九年级数学上册电子教案第四章完
“tianhao591”通过精心收集,向本站投稿了14篇九年级数学上册电子教案第四章完,这里小编给大家分享一些九年级数学上册电子教案第四章完,方便大家学习。
篇1:九年级数学上册电子教案第四章完
九年级数学上册电子教案第四章完
课 题 4.1 视图(一) 课型 新授课 教学目标 1.经历由实物抽象出几何体的过程,进一步发展空间观念。 2.会画圆柱、圆锥、球的三视图,体会这几种几何体与其视图之间的相互转化。 教学重点 掌握部分几何体的三视图的画法。 教学难点 几何体与视图之间的相互转化。 教学方法 观察实践法 教学反思 教 学 内 容 及 过 程 备注 一、实物观察、空间想像 设置:学生利用准备好的大小相同的正方形方块,搭建如课本图4-1的立体图形,让同学们画出三视图。而后,再要求学生利用手中12块正方形的方块实物,搭建2个立体图形,并画出它们的三视图。 学生分小组合作交流、观察、作图。 议一议 1.图4-2中物体的形状分别可以看成什么样的几何体?从正面、侧面、上面看这些几何体,它们的形状各是什么样的? 学生分四人小组,合作学习。 2.在图4-3中找出图4-2中各物体的主视图。 学生观察、动手、动脑,同桌交流。 3.图4-2中各物体的左视图是什么?俯视图呢? 学生观察、画图、交流,上台演示。 二、小组合作,继续探索 想一想 如图4-4,是一个蒙古包的照片,小明认为这个蒙古包可以看成用4-5所示的几何体,并画出了这个几何体的三种视图,你同意小明的做法吗? 学生观察、理解、同桌交流。 三、随堂练习课本随堂练习1、2 学生观察、讨论、解决问题。 四、课堂总结 本节课主要通过对由实物抽象出几何体的过程,发展大家的空间想像能力。在画实物的视图时,必须首先对实物进行合理的抽象,即把实物抽象成相应的几何体,在此基础上再画其视图。 五、布置作业 课本习题4.1 1、2 课 题 4.1 视图(二) 课型 新授课 教学目标 1.经历由实物抽象出几何体的过程,进一步发展空间观念。 2.会画直棱柱(仅限于直三棱柱和直四棱柱)的三种视图,体会这几种几何体与其视图之间的相互转化。 教学重点 掌握直棱柱的三视图的画法。 教学难点 培养空间想像观念。 教学方法 观察实践法 教学反思 教 学 内 容 及 过 程 备注 一、观察实物、小组活动 观察:请同学们拿出事先准备好的直三棱柱、直四棱柱,根据你所摆放的位置经过想像,再抽象出这两个直棱柱的主视图,左视图和俯视图。 绘制:请你将抽象出来的三种视图画出来,并与同伴交流。 比较:小亮画出了其中一个几何体的主视图、左视图和俯视图,你认为他画的对不对?谈谈你的看法(如图4-8)。 拓展:当你手中的两个直棱柱摆放的角度变化时,它们的三种视图是否会随之改变?试一试。 学生观察自己所摆设的两个直棱柱实物。想像DD抽象DD绘制DD比较DD拓展 注意:在画视图时,看得见部分的轮廓线通常画成实线,看不见部分的.轮廓通常画成虚线。 二、小组合作,人际互动 做一做 图4-10是底面为等腰直角三角形和等腰梯形的三棱柱、四棱柱的俯视图,尝试画出它们的主视图和左视图,并与同伴进行交流。 学生分四人小组合作交流,上台演示自己的“作品”。 三、随堂练习课本随堂练习学生观察、讨论、解决问题。 四、课堂总结 本节课主要是通过观察DD绘制DD比较DD拓展,来完成学习内容的。在学习中注意想像和抽象,即把实物抽象成相应的几何体,在此基础上再画其视图。 五、布置作业 课本习题4.2 1、2 课 题 4.2 太阳光与影子 课型 新授课 教学目标 1.经历实践、探索的过程,了解平行投影的含义,能够确定物体在太阳光下的影子。 2.会用观察、想像,了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的。 3.了解平行投影与物体三种视图之间的关系。 教学重点 探讨物体在太阳光下所形成的影子的大小、形状、方向等。 教学难点平行投影与物体三种视图之间的关系的理解。 教学方法 观察实践法 教学反思 教 学 内 容 及 过 程 备注 一、创设情境、实例导入 引言:影子是我们司空见惯的,但你知道其中的奥妙吗? 概念:物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象。 二、操作感知、建立表象 实践:取若干长短不等的小棒及三角形、矩形纸片,观察它们在太阳光下的影子。 提问:如果改变小棒或纸片的位置和方向,它们的影子发生了什么变化? 概念:太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。 议一议 提出问题:1.在三个不同时刻,同一棵树的影子长度不同,请将它们按拍摄的先后顺序进行排列,并说明你的理由。 2.在同一时刻,大树和小树的影子与它们的高度之间有什么关系?与同伴交流。 学生观察、交流。 做一做 某校墙边有甲、乙两根木杆。 (1)某一时刻甲木杆在阳光下的影子如图4-12所示,你能画出此时乙木杆的影子吗?(用线段表示影子) 在图4-12中,当乙木杆移动到什么位置时,其影子刚好不落在墙上? (3)在你所画的图形中有相似三角形吗?为什么? 学生画图、实验、观察、探索。 议一议 小亮认为,物体的主视图实际上就是说物体在某一平行光线下的投影(如图4-13),左视图和俯视图也是如此,你同意这种看法吗?先想一想,再与同伴交流。 学生观察、理解、交流。 三、随堂练习课本随堂练习学生观察、画图、合作交流。。 四、课堂总结 本节课通过各种实践活动,促进大家对内容的理解,本课内容,要体会物体在太阳光下形成的不同影子,在操作中观察不同时刻影子的方向和大小变化特征。 五、布置作业 课本习题4.3 1、2、3 试一试 课 题 4.3 灯光与影子(一) 课型 新授课 教学目标 1.经历实践、探索的过程,了解中心投影的含义,体会灯光下物体的影子在生活中的应用。 2.通过观察、想像,能根据灯光来辨别物体的影子,初步进行中心投影条件下物体与其投影之间的相互转化。 3.体会灯光投影在生活中的实际价值。 教学重点 了解中心投影的含义。 教学难点 在中心投影条件下物体与其投影之间相互转化的理解。 教学方法 观察实践法 教学反思 教 学 内 容 及 过 程 备注 一、创设情境、操作感知 皮影戏是用兽皮或纸板做成的人物剪影来表演故事的戏曲,表演时,用灯光把剪影照射在银幕上,艺人在幕后一边操纵剪影,一边演唱,并配以音乐。 学生在灯光下做不同的手势,观察映射到屏幕上的表象。 做一做 取一些长短不等的小棒和三角形、矩形纸片,用手电筒去照射这些小棒和纸片。 提问:(1)固定手电筒,改变小棒或纸片的摆放位置和方向,它们的影子分别发生了什么变化? (2)固定小棒和纸片,改变手电筒的摆放位置和方向,它们的影子发生了什么变化? 学生小组合作,实验感悟。 概念:探照灯、手电筒、路灯和台灯的光线可以看成是从一点发出的,像这样的光线所形成的投影称为中心投影。 二、范例学习、理解领会 例 确定图4-14中路灯灯泡所在的位置。 学生观察屏幕,动手实验,找出灯泡的位置。 三、联系生活、丰富联想 议一议 1.图4-16是两棵小树在同一时刻的影子,请在图中画出形成树影的光线,它们是太阳的光线还是灯光的光线?与同伴交流。 学生画图、观察、比较和识别。 继续探索: 2.