),表面积是(),体积是()。(你想怎样填?)

③、判断:一只长方体纸箱,表面积是52平方分米,体积是24立方分米,它的表面积大。()

3、体积初步认识:

①决定体积大小,是看它含有体积单位的个数。

A、演示:用棱长1厘米的4个正方体,拼一个长方体,说出它的体积是多少?

B、说出下面物体的体积(3个体积单位,4个体积单位,)

c、摆一摆:请你也摆出一个体积是3立方厘米的物体。摆出体积是4立方厘米的物体。

D、小结:怎样知道一个长方体的体积是多少?

同一个体积数,可以摆出不同的形状。

②动手摆一摆:

请大家用手中的小正方体拼一个体积是8立方厘米的长方体(或正方体)。(想一想你拼的物体体积是多少?)可以怎么摆?

三、总结:

这节课我们学习了体积的意义和体积单位。你有什么收获?

四、作业:

课后小结:

篇5:五年级数学《长方体的体积》教学反思

五年级数学《长方体的体积》教学反思

一、教材分析。

掌握长方体的体积公式,是图形测量内容的重要方面。对于长方体的体积公式的探索和应用,不仅有利于学生解决实际问题,并且对于学生认识图形的特征和图形间的关系,发展空间观念有着重要的作用。对于长方体的体积,教材首先从对几个长方体体积的对比中,鼓励学生思考长方体的体积可能与什么有关,激发进一步探索的兴趣;然后用一些棱长都是1厘米的小正方体摆出几个不同的长方体,记录相关数据;通过观察、比较这些数据,发现长方体体积与长、宽、高的联系,从而建立长方体体积垢计算公式。在这个过程中,学生经历了猜测、观察、操作、归纳、建立数学模型的数学发现的过程。

二、设计意图。

我们生活在一个由形、体构成的现实世界里,学生每天都在和图形接触,日常生活中的长方体和正方体有了一定的感知基础,因此,课一开始,我就质疑“能否用数方块的方法来计算教室的体积?”,激发学生的学习兴趣和探索欲望。接着,设置了两个猜测的环节――一是猜测长方体的体积可能跟什么有关?通过三次比较活动,学生感知长方体的体积与它的长、宽、高有关系,为进一步自主探索长方体体积的计算方法打下良好的基础。二是猜测长方体体积与它的长、宽、高之间有什么样的关系?目的是通过动手操作,观察、分析,发现长方体体积与长、宽、高的关系,归纳得出长方体体积的计算方法。再引导学生根据长方体与正方体的关系,说说为什么正方体的体积=棱长×棱长×棱长,加深学生对长方体和正方体体积计算公式的理解。对于长方体和正方体体积计算公式的字母表示形式,则是由学生在阅读书本的过程中自主获知,这样既有利于培养学生养成阅读数学书本的习惯,又让学生知道怎样从书中寻找自己所需的信息。最后通过四组练习,进一步巩固本节课的所知所得。

三、教后反思。

本节课的目的是让学生通过实践活动,探索并掌握长方体、正方体体积的计算方法,图在观察、操作、探索的过程中,提高动手操作能力,进一步发展学生的空间观念。因此课一开始,我并没有设置“漂亮”的教学情境,而是在学生用数方块的方法得出几个立体图形体积的基础上,抛出一个问题,“能不能用数方块的方法来计算教室的体积?”目的`有二:一是抛弃繁索的动作,直奔中心;二是快速刺激学生的探索欲望。果然,课上学生的兴趣快速激起,为后面的探索活动提供了足够的情感准备,并羸得了充分的操作探索时间。

本节课,我最满意的是长方体和正方体体积的探索过程及结果。由于在前几节课拼搭立体图形中,学生曾用8块小正方块既搭出了长方体也搭出了正方体,因此在本节课中,有好几个小组的学生通过同一次的操作活动,就能同时得出长方体和正方体的体积计算公式,并且正确地阐述了原因――正方体是特殊的长方体。同时学生能根据长方体与正方体的关系――正方体是长、宽、高都相等的长方体,进一步的揭示了正方体的体积=棱长×棱长×棱长与长方体的体积=长×宽×高之间的联系与区别。在这一个环节的操作探索活动中,学生通过数据的记录与分析,发现长方体体积与长、宽、高(正方体体积与棱长)之间的关系,知道了求长(正)方体体积所必需具备的条件,并根据数据抽象归纳出体积公式,这当中不仅提高了学生的动手操作能力,也发展了学生的分析概括能力。同时在整个的观察、操作、探索的过程中,更进一步地理解与掌握长方体与正方体之间的联系与区别,有助于知识体系的重组与构建,学生的空间观念也得到了进一步的发展,这也是本节课的意图之一。

但是,在本节课的学生汇报环节当中,学生在汇报时语言表述有些不清楚,且汇报习惯不是很好,这跟学生平时在这个方面得到的训练机会不多有关系,也跟老师当时的心态――稍嫌急躁有着一定的关系。这提醒了我,在以后的教学过程中,要多所改进,不管是教师还是学生。