图4-17的影子是在太阳光下形成的还是在灯光下形成的?画出同一时刻旗杆的影子(用线段表示)并与同伴交流这样做的理由。 学生观察、交流、画图。 四、随堂练习 课本随堂练习1、2 五、课堂总结 本节课让同学们通过实践、观察、探索。了解中心投影的含义,学会辨别太阳光线还是灯光光线。学会进行中心投影条件下的物体与其投影之间的相互转化。感悟灯光与影子在现实生活中的应用价值。 六、布置作业 课本习题4.4 课 题 4.3 灯光与影子(二) 课型 新授课 教学目标 1.经历实践、探索的过程,了解视点、视线、盲区的概念。 2.体会视点、视线、盲区在现实生活中的应用。 3.了解视点、视线、盲区与中心投影的关系,感受其生活价值。 教学重点 了解视点、视线、盲区的概念。 教学难点 从现实生活中提炼出视点、视线、盲区的问题,应用概念予以解决。 教学方法 观察实践法 教学反思 教 学 内 容 及 过 程 备注 一、创设情境、激发兴趣 提出问题:小明和小丽到剧场看演出。1.坐在二层的小明能看到小丽吗?为什么?2.小丽坐在什么位置时,小明才能看到她? 学生回答教师提出的问题。 概念:如图4-18所示,小明眼睛的位置称为视点,由视点发出的线称为视线,小明看不到的地方称为盲区。 二、练习生活、动手操作 做一做 情境:有一辆客车在平坦的大路上行驶,前方有两座建筑物。 问题(1):客车行驶到某一位置时,司机能够看到建筑物的一部分,如果客车继续向前行驶,那么他所能看到的部分如何变化? 问题(2)客车行驶到图4-19的位置②时,司机还能看到建筑物B吗?为什么? 议一议 当你乘车沿一条平坦的大道向前行驶时,你会发现前方那些高一些的建筑物好像“沉”到了位于它们前面那些矮一些的建筑物后面去了。这是为什么?先想一想,再与同伴交流。 学生分四人小组进行探讨。学生交换各自的生活感受,体会“沉”的内因。 三、随堂练习课本随堂练习1 学生分小组讨论、交流,畅想生活感知。 四、课堂总结 本节课让大家经历观察DD思考DD交流的过程,将视点、视线、盲区和中心投影相联系。通过识别,感悟视点、视线、盲区在生篇2:九年级数学上册电子教案第三章之二完
九年级数学上册电子教案第三章之二(完)
课 题 3.2 特殊平行四边形(一) 课型 新授课 教学目标 1.经历探索、猜想、证明的过程,进一步发展推理论证的能力。 2.能运用综合法证明矩形性质定理和判定定理。 3.体会证明过程中所运用的归纳概括以及转化等数学思想方法。 教学重点 掌握矩形的性质和判定以及证明方法。 教学难点 运用综合法证明矩形性质和判定。 教学方法 讲练结合法 教学反思 教 学 内 容 及 过 程 备注 一、回顾交流 1.你了解哪些特殊的平行四边形? 2.这些特殊的平行四边形与平行四边形有哪些关系? 3.能用一张图来表示它们之间的关系吗? 学生回忆,回答。平行四边形与矩形、菱形、正方形的关系。 二、小组活动 提问:矩形有哪些性质? 学生回忆,回答。 定理 矩形的四个角都是直角。 定理 矩形的对角线相等。 学生先独立证明上述两个定理,再进行交流。 三、范例学习例1,如图,矩形ABCD的两条对角线相交于点O,已知∠AOD 课本随堂练习1、2 五、课堂总结 矩形具有平行四边形的所有性质,还具有自己独有的性质:四个角都是直角,对角线相等。 六、布置作业 课本习题3.4 1、2、3 课 题 3.2特殊平行四边形(二) 课型 新授课 教学目标 1.经历探索、猜想、证明的`过程,进一步发展推理论证的能力。 2.能运用综合法证明菱形的性质定理和判定定理。 3.体会证明过程中所运用的归纳概括以及转化等数学思想方法。 教学重点 掌握菱形的性质和判定以及证明方法。 教学难点 运用综合法证明菱形性质和判定。 教学方法 讲练结合法 教学反思 教 学 内 容 及 过 程 备注 一、回顾交流 提问:菱形有哪些性质?你能证明吗? 学生回顾交流,分析证明。 定理 菱形的四条边都相等。 定理 菱形的对角线互相垂直,并且每条对角线平分一组对角。 二、范例学习怎样判别一个平行四边形是菱形?请证明你的结论。 学生小组合作探索,上讲台演示自己的思维。 定理 对角线互相垂直的平行四边形是菱形。 学生先独立证明,再合作交流,上台演示。 三、随堂练习课本随堂练习1、2 四、课堂总结 菱形具有平行四边形的所有性质,菱形的四边相等;对角线互相垂直;并且每条对角线平分一组对角。判定一个四边形是菱形的方法有4种。 五、布置作业 课本习题3.5 1、2、3 课 题 3.2特殊平行四边形(三) 课型 新授课 教学目标 1.经历探索、猜想、证明的过程,进一步发展推理论证的能力。 2.能运用综合法证明正方形的性质定理和判定定理以及其他相关结论。 3.体会证明过程中所运用的归纳概括以及转化等数学思想方法。 教学重点 掌握正方形的性质和判定以及证明方法。 教学难点 运用综合法证明。 教学方法 讲练结合法 教学反思 教 学 内 容 及 过 程 备注 一、回顾交流 提问:1.正方形有哪些性质? 2.判定一个四边形是正方形有哪些方法? 学生回忆与交流,知识迁移。 二、小组合作 三、合作交流 议一议 1.依次连接菱形或矩形四边的中点能得到一个什么图形?先猜一猜,再证明。 2.依次连接平行四边形四边中点呢? 3.依次连接四边形各边中点所得到的新四边形的形状与哪些线段有关系?有怎样的关系? 学生分四人小组先各自进行猜测,再进行交流,最后独立证明,上台演示。 的夹角(即∠BXC)是多少度? 学生进行推理,发表自己的观点。 四、随堂练习 课本随堂练习 1 五、课堂总结 正方形具有平行四边形、矩形、菱形的所有性质。 四边形→平行四边形→矩形→正方形 四边形→平行四边形→菱形→正方形篇3:九年级数学上册电子教案第六章《概率》上册完
九年级数学上册电子教案第六章《概率》上册完
课 题 6.1 频率与概率(一) 课型 新授课 教学目标 1.经历实验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力。 2.通过实验,理解当实验次数较大时实验频率稳于理论概率,并可根据此估计某一事件发生的概率。 3.能运用列表法计算简单事件发生的概率。 教学重点 掌握列表法计算简单事件发生的概率。 教学难点 实验中估计某一事件发生的概率。 教学方法 自主探究法 教学反思 教 学 内 容 及 过 程 备注 一、分组实验、探索规律 小组活动方法:准备两组相同的牌,每组两张,两张牌的牌面数字分别是1和2,从每组牌中各摸出一张,称为一次实验。 合作探究问题: (1)一次实验中两张牌的牌面数字和可能有哪些值? (2)每人做30次实验,根据实验结果填写下面表格: 牌面数字积 2 3 4 频数 频率 (3)根据上表,制作相应的频数分布直方图。 (4)你认为哪种情况的频率最大? (5)两张牌的牌面数字和等于3的频率是多少? (6)六个同学组成一个小组,分别汇总其中的两人、三人、四人、五人、六人的实验数据,相应得到实验60次、90次、120次、150次、180次时两张牌的牌的数字和等于3的频率,填写下表,并绘制相应的折线统计图。 实验次数 60 90 120 150 180 两张牌的牌面数字和等于3的频数 两张牌的牌面数字和等于3的频率 学生合作探讨,小组实验,发现规律。 二、巩固深化、拓展思维 议一议 (1)在上面的实验中,你发现了什么?增加实验数据后频率渐趋于哪一个稳定值? (2)与其他小组交流所绘制的图表和发现的结论。 学生小组合作与全班性合作相结合,积极探究。 做一做 (1)将各组的数据集中起来,求出两张牌的牌面数字和等于3的频率,它与你们的估计相近吗? (2)计算两张牌的牌面数字和等于3的概率。 学生小组合作实验,发现规律。 想一想 两张牌的牌面数字和等于3的频率与两张牌的牌面数字和等于3的概率有什么关系? 学生归纳、小结规律。 结论:当实验次数很大时,两张牌的牌面数字和等于3的频率稳定在相应的概率附近,因此可以通过多次实验,用一个事件发生的频率来估计这一事件发生的概率。 三、随堂练习课本随堂练习四、课堂总结 学生自我小结。 五、布置作业 课本习题6.1 课 题 6.1 频率与概率(二) 课型 新授课 教学目标 1.经历实验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力。 2.通过第一课时问题的变式推广,掌握并运用列表法计算简单事件发生的概率。 3.关注在实际问题情境中的意义,培养应用概率解决问题的能力,感受其实际价值。 教学重点 掌握列表法计算简单事件发生的概率。 教学难点 理解概率的内涵。 教学方法 合作交流法 教学反思 教 学 内 容 及 过 程 备注 一、实践操作、获取新知 问题提出: 如果每组3张牌,它们的牌面数字分别是1,2,3,那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少? 探索解决问题的方法:对于这个问题,可以要求学生先自己尝试求解,然后再对小明、小颖、小亮的做法进行讨论和评判。 学生小组合作,尝试求解这个问题。 议一议 1.你认为谁做得对?说说你的理由。 2.用列表的方法求概率时要注意些什么? 3.从表格中你还能获得哪些事件(如两张牌的牌面数字和为奇数)发生的概率? 学生小组合作,相互交流。 二、继续探究、实验牵引 做一做 用列表的方法求概率: 1.将一枚均匀的硬币掷两次,两次都是正面朝上的概率是多少? 2.游戏者同时转动图6-1中的两个转盘进行“配紫色”游戏,求游戏者获胜的概率。 学生书面练习,同桌交流、巩固。 三、随堂练习课本随堂练习 1、2 学生小组合作交流,进一步掌握列表法求概率的具体步骤。 四、课堂总结 1.本节重点掌握运用列表法求概率,通过学习,理解概率与统计之间的内在联系。 2.培养大家积极主动地投入到活动中去,与同伴交流。具有良好的合作意识。 3.鼓励思维的多样性。 五、布置作业 课本习题6.2 1、2 课 题 6.2 投针实验 课型 新授课 教学目标 1.经历实验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力。 2.能用实验的方法估计一些复杂的随机事件发生的概率。 教学重点 掌握实验方法估计一些复杂的随机事件发生的`概率。 教学难点 对复杂事件发生的概率的体验。 教学方法 活动 教学反思 教 学 内 容 及 过 程 备注 一、操作感知、建立表象 1.提出问题:平面上画着一些平行线,相邻的两条平行线之间的距离都为a,向此平面任投一长度为l(l方案: 实验用具:(1)桌子,(2)铁针若干枚,长度要求相同,粗细一致,表格。注意:每位同学的针都一样。 实验方法:(1)将学生分成两人一组,利用课堂上的桌子,用粉笔画出等距离a的7条平行线。(2)要求学生从一定高度随意抛针,保证投针的随意性;组内同学分工如下:一位投针,一位记录。 注意问题:在实验中有时针与线是否相交较难判断,采取的方法:(1)忽略这次实验;(2)认为相交、不相交各计半次,等等。(3)每个小组投针200次,而后将各数据填入表格。(4)将各组数据进行累加,估计该事件发生的概率。 实验次数 5 20 40 60 80 100 120 140 160 180 200 相交频数 实验频率 学生安上述实验方案进行实验。自主合作交流,汇总数据,探究问题的结果。 二、随堂练习课本随堂练习1 三、课堂总结 1.在开展本节课实验中,你能得出哪些结论? 2.联系前几节的实验,你得到哪些启示? 3.你对在实验中的合作交流,动手操作,用何实践体会?有什么建议? 四、布置作业 课本习题6.3 1. 试一试 课 题 6.3 生日相同的概率(一) 课型 新授课 教学目标 1.经历实验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力。 2.能用实验的方法估计一些复杂的随机事件发生的概率。 3.体会统计、实验、研讨活动的应用价值。 教学重点 掌握实验方法估计一些复杂的随机事件发生的概率。 教学难点 实验估计随机事件发生的概率。 教学方法 活动 教学反思 教 学 内 容 及 过 程 备注 一、创设情境、激趣揭题 情境导入: 1.找出班上今天生日的学生,为他过个生日,将课堂气氛浓厚起来。 2.导入主题:400个同学中,一定有2个学生的生日相同(可以不同年)吗?300个同学呢? 学生为班上过生日的同学唱“生日之歌”,活动后进入主题思考。回答提出的问题。 想一想 (1)50个同学中,就很可能有2个同学的生日相同,这话正确吗?请与同伴交流。 (2)如果你们班50个同学中有2个同学的生日相同,那么能说明50个同学中有2个同学生日相同的概率是1吗?如果你们班没有2个同学生日相同,那么能说明其相应概率是0吗? 学生小组合作探究,而后进行小组汇报。 二、联系生活、丰富联想 做一做 每个同学课外调查10人的生日写在纸条上,从全班的调查结果中随机选取50个被调查的人,看看他们中有没有2个人的生日相同,将全班同学的调查数据集中起来,设计一个方案,估计50人中有2人生日相同的概率。 三、随堂练习课本随堂练习1 四、课堂总结 1.学习本节课内容,结合具体情况,请你谈一谈它们的实际意义。 2.在经历了调查、收集数据和整理的学习过程中,你能否进行合理的估算。 3.本节课在小组合作交流中,你在哪些能力上有提高?你的同伴中哪些表现良好的观察和分析能力。 五、布置作业 课本P197 1题 课 题 6.3 生日相同的概率(二) 课型 新授课 教学目标 1.经历实验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力。 2.能利用计算器或计算机等进行模拟实验,估计一些复杂的随机事件发生的概率。 3.形成对某一事件发生的概率的较为全面的理解,初步形成随机观念,发展学生初步的辩证思维能力。 教学重点 掌握计算机或计算器进行模拟实验的方法。 教学难点 理解对某一事件发生的概率。 教学方法 活动 教学反思 教 学 内 容 及 过 程 备注 一、小组交流、设计方案 问题提出:通过调查,我们估计了6个人中有2个人生肖相同的概率,要想使这种估计尽可能精确,就需要尽可能多地增加调查对象,而这样做既费时又费力。请同学们想一想,能不能不用调查即可估计出这一概率呢?请你设计出具体地实验方案。 学生分四人小组探究问题的结论,设计解决问题的实验方案,而后小组汇报各自的方案。 阅读与比较: 有人说,可以用12个编有号码的、大小相同的球代替12种不同的生肖,这样每个人的生肖都对应着一个球,6个人中有2个人生篇4:九年级数学上册电子教案第二章《一元二次方程》之二完