不管怎样,课还是上完了,有收获,也有遗憾,珍藏收获,吸取教训,期待以后的教学会更好。

篇6:《长方体的体积》教学设计

教学目标:

1、在理解了长正方体体积公式,能运用公式进行计算的基础上,进一步研究求长正方体体积的其它计算公式。

2、进一步培养学生空间观念和空间想象能力。

教学重点:1、计算长正方体体积的其它公式。 2、逆向思维的题可以用方程方法解。

教学难点: 几何知识与一般应用题的综合题。

教学过程:

一、复习检查:

如何计算长正方体的体积?及字母公式

长方体的体积=长×宽×高 正方体体积=棱长×棱长×棱长

二、新授:

长方体或正方体底面的面积叫做底面积。

长方体和正方体的底面积怎样求呢?

长方体的体积=长×宽×高 正方体体积=棱长×棱长×棱长

底面积 底面积

所以长正方体的体积也可以这样来计算: 长正方体的体积=底面积×高

v =sh

三、巩固练习:

1、长方体的底面积是24平方厘米,高是5厘米。它的体积是多少?

v=sh 24×5=120(立方厘米)

2、一根长方体木料,长5厘米,横截面的面积是0.06平方厘米。这根木料的体积是多少?

理解横截面积的含义,体会长方体不同放置,说法各不相同。

出示另一种计算方法:长方体体积=横截面积×长

3、家具厂订购500根方木,每根方木横截面的面积是24平方分米,长3米。这根木料一共是多少平方米?

理解面积单位和长度单位要一致。但不可能相同。

5、练一练 :用方程法。

(1)、一块长方体的木板,体积是90立方分米。这块木板的长是60分米,宽是3分米。这块木板的厚度是多少分米?

(2)、一根长方体水泥柱,体积是1立方米,高是4米,它的底面积是多少? (选择方法解答)

1、学校要修长50米,宽42米,的长方形操场。先铺10厘米的三合土,再铺5厘米的煤渣。需要三合土和煤渣各多少立方米?

2、有一块棱长是10厘米的正方体钢坯,锻造成宽和高都是5厘米的长方体钢材,求长方体钢材的长。

3、用15根规格完全相同的木板堆成一个体积是3.6立方米的长方体。已知每根木板宽0.3米,厚0.2米,求每根木板的长。

四、小结:今天,我们又学了哪些知识?你有什么收获?

五、作业:

篇7:《长方体的体积》教学设计

教学目标:

1、通过实践操作,使学生理解体积的含义,建立体积的概念。

2、初步认识常用的体积单位:立方米、立方分米、立方厘米,掌握常用的体积单位和体积单位的量的特征,能正确选择和使用体积的单位。

3、通过学生的动手实践,加强学生的空间观念。

教学重点:形成体积的概念和掌握常用的体积单位。

教学难点:形成体积概念。

教学用具:盛有红色水的大玻璃杯两个,大小石头各一块,;1立方米的木条棱架一个;体积是1立方分米、1立方厘米的正方体各一个。两人一份学具(1立方分米和1立方厘米的正方体模型);三把米尺等。

教学过程:

一、依据预习提纲,自主学习。

1.什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.拼成了一个什么形体?(长方体)这个长方体的体积是多少?(4立方厘米)

3.常用的体积单位有哪些?你能想像或比划一下他们个个有多大吗?

4.长方体的体积公式是什么?

5.正方体的体积公式是什么?

6.光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

7.讨论长方体和正方体的体积计算方法是否相同.

二、探索研究,交流展示。

1.故事引入:出示主题图:乌鸦喝水的故事。

自由汇报:乌鸦是怎样喝到水的?为什么?

2.学生实验:

取两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块鹅卵石放入另一个杯子里,再把第一个杯子里的水倒到第二个杯子里,会出现什么情况?为什么?(第一杯的水不能倒入第二杯,因为鹅卵石占据了一部分空间。)

3.课件出示:比较观察:电视机、影碟机、手机,哪个所占的空间大?

不同的物体所占空间的大小不同。

4.体积概念的引入:物体所占空间的大小叫做物体的体积。(板书课题:体积)

加深理解:

师:“拿出你们的书包或新华字典,摸一摸它们的大小,感觉一下自己书包或新华字典体积的大小。”

师:“想一想,你能用手比划着告诉你的同桌,你的书包或字典有多大吗?试一试。”

学生活动后,点同学分别到讲台上比划着告诉大家自己的书包或字典的大小。

师:“你们知道他们的书包有多大了吗?”

师:“谁能用打电话的形式告诉我,他们的书包有多大?”

师:“想出办法来了吗?其实我们不是没有办法,请同学们打开课本第39页,看一看书,再想一想,然后大家议一议,找到方法了就告诉老师一声。”

三、体积单位的认识:(学生先看书自学,再汇报交流。)

1.我们已经学过哪些长度单位和面积单位?