九年级数学上册电子教案第二章《一元二次方程》之二完
课 题 2.3 公式法 课型 新授课 教学目标 1.一元二次方程的求根公式的推导 2.会用求根公式解一元二次方程 教学重点 一元二次方程的求根公式. 教学难点 求根公式的条件:b -4ac 0 教学方法 讲练结合法 教学反思 教 学 内 容 及 过 程 学生活动 一、复习1、用配方法解一元二次方程的步骤有哪些? 2、用配方法解方程:x2-7x-18=0 二、新授: 1、推导求根公式:ax2+bx+c=0 (a≠0) 2、公式法: 利用求根公式解一元二次方程的方法叫做公式法。 3、例题讲析: 例:解方程:x2D7xD18=0 例:解方程:2x2+7x=4 三、巩固练习: P58随堂练习:1、2 四、小结: 五、作业: (一)P59 习题2.6 1、2 (二)预习内容:P59~P61 板书设计: 一、复习二、求根公式的推导 三、练习四、小结 五、作业 学生演板 x1=9,x2=-2 注意:符号 这里a=1,b=D7,c=D18 学生小结 步骤: (1)指出a、b、c (2)求出b2-4ac (3)求x (4)求x1, x2 看课本P56~P57,然后小结 这节课我们探讨了一元二次方程的另一种解法DD公式法。 (1)求根公式的推导,实际上是“配方”与“开平方”的综合应用。对于a 0,知4a >0等条件在推导过程中的应用,也要弄清其中的道理。 (2)应用求根公式解一元二次方程,通常应把方程写成一般形式,并写出a、b、c的数值以及计算b -4ac的值。当熟练掌握求根公式后,可以简化求解过程 课 题 2.4 分解因式法 课型 新授课 教学目标 1.能根据具体一元二次方程的特征,灵活选择方程的解法。体会解决问题方法的多样性。 2.会用分解因式(提公因式法、公式法)解某些简单的数字系数的.一元二次方程。 教学重点 掌握分解因式法解一元二次方程。 教学难点 灵活运用分解因式法解一元二次方程。 教学方法 讲练结合法 教学反思 教 学 内 容 及 过 程 学生活动 一、回顾交流 [课堂小测] 用两种不同的方法解下列一元二次方程。 观察比较:一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的? 分析小颖、小明、小亮的解法: 小颖:用公式法解正确; 小明:两边约去x,是非同解变形,结果丢掉一根,错误。 小亮:利用“如果ab=0,那么a=0或b=0”来求解,正确。 分解因式法: 利用分解因式来解一元二次方程的方法叫分解因式法。 二、范例学习三、随堂练习随堂练习 1、2 [拓展题] 四、课堂总结 利用因式分解法解一元二次方程,能否分解是关键,因此,要熟练掌握因式分解的知识,通过提高因式分解的能力,来提高用分解因式法解方程的能力,在使用因式分解法时,先考虑有无公因式,如果没有再考虑公式法。 五、布置作业 P62习题2.7 1、2 板书设计: 一、复习二、例题 三、想一想 四、练习五、小结 六、作业 学生练习。 注:课本中,小颖、小明、小亮的解法由学生在探讨中比较,对照。 概念:课本议一议,让学生自己理解。 解:(1)原方程可变形为: 5x2-4x=0 x(5x-4)=0 x=0或5x=4=0 ∴x1=0或x2= (2)原方程可变形为 x-2-x(x-2)=0 (x-2)(1-x)=0 x-2=0或1-x=0 ∴x1=2,x2=1 (1)在一元二次方程的一边为0,而另一边易于分解成两个一次因式时,就可用分解因式法来解。 (2)分解因式时,用公式法提公式因式法 课 题 2.5 为什么是0.618 课型 新授课 教学目标 1.经历分析具体问题中的数量关系,建立方程模型并解决问题的过程,认识方程模型的重要性,并总结运用方程解决实际问题的一般步骤。 2.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力。 教学重点 掌握运用方程解决实际问题的方法。 教学难点 建立方程模型。 教学方法 讲练结合法 教学反思 教 学 内 容 及 过 程 学生活动 一、回顾交流 [课堂小测] 1、用适当的方法解一元二次方程。 2、问题情境:同学们还记得黄金分割吗?你想知道黄金分割中的黄金比是怎样求出来的吗?与同伴交流。 3、哪些一元二次方程可用分解因式法来求解? 例1:P64 题略(幻灯片) (1)小岛D和小岛F相距多少海里? (2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(结果精确到0.1海里) 三、随堂练习课本随堂练习 1 [探索题] 某商场一月份销售额为70万元,二月份下降10%,后改进管理,月销售额大幅度上升,四月份的销售额达112万元,求三月、四月平均每月增长的百分率。 四、课堂总结 列方程解应用题的关键在于找未知量与已知量之间的相等关系,正确合理地建立模型。在分析数量关系时,一般可采用一些辅助手段,如“列表法”、“译式法”、“图示法”等。 五、布置作业 课本练习 1、2 板书设计: 一、黄金分割 二、例题 三、练习四、小结 五、作业 学生演板 0.618 方程一边为零,另一边可分解为两个一次因式 注意:黄金比的准确数为,近似数为0.618. 学生理解领会,参与分析。 学生独立练习。 列方程解应用题的三个重要环节: 1、整体地,系统地审清问题; 2、把握问题中的等量关系; 3、正确求解方程并检验解的合理性。篇5:九年级数学上册电子教案第五章《反比例函数》完
九年级数学上册电子教案第五章《反比例函数》完
课 题 5.1 反比例函数 课型 新授课 教学目标 1.从现实情境和已有知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。 2.经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念。 教学重点 理解和领会反比例函数的概念。 教学难点 领悟反比例函数的概念。 教学方法 自主探究法 教学反思 教 学 内 容 及 过 程 备注 一、创设情境、导入新课 问题提出: 电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时, (1)你能用含有R的代数式表示I吗? (2)利用写出的关系式完成下表: R/Ω 20 40 60 80 100 I/A 当R越来越大时,I怎样变化?当R越来越小呢? (3)变量I是R的函数吗?为什么? 学生小组合作讨论。 概念:如果两个变量x,y之间的关系可以表示成 的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零。 学生探究反比例函数变量的相依关系,领会其概念。 二、联系生活、丰富联想 做一做 1.一个矩形的面积为20 ,相邻的两条边长分别为xcm和ycm。那么变量y是变量x的函数吗?为什么? 学生先独立思考,再进行全班交流。 2.某村有耕地346.2公顷,人数数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?为什么? 学生先独立思考,再同桌交流,而后大组发言。 3.y是x的反比例函数,下表给出了x与y的一些值: x -2 -1 1 3 … y 2 -1 …… (1)写出这个反比例函数的表达式; (2)根据函数表达式完成上表。 学生先独立练习,而后再同桌交流,上讲台演示。 三。随堂练习课本随堂练习1、2 四、课堂总结 反比例函数概念形成的过程中,大家应充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解。 五、布置作业 课本习题5.1 1、2 课 题 5.2 反比例函数的图象与性质(一) 课型 新授课 教学目标 1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。 2.体会函数的三种表示方法的'相互转换,对函数进行认识上的整合。 3.逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质。 教学重点 掌握反比例函数的作图。 教学难点 反比例函数的三种表示方法的相互转换。 教学方法 自主探究法 教学反思 教 学 内 容 及 过 程 备注 一、回顾交流、问题牵引 回顾: 1.一次函数的图象是怎样的呢?你能画出y=-2x-1的图象吗? 2.什么叫做反比例函数: 3.你能提供一个生活情境来表现反比例函数中两个变量之间的相依关系吗?与同伴交流。 学生思考、交流、回答。 迁移:同学们,请你们猜一猜,反比例函数的图象是什么样的呢? 学生动手画图,相互观摩。 议一议 (1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。 (2)如果在列表时所选取的数值不同,那么图象的形状是否相同? (3)连接时能否连成折线?为什么必须用光滑的曲线连接各点? (4)曲线的发展趋势如何? 学生先分四人小组进行讨论,而后小组汇报 做一做 学生动手画图,相互观摩。 想一想 学生小组讨论,弄清上述两个图象的异同点。 二、随堂练习课本随堂练习1 [探索与交流] 三、课堂总结 在进行函数的列表,描点作图的活动中,就已经渗透了反比例函数的性质,因此在作图象的过程中,大家要进行积极的探索。另外,反比例函数的图象是非线性的,它的图象是双曲线。 四、布置作业 课本习题5.2 1 课 题 5.2 反比例函数的图象与性质(二) 课型 新授课 教学目标 1.经历观察、归纳、交流的过程,逐步提高从函数图象中获取信息的能力,探索反比例函数的主要性质。 2.提高学生的观察、分析能力和对图形的感知水平,使学生从整体上领会研究函数的一般要求。 教学重点 掌握反比例函数的主要性质。 教学难点 理解反比例函数的性质。 教学方法 自主探究法 教学反思 教 学 内 容 及 过 程 备注 一、观察联想、探究新知 探索:(1)函数图象分别位于哪几个象限内? (2)在每一个象限内,随着x值的增大,y的值是怎样变化的?能说明这是为什么吗? (3)反比例函数的图象可能与x轴相交吗?可能与y轴相交吗?为什么? 学生观察,同桌交流,大胆发言,发表见解。 二、自主探究、领悟规律 议一议: 考察当k=-2,-4,-6时,反比例函数的图象,它们有哪些共同特征? 学生通过相互交流、补充和修正。 概念:反比例函数 的图象,当k>0时,在每个象限内,y的值随x值的增大而减小;当k<0时,在每一象限内,y的值随x值的增大而增大。 想一想 (1)在一个反比例函数图象上任取两点P、Q,过点P分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S1 ;过点Q分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S2 , S1和S2 有什么关系?为什么? (2)将反比例函数的图象绕原点旋转180°后,能与原来的图象重合吗? 学生分四人小组进行操作。 三、随堂练习课本随堂练习1、2 四、课堂总结 通过归纳、概括反比例函数的图象特征,发展从图象中获取信息的能力。 五、布置作业 课本习题5.3 1、2 试一试1 课 题 5.3 反比例函数的应用 课型 新授课 教学目标 1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程。 2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。 教学重点 掌握从实际问题中建构反比例函数模型。 教学难点 从实际问题中寻找变量之间的关系。 教学方法 自主探究法 教学反思 教 学 内 容 及 过 程 备注 一、回顾交流、情境导入 某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。 问题思考: (1)请你解释他们这样做的道理。 (2)当人和木板对湿地的压力一定时,随着木板面积S(m2 )的变化,人和木板对地面的压强P(Pa)将如何变化? (3)如果人和木板对湿地的压力合计600N,那么: ①用含S的代数式表示P,P是S的反比例函数吗?为什么? ②当木板面积为0.2 m2 时,压强是多少? ③如果要求压强不超过6000Pa,木板面积至少要多大? ④在直角坐标系中,作出相应的函数图象。 ⑤请利用图象对(2)和(3)作出直观解释,并与同伴交流。 学生分四人小组进行探讨、交流。 二、寓思与练、小组探究 做一做 1.蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R( )之间的函数关系如图5-8所示: 探究:(1)蓄电池的电压是多少?你能写出这一函数的表达式吗? (2)完成下表(课本P142),并回答问题,如果以此蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内? 学生独立思考,而后再进行全班交流,上讲台演示。 继续探究: 探究:(1)请你分别写出这两个函数的表达式; (2)你能求出点B的坐标吗?你是怎样求的?与同伴交流。 学生独立思考,解答问题,上讲台演示自己的解答。 三、随堂练习课本随堂练习1题 四、课堂总结 本节课是用函数的观点处理实际问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么?可以看什么?逐步形成考察实际问题的能力,在解决问题时,应充分利用函数的图象,渗透数形结合的思想。 五、布置作业 课本习题5.4 1、2篇6:九年级数学上册电子教案第三章之一
九年级数学上册电子教案第三章之一