2.出示两个长方体:怎样比较这两个长方体体积的大小呢?

3.根据常用的长度单位和面积单位,想一想常用的体积单位有哪些?

介绍体积单位,常用的体积单位有:立方米(m)、立方厘米(cm)。

4.认识:1立方米、1立方分米、1 立方厘米的体积各有多大。

我们规定:棱长是1厘米的正方体的体积是1立方厘米。

1立方厘米:①让学生拿出1立方厘米的小正方体并量出它的棱长。

②看看我们身边的什么的体积大约1立方厘米。(约一个手指尖的大小)

1立方分米:出示一个棱长1分米的正方体,你知道它的体积是多少吗?我们生活中的哪些物体的体积大约1立方分米。(约一个粉笔盒的大小)

1立方米:出示1立方米的木条棱架,让同学们上来看一下1立方米的体积的大小。

我们生活中,哪些物体的体积大约1立方米?

5.再次感觉体积计量单位的实际大小:

“你们能用1立方厘米、1立方分米和1立方米等常用的体积单位来描述物体的大小吗?试一试估计一下身边物体的大小。”

学生交流尝试用体积单位描述身边物体的大小。实际比划大小,同桌互相说说。

6.练习:

(1)完成p40“做一做”t1。

说一说分别是用来计量什么的单位,它们有什么不同?

长度单位、面积单位、体积单位的联系与区别。

(2)完成p40“做一做”t2。

让学生说一说解题的根据是什么?进而使学生深化对计量一个物体的体积,要看这个物体含有多少个体积单位的意思的理解。

三、反馈检测

1.口答填表.

长方体 长/分米 宽/分米 高/分米 体积(立方分米)

5 1 2

4 3 5

10 2 4

正方体 棱长/米 体积(立方米)

6

30

0.4

2.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?

3.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?

教学设计:

体积和体积单位

常用的体积单位有:立方米(m)、立方分米(dm)、立方厘米(cm)。

棱长是1厘米的正方体的体积是1立方厘米。

课后反思:

小学生对概念的掌握与他们的知识水平、生活经验有很大的关系。因此在教学体积单位时,采取尝试自学课本,理解体积单位,培养学生空间观念。首先让学生看书自学体积单位,以小组为单位,交流合作,其次让学生汇报学会的知识。最后理解体积单位,效果不错。

篇8:长方体的体积教学设计

教学内容:

推导长正方体的体积计算方法

教学目标:

1、使学生理解长方体和正方体体积公式的推导,能运用公式进行计算。

2、培养学生空间和空间想象能力。

教学重点:

长正方体体积公式的推导。

教学难点:运用公式计算。

教学设计:

一、出示课题,学习目标

理解长方体和正方体体积公式的推导,能运用公式进行计算。

二、出示自学指导

认真看课本观察:每排个数、排数、层数与体积有什么关系?如何计算长方体的体积?

三、学生看书,自学

四、效果检测

如何计算长方体的体积?

板书:长方体体积=长×宽×高

字母公式:V=abh

五、练习

1、一个长方体,长7厘米,宽4厘米,高3厘米,它的面积是多少?

根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?

正方体体积=棱长×棱长×棱长V=aaa=a3读作a的立方。

2、一块正方体的石料,棱长是6分米,这块石料的体积是多少立方分米?

请同学们摆一个体积是24立方厘米的长方体,摆后说一说长、宽、高各是几厘米?

长方体体积=长×宽×高提问:长方体的长、宽、高不同,体积相同这是为什么?

六、小结:

怎样计算长、正方体的体积?计算长方体和正方体的体积有没有其他的方法?这个问题我们下节课研究。

篇9:长方体体积的教学设计

学习内容:

长方体、正方体的体积计算(课本第29~31页的内容,课本第30页的例1及第32页练习七的第5~6题)。

学习目标:

1.通过讲授,引导学生找出规律,总结出体积的公式。

2.指导学生运用公式正确计算长方体、正方体的体积。

3.培养学生积极思考、探索新知的思维品质。

教学重点:

长方体、正方体体积计算。

教学难点:

长方体、正方体体积计算

教具运用:

正方体木块若干。

教学过程:

一、复习导入

1.什么叫体积?计量物体的体积常用的单位有哪些?

2.怎样计算一个物体的体积呢?

二、新课讲授

1.长方体体积的计算。

教师课件出示一块长方体积木,一块盖房用的大型砖板。

(1)提问:它们的体积是多少?你是怎样想的?

引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。

教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。

(2)观察操作,探究长方体的体积公式。

小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。

学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。

说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?

学生独立思考,然后小组内讨论交流,得出结论。

小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。

板书:长方体的体积=长×宽×高

讲述:如果用字母V表示长方体的体积公式可以写成:V=abh

(3)质疑:求长方体的体积公式需要知道什么条件?

2.探究正方体的体积公式。

(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。

(2)引导学生明确。正方体的体积=棱长×棱长×棱长(板书)用字母表示:V=a?a?a=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)

3.运用长方体的体积公式解决问题。

(1)出示教材第30页的例1。

(2)学生看图,理解题意。

(3)说出题中所给信息,和所求问题。

(4)指名说出长方体的体积公式。

(5)指名学生上台板演过程,其他同学判断。

(6)老师订正书写。V=abh=7×4×3=84(cm3)

(7)看图,学生独立在练习本上完成。

(8)指名板演,集体订正。

三、课堂作业

完成课本第31页“做一做”第1、2题。

四、课堂小结

1.这节课,你有什么收获?

2.在计算长方体和正方体的体积时,要注意哪些问题?

五、课后作业

完成练习册中本课时练习。

板书设计:

长方体和正方体的体积

长方体的体积=长×宽×高

V=abh

正方体体积=棱长×棱长×棱长

V=a?a?a=a3

篇10:长方体体积的教学设计

教学内容:北师版教材五年级下册第46页~47页

教学目标:

1、学生经历探索长方体与长、宽、高之间关系的过程,理解掌握长方体体积的计算方法。

2、能根据正方体与长方体的从属关系,理解掌握正方体的体积计算方法。

3、能运用长方体、正方体的体积计算公式,正确地进行简单的体积计算,并解决简单的问题。

4、经历数学学习活动,培养学生分析与解决问题的能力。

教学重点:长方体体积的计算方法。

教学难点:推导长方体体积计算公式。

教学关键:运用教学具引导学生观察、发现长方体体积与长、宽、高之间的关系。 教具准备:电脑课件、棱长1厘米的正方体块若干。

教学过程:

一、复习铺垫:

1、计算下列长方形的面积。

练习要求:

(1) 学生独立计算各长方形的面积;

(2) 全班反馈。

2、说一说。

教师:你认为长方形的面积与长和宽有什么关系?要计算长方形的面积需要哪些条件? 通过问题回答,使学生懂得长方形面积的大小与它的长、宽有直接的关系,要计算长方形的面积必须已知它的长和宽的长度。

二、探索新知

1、揭示课题,设疑激趣。

教师:我们已经学习过并掌握了长方体、正方体的表面积计算,今天,我们要学习长方体、正方体的体积计算。板书课题:长方体的体积。

教师:请你猜一猜长方体的体积可能与什么有关?

随后,电脑课件演示,如:

比较图1、图4体会到:长、宽相等的时候,高的值越大,体积也越大;高的值越小,

体积也越小。

比较图2、图5体会到:长、高相等的时候,宽的值越大,体积也越大;宽的值越小,体积也越小。

比较图3、图6体会到:宽、高相等的时候,长的值越大,体积也越大;长的值越小,体积也越小。

教师:体积与长、宽、高存在怎样的关系呢?

从而,使学生肯定长方体体积的大小决定于它的长、宽、高的长短。

(这里课件动态演示长方体体积相关的三个条件的变化,一是长方体宽、高不变,长变;一是长方体长、宽不变,高变;一是长方体长、高不变,宽变。通过课件动画和色彩上的区别,让学生形象、直观地观察体会长方体体积大小与哪些条件有关。为进一步探索长方体体积做好铺垫。)

2、自主探索,获取新知。

(1)请学生取4个、6个、12个正方体块,分别摆出不同的长方体,让学生观察,记录这些长方体的体积的长、宽、高。

(2)反馈,课件同步演示

第一组:用4个小正方体拼长方体。

第一种:

体积是多少?

长是多少厘米?

宽是多少厘米?

高是多少厘米?

记录: 长 宽 高体积

4 1 1 4

第二种:

体积是多少?

长是多少厘米?

宽是多少厘米?

高是多少厘米?

记录: 长 宽 高体积

21 2 4

(通过课件动态演示用四个小正方体拼长方体的过程,让学生初步感知长方体体积与它的长、宽、高之间存在的内在联系。更直观、形象,易于学生理解。)

第二组:用6个小正方体拼长方体。

第一种:

体积是多少?

长是多少厘米?

宽是多少厘米?

高是多少厘米?

记录: 长 宽 高体积

6 1 1 6

第二种:

体积是多少?

长是多少厘米?

宽是多少厘米?

高是多少厘米?

记录: 长 宽 高体积

31 2 6

(这组同样通过课件动态演示,使教学内容更具体、形象、直观,使学生更容易体会。)

第三组:用12个小正方体拼长方体。

(同上)

(通过上面三组flash动画的动态演示,使抽象的立体图形在上下、前后、左右层层拼摆的过程中,让学生很容易理解长方体体积所包含的体积单位及与长宽高之间的关系,引发了每一个学生积极的情绪体验。)

(3) 整理数据,发现规律(课件演示)。

通过观察、交流,让学生发现规律,板书如下:

长 宽 高体积

4 × 1× 1 = 4

2 × 1× 2 = 4

6 × 1× 1 = 6

3 × 1× 2 = 6

12 × 1× 1 = 12

……

从而发现:长方体所包含的体积数正好等于长方体长、宽、高的乘积。

由此归纳出长方体体积计算公式:

长方体体积=长 ×宽 ×高

这时,教师再提出:如果用V表示长方体的体积,用a、b、h分别表示长、宽、高,那么长方体的体积计算公式可以怎样表示?