课 题 3.1a平行四边形(一) 课型 新授课 教学目标 1.经历探索、猜想、证明的过程,进一步发展推理论证的能力。 2.能运用综合法证明平行四边形的性质定理,及其它相关结论, 3.体会在证明过程中所运用的归纳、类比、转化等数学思想方法。 教学重点 掌握平行四边形的性质定理。 教学难点 探索证明过程,感悟归纳类比、转化的数学思想。 教学方法 讲练结合法 教学反思 教 学 内 容 及 过 程 备注 一、回顾交流 问题提出:1.平行四边形有哪些性质? 2.平行四边形有哪些判定条件? 3.如何运用公理和已有的定理证明它们? 定理:平行四边形的对边相等。 学生证明。 拓展:由上面的证明过程,你还能得到什么结论? 定理:平行四边形对角相等。 拓展:这个命题的逆命题成立吗?如果成立,请你证明它。 学生证明。 定理 同一底上的两个角相等的梯形是等腰梯形。 三、随堂练习课本随堂练习 1、2 学生独立练习。 四、课堂总结 平行四边形的主要性质有:对边相等、对角相等,对边平行,对角线互相平分。 五、布置作业 课本习题3.1 1、2 课 题 3.1b平行四边形(二) 课型 新授课 教学目标 1.经历探索、猜想、证明的过程,进一步发展推理论证的能力。 2.能运用综合法证明平行四边形的判定定理。 3.感悟在证明过程中所运用的归纳、类比、转化等思想方法。 教学重点 掌握证明平行四边形的方法。 教学难点 运用综合法证明问题的思路。 教学方法 讲练结合法 教学反思 教 学 内 容 及 过 程 备注 二、小组合作、推理论证 1.的逆命题:两组对边分别相等的四边形是平行四边形。 议一议 一组对边平行且相等的四边形是平行四边形吗?如果是,请你证明它,并与同伴交流。 三、随堂练习课本随堂练习 1、2、3 学生独立练习。 四、课堂总结 涉及到平行四边形判定的问题,应注意灵活选择不同的判定方法。从边看:有三种判定方法:两组对边分别相等;两组对边分别平行;一组对边平行且相等。从角看:两组对角分别相等。从对角线看:对角线互相平分。 五、布置作业 课本习题3.2 1、2 课 题 3.1c平行四边形(三) 课型 新授课 教学目标 1.经历探索、猜想、证明的过程,进一步发展推理论证的`能力。 2.能运用综合法证明有关定理的结论。 3.理解在证明过程中所运用的归纳、类比、转化等思想方法。 教学重点 掌握和运用三角形中位线定理。 教学难点 三角形中位线定理的证明。 教学方法 讲练结合法 教学反思 教 学 内 容 及 过 程 备注 一、创设情境 实验:请同学们思考:将任意一个三角形分成四个全等的三角形。你是如何切割的? 活动:将学生分成四人小组,将准备好的三角形模型进行拼摆。并互相交流。 定义:连接三角形两边中点的线段叫做三角形的中位线。 想一想 三角形的中位线与第三边有怎样的关系?能证明你的猜想吗? 学生根据提示证明猜想。 定理 三角形的中位线平行与第三边,且等于第三边的一半。 拓展:利用这一定理,你能证明出分割出来的四个小三角形全等吗? 学生口述理由。 三、随堂练习课本随堂练习 1 学生独立练习。 四、课堂总结 学生自己小结 五、布置作业 课本习题3.3 1、2、3、4篇7:九年级数学上册电子教案第二章《一元二次方程》之一
九年级数学上册电子教案第二章《一元二次方程》之一
课 题 2.1a、花边有多宽(一) 课型 新授课 教学目标 1.要求学生会根据具体问题列出一元二次方程。通过“花边有多宽”,“梯子的底端滑动多少米”等问题的提出,让学生列出方程,体会方程的模型思想,培养学生把文字叙述的问题转换成数学语言的能力。 2.通过教师的讲解和引导,使学生抽象出一元二次方程的概念,培养学生归纳分析的能力。 教学重点 一元二次方程的概念 教学难点 如何把实际问题转化为数学方程 学情分析 本课通过丰富的实例:花边有多宽、梯子的底端滑动多少米,让学生观察、归纳出一元二次方程的有关概念,并从中体会方程的模型思想。学生在以前的学习中已经了解了方程的概念,但对于一元二次方程没有深入的理解。通过本节课的学习,应该让学生进一步体会一元二次方程也是刻画现实世界的一个有效学生模型。 教学反思 教 学 内 容 及 过 程 教师活动 学生活动 一、通过实例引入新课 1.在开始新的一个单元的时候,要向学生讲清楚本单元的主要内容和总体目标,这样可以让学生对本单元的内容做到整体把握和概览。 2.进人本单元的第一节:花边有多宽? 板书课题,明确本节课的中心任务。 3.播放“花边有多宽”的课件,说明题目的条件和要求,课件要求制作得精美并且可以清楚得显示出各个量之间的关系。 4.给学生时间思考:如何明确并用数学式子表示出题目中的各个量?让学生在思考后把教材补充完整。 P41页的填空题 5.让学生回答他们的答案是什么,给予点评,让学生核对答案,可以以学生举手示意的方式掌握全班的情况。 6.继续进行下二个问题:板书P41页的等式,提出问题:你还能找到其他的五个连续整数,使前三个数的平方和等于后两个数的平方和吗? 7.趁热打铁,让学生把教材p42页的填空题补充完整。 8.让学生说出自己的答案,点评,其他学生核对自己的答案。可以以学生举手示意的方式掌握全班的情况。 9.简单点评上面两个问题的解答情况,转入下一个问题。播放“梯子的底端滑动多少米”的课件,说明题意,课件制作得要求可以清楚看出滑动的线段。 10.设置悬念:有的同学猜测是1米,到底是多少,我们后面来看一看。为后续学习做好铺垫。让学生把教材上的填空题补充完整。 11.让学生说出他们的答案,点评,其他学生核对自己的答案;可以以学生举手示意的方式掌握全班的情况。 12.肯定学生的表现:大家自己的探索已经很好地打开了第二章“一元二次方程”的大门,相信同学们这一章会通过自己的学得很好。 二、一元二次方程的概念 1.板书刚刚得到的三个方程,让学生观察它们有什么共同的特点? 2.给学生必要的提示:我们曾经学习了―元一次方程,同学们可以类比着它的要点来看看这些方程有什么特点。 3.让学生用自己的语言回答这三个方程有什么共性。 4.肯定学生的回答,让学生继续观察它们还有没有其他的共性?比如:从整式和分式的角度,展开来整理后的形式的角度。可以让同桌两个进行交流。 5.让学生用自己的语言他们的新发现。 6.允许学生用自己的语言表述,对学生的回答要善于引导,让学生的认识更清楚。7.对学生所说的各个情况进行总结,尤其注意学生容易漏掉的二次项系数不为0的要点,给出一元二次方程的要点和定义。8.给出一般的一元二次方程的形式,强调二次项系数不为0的要点,说明二 次项、一次项、常数项和二次项以及一次项系数的含义。 9.让学生指出三个方程的二次项、一次项、常数项和二次项、―次项的系数。 10.复习总结,布置作业。 作业:P47,习题2.2:1、2 板书设计: 一、一元二次方程的概念 二、例题 三、练习 1.认真听讲,对本单元(一元二次方程) 有了一个较好的总体认识,为新的内容的学习作好准备。 2.进入良好的学习状态,在教师的引导下顺利进入到新课的学习中,新颖的标题也引起了学生的兴趣; 3.很有兴趣地观看课件,对“花边有多宽”的问题产生了很强的探究的欲望,但大部分学生不知道如何找到解决问题的方法,新的任务与原来的认知结构发生冲突。 4.对照图形(示意图)认真思考,找到各个元素的`数量关系,比较顺利地把填空题补充完整。 5.回答:长为8―2x。宽为5―2x,根据题意可得方程(8―2x)(5―2x)=18。 6.正整数是学生最熟悉的内容,五个连续整数的性质引发了学生的兴趣和探究的欲望,受到前面题目的启发,可能会想到可以通过设未知数列方程来求解。 7.积极认真地填空,大部分学生可以顺利完成。 8.回答老师的问题;并基本正确,做对的同学举手示意,方便老师掌握情况。 9.对于这个问题也很感兴趣,有的猜测可能梯子底端滑动的距离和梯子顶端滑动的距离一样,都是1米,但不能充分说明。 10.不知道1米对不对,到底是多少米,产生了想一探究竟的欲望,为后面的学习做好了心理准备。按照老师的要求,比较顺利地把填空题补充完整。 11.回答老师的问题,基本正确,做对的同学举手示意,方便老师掌握情况。 12.受到老师的表扬和鼓励,自信心及学习的兴趣都大增,以很好的状态投入到下面的学习中。 1.观察三个方程的特点,但因为问题的指向性不是很明确,因此有些茫然。2.得到启发,从未知数的个数、未知数的最高次数出发观察它们的共性,容易看出它们都只有一个未知数,最高次数是2。 3.回答:都只含有一个未知数,未知数的最高次数是2 4.继续观察三个方程的特点,容易看出它们都是整式方程,把式子展开,经过移项、合并同类项等化成相似形式的式子,经过交流学生认识得更加清楚。 5.回答:都是整式方程,并且都可以化成一个二次加一个一次再加一个常数的形式。 6.听取老师的点评和说明,进一步理清自己的思路。 7.认真体会老师的思路,老师是如何总结抽象概括的。记下一元二次方程的要点和定义。 8.认真听讲,掌握一般的一元二次方程的形式和二次项系数不为0的要点,清楚二次项、一次项、常数项以及二次项和一次项系数的含义。 9.顺利指出三个方程的二次项、一次项、常数项以及二次项、一次项的系数。 10.总结本节内容,记下作业。 课 题 2.1b、花边有多宽(二) 课型 新授课 教学目标 1.探索一元二次方程的解或近似解. 2.培养学生的估算意识和能力. 3. 经历方程解的探索过程,增进对方解的认识,发展估算意识和能力. 教学重点 探索一元二次方程的解或近似解. 教学难点 培养学生的估算意识和能力. 教学方法 分组讨论法 教学反思 教 学 内 容 及 过 程 学生活动 一、创设现实情境,引入新课 前面我们通过实例建立了一元二次方程,并通过观察归纳出一元二次方程的有关概念,大家回忆一下。 二、地毯花边的宽x(m)满足方程 估算地毯花边的宽 地毯花边的宽x(m),满足方程 (8D2x)(5D2x)=18 也就是:2x2D13x+11=0 你能求出x吗? (1)x可能小于0吗?说说你的理由;x不可能小于0,因为x表示地毯的宽度。 (2)x可能大于4吗?可能大于2.5吗?为什么? (3)完成下表 x 0 0.5 1 1.5 2 2.5 2x2D13x+11 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。 三、梯子底端滑动的距离x(m)满足方程 (x+6)2+72=102 也就是x2+12xD15=0 (1)你能猜出滑动距离x(m)的大致范围吗? (2)x的整数部分是几?十分位是几? 注意:(1)估算的精度不适过高。(2)计算时提倡使用计算器。 四、课堂练习课本P46随堂练习1.五个连续整数,前三个数的平方和等于后两个数的平方和,你能求出这五个整数分别是多少吗? 五、课时小结 本节课我们通过解决实际问题,探索了一元二次方程的解或近似解,并了解了近似计算的重要思想――“夹逼”思想. 六、课后作业 (一)课本P46习题2.2 l、2 (二)1.预习内容:P47―P48 板书设计: 一、地毯花边的宽x(m),满足方程 (8D2x)(5D2x)=18 二、梯子底端滑动的距离x(m)满足方程 (x+6)2+72=102 三、练习四、小结 回答下列问题:什么叫一元二次方程?它的一般形式是什么?一般形式:ax2+bx+c-0(a≠0) 2、指出下列方程的二次项系数,一次项系数及常数项。 (1)2x2Dx+1=0 (2)Dx2+1=0 (3)x2Dx=0 (4)Dx2=0 (8―2x)(5―2x)=18, 即222一13x十11=0. 注:x>o, 8―2x>o, 5―2x>0. 从左至右分别11,4.75,0,D4,D7,D9 地毯花边1米,另,因8D2x比5D2x多3,将18分解为6×3,8D2x=6,x=1 (x十6) 十7 =10 , 即x 十12x一15=0. 所以1<x<2. x的整数部分是1, 所以x的整数部分是l,十分位是1. x 0 0.5 1 1.5 2 x2+12xD15 -15 -8.75 -2 5.25 13 所以1篇8:北师大九年级上册数学第四章知识点
北师大九年级上册数学第四章知识点
一、直线、相交线、平行线
1.线段、射线、直线三者的区别与联系
从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。
2.线段的中点及表示
3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)
4.两点间的距离(三个距离:点-点;点-线;线-线)
5.角(平角、周角、直角、锐角、钝角)
6.互为余角、互为补角及表示方法
7.角的平分线及其表示
8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)
9.对顶角及性质
10.平行线及判定与性质(互逆)(二者的区别与联系)
11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。
12.定义、命题、命题的组成
13.公理、定理
14.逆命题
二、三角形
分类:⑴按边分;
⑵按角分
1.定义(包括内、外角)
2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中,
3.三角形的主要线段
讨论:①定义②_线的交点-三角形的x心③性质
① 高线②中线③角平分线④中垂线⑤中位线
⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形
4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质
5.全等三角形
⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)
⑵特殊三角形全等的判定:①一般方法②专用方法
6.三角形的面积
⑴一般计算公式⑵性质:等底等高的三角形面积相等。
7.重要辅助线
⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线
8.证明方法
⑴直接证法:综合法、分析法
⑵间接证法-反证法:①反设②归谬③结论
⑶证线段相等、角相等常通过证三角形全等
⑷证线段倍分关系:加倍法、折半法
⑸证线段和差关系:延结法、截余法
⑹证面积关系:将面积表示出来
三、四边形
分类表:
1.一般性质(角)
⑴内角和:360°
⑵顺次连结各边中点得平行四边形。
推论1:顺次连结对角线相等的四边形各边中点得菱形。
推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。
⑶外角和:360°
2.特殊四边形
⑴研究它们的一般方法:
⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定
⑶判定步骤:四边形→平行四边形→矩形→正方形
数学圆的相关概念知识点
(1)弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫作直径。
(2)弧:圆上任意两点间的部分叫做圆弧,简称弧。圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
(3)等圆:等够重合的两个圆叫做等圆。
(4)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
弦是线段,弧是曲线,判断等弧首要的条件是在同圆或等圆中,只有在同圆或等圆中完全重合的弧才是等弧,而不是长度相等的弧。