板书:V=a ×b ×h 或 V=a b h

(以上环节通过课件的动态演示,学生经历了提出问题-----探索问题-----验证结论-----概念形成的过程,建立了对长方体体积正确的认知。同时在图形位置、数量及长、宽、高变化的过程中学生加深了对长方体体积的全面认识,从而使学生的空间观念进一步提升。)

(4) 知识迁移,归纳正方体体积计算公式。

教师:如何计算正方体的体积呢?

课件演示,学生观察、交流后归纳:

正方体的体积=棱长×棱长×棱长

同样,教师再提出:如果用V表示正方体的体积,用a表示棱长,那么正方体的体积计算公式可以怎样表示?

V=a ×a×a或 V=

三、巩固应用,加深理解。

1、用1立方厘米的小正体摆成如下的图形,他们的.体积各是多少?

(课件出示)(此题在教学中若教师用笔画图,不但耗时而且还会不标准、不美观,通过计算机课件来出示,不但快捷,而且能解决所有的这些问题,起到事半功倍的效果。)

2、计算体积。

(课件出示)(效果同上)

3、一个药盒长6厘米,宽和高都是3厘米。现有一个长12厘米,宽6厘米,高6厘米的

纸箱,内侧的尺寸如图,这个纸箱中最多能放多少盒药?

(课件演示)(此题在大纸盒内摆小药盒,用实物演示具有很大的局限性,比如纸盒是不透明的,学生看不到纸箱里面的摆放过程,而这里利用课件动态演示,让学生直观形象的了解横摆、竖摆、侧摆这三种方式,从而找到解决问题的办法,同时进一步培养了学生的空间观念感。)

四、精彩活动,拓展延伸。

我说你搭。

用体积是1立方厘米的小正方体摆长方体。

(课件操作)(此题让学生在电脑课件中用拖拽的方式进行拼搭,激发学生浓厚的学习兴趣,积极活动的参与性,不但创设了让学生独立思考、共同研究交流的学习氛围,同时让学生深深感受到学习的乐趣和成功的喜悦。)

五、数学万花筒。

(课件演示)(把教材内容用课件的形式展现出来,既便于激发学生学习兴趣,又有利于全体学生共同研究交流。)

〔总评:课堂上,老师力图将静态的数学知识转变成动态探究过程,让学生在变(长方体长宽高中两量不变,一量变)、摆(分别用4个、6个、12个小正方体摆长方体)、思(探索长方体体积规律)、搭(任意拖拽搭长方体)、悟(在大长方体中摆小长方体需要考虑摆的方式)等探究活动中,将抽象的立体图形通过动态演示直观形象地展现在学生面前,让学生亲身经历探索长方体体积计算方法的全过程,体验数学,感悟数学,不仅突破了本课中的重难点,而且使学生的空间观念进一步提升。〕

篇11:长方体的体积教学设计

教学目标:

1、让在观察、比较中,感知长方体的体积大小与它的长、宽、高有关。通过具体操作,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积,并能运用所学知识解决一些实际问题。

2、在观察、操作、探索的过程中,提高学生动手操作及合作学习能力,培养迁移、类推能力和抽象概括能力,进一步发展学生的空间观念。

3、在个人及小组的探究活动中,培养团队协作,勇于探索的品质,体会数学的应用价值。

教学重点:引导学生探索长方体体积的计算方法。

教学难点:体验公式的推导过程。

教学过程:

一、复习比较,引入课题

1、(出示两个不同的物体)这两个物体谁比较大?我们比的是他们的什么?体积指的是什么?

2、下面的图形都是由棱长为1厘米的小正方体拼成的,它们的体积各是多少?你是怎么知道的?

3、(出示包装盒)大家认识它吧?它是什么形状的?

它的体积多大呢?请你估一估,猜猜它有多大?(生猜测,附带体积单位。)

要使他说得更准确,我们得来计算长方体的体积。这节课我们就来研究这个问题吧,板书课题:长方体的体积。

二、自主学习,合作探究

(一)探究长方体的体积计算

1、探究长方体的体积和那些因素有关。

师:我们都知道长方体有六个面,这6个面可能是什么形?

学生口答。

大家想一下,长方形的面积和什么有关?(学生回答)那么猜一猜,长方体的体积可能和什么有关呢?(生猜测)

老师这里有几组长方体,(课件出示)大家看,这两个长方体的长、宽、高有什么关系?

由此,我们可以得出什么结论?(长方体的体积与它的长、宽、高都有关系。)

2、探究长方体的体积和它的长、宽、高的关系,推导长方体体积的计算方法。

师:那么长方体的体积和它的长、宽、高到底有什么样的关系呢?接下来,让我们在实验中来研究一下。(每组准备12个小正方体)先来听一下实验要求。

(1)摆一摆:四人一小组,用24个1立方厘米的正方体小木块,每人摆出一个长方体(尽可能不同)请组长给长方体编号(1)(2)(3)(4)

(2)看一看:每个长方体的长、宽、高分别是多少?记录它们的长、宽、高,填在表中。(给每组发一张课前准备好的如下表格)

(4)想一想:观察表中这些长方体的长、宽、高以及它们的体积,再联系数体积的'过程,你发现了什么?在小组里谈一谈。

(5)汇报交流,发现总结长方体体积公式

师:观察表格,所用小正方体的个数和长方体的体积之间有什么关系?

生:我们组发现:长方体体积与数出的小木块的数量相等。

师板书:长方体体积=数出的小木块的数量

师问:再看看所用小正方体的个数与所拼接长方体的长、宽、高的关系。

生:所用小正方体的个数正好等于长乘宽乘高的积。

师:那么长方体的体积等于小正方体的个数,小正方体的个数正好是长×宽×高的积,你能总结长方体体积与长宽高的关系吗?

生:长方体的体积=长×宽×高

师板书:长方体的体积=长×宽×高

(6)课件演示公式的推导过程

如果用V表示体积,a表示长,b表示宽,h表示高,那么这个公式用字母怎样表示?

师板书:V=abh

(7)根据这个公式,要求长方体的体积,需要知道长方体的什么?

同生们学会了总结长方体体积的计算方法,真是了不起,通过猜想、实验、验证总结出了长方体的体积计算公式,今后在学习上同样可以利用这种方法学习。

3、长方体的体积计算公式的应用

(1)师问:那么课前的包装盒,怎样才能知道它的体积是多少呢?(全班动笔做一做。)

(2)师:同学们学习效率可真高,这么快就掌握了长方体体积的计算方法,那么,你们能帮冰柜司机解决这个问题吗?(课本练习43页)

三、知识延伸,拓展思维。

1、课件出示正方体。

师提问:这个图形是什么,有什么特征?你能结合刚刚长方体体积公式,想想如何计算正方体体积,与同学交流你的想法。

2、学生讨论后得出,师课件出示并板书:正方体的体积=棱长×棱长×棱长

用字母表示V=a×a×a=a3

强调:正方体是特殊的长方体

3、师介绍:a3读作“a的立方”

课件出示:一块正方体石料,棱长是6分米,这块石料的体积是多少立方分米?

学生独立完成,然后汇报交流。

四、巩固提高

1、有一本新华字典,它的长、宽、高分别是2分米、1分米、0.6分米.这本字典重多少千克?(每立方分米重500克)

2、一块砖的长是24厘米,宽是长的一半,厚是6厘米,它的体积是多少立方厘米?

五、全课小结,布置作业

1、通过这节课你学到了哪些知识?

2、布置作业

课外实践:找一个长方体实物量一量它的长、宽、高,并计算它的体积。

篇12:长方体体积的教学设计

一、教学目标:

知识与技能:

探索并掌握长方体体积的计算公式,知道公式的字母表达式, 能正确计算长方体的体积。

过程与方法:

在摆长方体、整理数据、观察讨论等活动中,经历探索长方体体积公式的过程,提高动手操作能力,同时发展他们的空间观念。 情感态度与价值观:

在活动中感受数学问题的探索性和数学结论的确定性

四、教学重、难点:

教学重点:探索并掌握长方体体积的计算方法,能正确计算长方体的体积,并解决一些简单的实际问题。

教学难点:

在观察、操作、探索的过程中,提高动手操作能力,进一步发展空间观念。

五、教学过程

(一)复习导入:

【出示课件2、3】:

1、体积是指什么? 常用的体积单位有哪些?

2什么是1立方厘米,1立方分米,1立方米? (设计理念:“温故而知新”)

(二)创设情境,引入新课

【出示课件4】“天天乐”娱乐场要修建一个游泳池,请你帮忙算一算,应该挖多少土呢?这与我们以前学过的哪些知识有关系呢?(体积)

(设计理念:激趣导入,激发学生学习与求知的欲望。)

(三)小组合作,探究新知

【出示课件5】

1、学生拼摆长方体分小组探究:每一组都用40个小正方体(棱长1厘米)摆出4个不同的长方体,记录它们的长、宽、高,并完成记录表。

(设计理念:著名教育学家苏霍姆林斯基说过:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望感到自己是一个发现者、研究者、探索者。而在儿童的精神世界中,这种需要特别强烈。”因此,教师要在学生的认识过程中不断激发学生心灵深处那种强烈的探索欲望。所以我设计了此环节。)

2、操作验证,归纳提升

第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积。(一排摆出4个1立方厘米的正方体,一共摆了3排,摆2层)

第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体。 第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积。

记录数据,填入下表【出示课件6】

请同学们观察这些从实际操作中得出的数据,思考这些数据与长方体

的体积有没有关系?是什么关系?【出示课件7】从而推导出长方体的体积公式并【出示课件8】说明用字母表示体积公式的方法。

【设计意图】:为学生创设各种不平衡的问题情境,放手让他们自己去尝试、探究、猜想、思考,给学生留下了足够的思维空间,自己归纳总结出长方体的体积计算方法。这样虽然会走一些弯路,但学生亲自经历和体验了学习过程,他们用自己理解的方式实现了数学的“再创造”。

教师板书长方体的体积公式:长方体的体积=长×宽×高V = a×b×h= abh

四)讲解例1:

【出示课件9】例题1:

一块砖的长是24厘米宽是12厘米,厚是6厘米。它的体积是多少立方厘米?

指导学生理解题意,重点引导学生理解厚的含义。告诉学生厚就是高的意思。学生分组交流,师板书解题过程。

(设计理念:让生学会正确书写解题过程,正确使用体积单位。并提高与人合作交流的能力。)

(五)巩固练习

1、基本练习

学生独立完成91页练一练的第1、2题【出示课件10、11】

【设计意图】这样的练习意在面向全体同学,让每一个学生都能掌握

长方体体积计算方法。

2、变式练习【出示课件12】

学生小组合作完成91页练一练的第3题

【设计意图】培养学生灵活解决问题的能力和与人合作的能力。

3、课后作业【出示课件13】

让学生课下做91页练一练的第4题

【设计意图】通过具体的生活实际问题,再次提高认识,培养学生解决实际问题的能力

(六)全课总结

【出示课件14】 今天我们研究了什么?现在你们能解决刚开始上课时提出的修建游泳池挖多少土的问题了吗?

教师带领同学回顾长方体的体积公式,提供修建游泳池需要的已知量来解决实际问题。

【设计理念:把学习的主动权交给了学生,还让学生体会到了数学与生活之间的联系,深入体会了长方体体积的核心概念。】

四、板书设计

长方体的体积

长方体的体积=长×宽×高

V=abh

例1:24×12×6=1728(立方厘米)

答:它的体积是1728立方厘米

篇13:长方体体积的教学设计

教学内容:

人教版小学数学五年级下册第三单元长方体和正方体的体积。

教学目标:

探索并掌握长方体和正方体体积的计算方法,能正确计算长方体、正方体的体积。

2.在观察、操作、探索的过程中,提高动手操作的能力,进一步发展空间观念。

3.大家想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。

教学重点:

经历探索长方体体积计算方法的推导过程,能正确计算长方体的体积。

教学难点:

促使学生从一维到三维的发展,让学生深切感悟体积 度量单位的实际意义。

教具、学具准备:

课件,长方体、正方体模型,每组若干个棱长为1厘米的小正方体,直尺等。 教学过程:

一、复习引入、揭示课题

1.这节课我们继续研究与“体积”有关的知识。(板书:体积)

2.说说对体积有哪些了解,并说说什么叫做音箱的体积,什么叫做空调的体积。 3.比较空调和音箱哪个体积大,再比较两个体积近似的长方体。

过渡:我们不能直接观察出来,就需要计算出长方体的体积,这节课我们就来重点研究“长方体的体积”。(板书课题)

二、探究明理

明确长方体的体积与它的长、宽、高有关(课件)

(1)长、宽相等的时候,越高,体积越大。

(2)长、高相等的时候,越宽,体积越大。

(3)高、宽相等的时候,越长,体积越大。

2.探究体积计算方法

(1)动手操作,填表

(3)汇报,揭示:长方体的体积 = 长×宽×高

(4)教师结合课件演示小结:长是一排有几个体积单位,宽是有几排,高表示几层,“长×宽”表示一层有多少个体积单位,再乘高求出几层共有多少个体积单位,所以长方体的体积 = 长×宽×高,用字母表示为:v = a × b × h(板书公式)

(5)巩固练习:

一个长方体,长7cm,宽4cm,高3cm,它的体积是多少?

V=abh

=7×4×3

=84(cm3)

答:它的体积是84cm3。

3.探究正方体的体积计算公式

(1)(课件演示)引导学生推导出:正方体的体积=棱长×棱长×棱长

v = a × a × a = a3 (板书)

(2)巩固练习:

一块正方体石料,棱长是6dm,这块石料的体积是多少立方分米?

V =a3

=63

=6×6×6 =216(dm3)

答:这块石料的体积是216 dm3。

4.探究长方体和正方体体积的一般计算公式

(1)课件演示长方体和正方体的底面积,给出底面积的概念。

(2)课件演示教材第43页长方体和正方体的底面积、高和体积的关系。(3)概括一般公式:

长方体(或正方体)的体积=底面积×高 字母公式:V=Sh(4)巩固练习:

利用公式V=Sh计算:

a、棱长为5分米的正方体的体积。

b、长、宽、高分别为9分米、1.5分米、2分米的长方体的体积。 三、巩固应用,拓展延伸

1.完成教材第43页做一做第一题。

2.一根长方体木料,长5m,横截面的面积是0.06m2。这根木料的体积是多少?四、反思提升,总结全课

谁来说一说:今天这节课你有哪些收获? 板书设计:

长方体的体积

长方体的体积=长×宽×高 v =a×b×h=abh

正方体的体积=棱长×棱长×棱长 v = a×a×a =a3长方体(或正方体)的体积=底面积×高 V=Sh

篇14:长方体的体积教学设计

一、教学目标

【知识与技能】

知道长方体体积公式的推导过程,掌握长方体体积的计算公式。

【过程与方法】

在观察、操作、探索的过程中,进一步发展空间观念,增强动手操作、抽象概括和归纳推理的能力。

【情感态度与价值观】

在合作探究的学习中,体验学习数学的乐趣,增强对数学的学习兴趣。

二、教学重难点

【重点】

长方体体积的计算方法。

【难点】

长方体体积公式的推导过程。

三、教学过程

(一)导入新课

1.复习回顾:物体的体积概念和单位。

2.用课件展示生活中常见的长方体,提问长方体的体积该如何计算。

(二)生成新知

1.操作转化

提问:长方体的体积与哪些数据有关?引导学生通过数组成几个不同形状的长方体的小正方体的个数记录、整理数据。

分组实验,教师巡视。

学生操作预设:学生数面前长方体时在数小立方体时和同组其他同学不同,教师可以引导学生按一定的顺序来数小正方体,从左往右依次数体积为1立方厘米的小正方体;学生在实验后对数据的记录不够工整,教师可以建议学生将所得数据参考教材中的方格进行填写。

学生汇报展示,总结发现:长方体的体积与长、宽、高有关。

2.操作探究,验证猜想

提问:用棱长1厘米的小正方体来摆一个长是5厘米,宽是4厘米,高是3厘米的长方体,它的体积是多少?

学生独立思考后汇报:长方体的体积等于长乘宽乘高。

3.总结概括

问题:你能写出长方体的体积公式吗?

总结并板书公式:长方体的体积=长×宽×高。

(三)巩固提高

1.课件展示不同长、宽、高的长方体,组织同学们计算各个长方体的体积。

2.展示两个具体的长方体,比较那个长方体的体积大小。

(四)小结作业

小结:师生共同总结本节课的收获。

作业:在生活中,找两个长方体并量出它们的长宽高,计算出它们的体积。

四、板书设计

篇15:长方体和正方体体积教学设计

教学目标:

1、知道容积的意义。

2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。

3、会计算物体的容积。

教学重点:

1、容积的概念。

2、容积与体积的关系。

教学难点:容积与体积的关系。

教具:量筒和量杯、不同的饮料瓶、纸杯

教学过程:

一、复习检查:

说出长正方体体积计算公式。

二、准备:

把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是()。

三、新授:

1、认识容积及容积单位:

(1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。

通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。

(2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。

(3)演示:体积单位与容积单位的关系。

说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。

1升(l)=1000毫升(ml)

将1升的水倒入1立方分米的容器里。

小结:

1升(l)=1立方分米(dm3)

1升=1立方分米

1000毫升1000立方厘米

1毫升(ml)=1立方厘米(cm3)

练一练:

1.8l=()ml;3500ml=()l;15000cm;3=()ml=()l;1.5dm3=()l

(4)小组活动:

(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?

(2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。

例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

5×4×2=40(立方分米)40立方分米=40升

答:这个油箱可以装汽油40升。

做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)

小结:计算容积的步骤是什么?

3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?

出示一个西红柿,谁有办法计算它的体积?小组设计方案:

西红柿的体积=350—200=(ml)

=(cm3)

四、巩固练习:

1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2。5分米,它的容积是多少升?

2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?

3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?

4、提高题:p55、16

五、作业:

第三单元长方体和正方体体积教学设计第五课时容积相关内容:课题六:用方程和用算术方法解应用题的比较平行四边形的面积教案质数和合数教学设计小数乘整数《2,5倍数的特征》教学实录《2和5的倍数的特征》教案第四单元分数的意义和性质求两个数的最大公因数(小学数学五年级上册第三单元)简单立体图形的组合.

【五年级数学《长方体的体积》优秀教学设计】相关文章:

1.长方体的体积教学设计

2.《长方体的体积》教学设计

3.长方体的体积单位教学设计

4.小学五年级下册数学长方体的体积教学反思

5.《长方体和正方体的体积》教学设计

6.长方体体积公式

7.五年级数学长方体教案

8.五年级数学人教版优秀教学设计

9.数学第十册《长方体的表面积》教学设计

10.人教版长方体教学设计

下载word文档
《五年级数学《长方体的体积》优秀教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部