初中数学重要考点
数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴(“三要素”)
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
篇9:七年级上册数学第四章教案
七年级上册数学第四章教案
课题 4.1.1认识几何图形(1)
【学习目标】:1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;
2、能由实物形状想象出几何图形,由几何图形想象出实物形状;
3、能识别一些简单几何体,正确区分平面图形与立体图形。
【重点难点】:识别简单的几何体是重点;从具体事物中抽象出几何图形是难点。
【导学指导】
一、知识链接
同学们,你仔细观察过我们生活的世界吗?从城市宏伟的建筑到乡村简朴的住宅,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代化的城市雕塑,从自然界形态各异的动物到北京的申奥标志……,包含着形态各异的图形。图形的世界是丰富多彩的!那就让我们走进图象的世界去看看吧。
二、自主探究
1.几何图形
(1)仔细观察图4.1-1,让同学们感受是丰富多彩的图形世界;
(2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题:
从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?
我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。我们把这些图形称为几何图形。
注意:当我们关注物体的形状、大小和位置时,得出了几何图形,它是数学研究的主要对象之一,而物体的颜色、重量、材料等则是其它学科所关注的。
2.立体图形
思考第117页思考题并出示实物(如茶叶、地球仪、字典及魔方等)及多媒体演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似?
长方体、正方体、球、圆柱、圆锥等它们各部分不都在同一平面内,它们是立体图形。
想一想
生活中还有哪些物体的形状类似于这些立体图形呢?
思考:课本118页图4.1-4中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来。
3.平面图形
平面图形的概念
线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。
思考:课本118页图4.1-5的图中包含哪些简单的平面图形?
请再举出一些平面图形的例子。
长方形、圆、正方形、三角形、……。
思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系?
立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;
立体图形中某些部分是平面图形。
【课堂练习】:
课本119页练习
【要点归纳】:
1、
2、平面图形与立体图形的关系:
立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;
立体图形中某些部分是平面图形。
【拓展训练】
1.下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.
其中属于立体图形的是
A. ①②③;B. ③④⑤;C. ① ③⑤;D. ③④⑤⑥
【总结反思】:
课题4.1.1几何图形(2)
【学习目标】:1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看;
2.能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形;
【学习重点】:识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形新-课-标-第-一-网
【学习难点】:画出从正面、左面、上面看正方体及简单组合体的平面图形
【导学指导】
一、知识链接
多媒体演示庐山景观,请学生背诵苏东坡《题西林壁》并说说诗中意境。
横看成岭侧成峰,
远近高低各不同。
不识庐山真面目,
只缘身在此山中。
从数学的角度来理解是什么意思呢?
二、自主探究
1.说一说:分别从正面、左面、上面观察乒乓球、粉笔盒、茶叶盒,各能得到什么平面图形?(出示实物)
2.画一画:长方体、圆锥分别从正面、左面、上面观察,各能得到什么图形?试着画一画.(出示实物)
这样,我们将立体图形转化成了平面图形
3.探究活动1:从正面、左面、上面观察得到的平面图形你能画出来吗?
小组合作学习,动手画一画,并进行展示
探究:分别从正面、左面、上面观察课本119页图4.1-8这个图形,分别画出得到的平面图形。
【课堂练习】:
课本120页练习1
【要点归纳】:1.本节课我们主要学习了什么?
2. 本节课我们有哪些收获?
【拓展训练】
1. 如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是
2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。
【总结反思】:
课题4.1.1几何图形(3)
【学习目标】:1.能直观认识立体图形和展开图,了解研究立体图形方法。
2.通过观察和动手操作,经历和体验平面图形和立体图形相互转换的过程,培养动手操作能力,初步建立空间观念,发展几何直觉。
【学习重点】:了解基本几何体与其展开图之间的关系,体会一个立体按照不同方式展开可得到不同的平面展开图。
【学习难点】:正确判断哪些平面图形可以折叠为立体图形;某个立体图形的展开图可以是哪些平面图形
【导学指导】
一、知识链接
我们把一些像墨水瓶盒、粉笔盒这样的纸盒沿它的表面适当剪开,可以展平成平面图形。这样的平面图形叫做相应立体图形的展开图。
你知道长方体、圆柱、圆锥和三棱柱的展开图是什么样子的吗?想象一下。
二、自主探究
(一)、立体图形的展开
1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?
思考:请你指出上面展开图各部分与几何体的哪一部分相对应?
2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会? 再将所有的展开图画出来,
以上画出了部分了展开图,除此之外还有5种,共有11种, 请你画出其余5种。
(二)、立体图形的折叠
探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?
凭想象回答,回答不出来的,就把它画在纸片上,剪下来折叠。
做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?
【课堂练习】:
课本121页练习2
【要点归纳】:1.我知道了什么?
2.我学会了什么?
3.我发现了什么?
【拓展训练
1.下列图形中,不是正方体的表面展开图的是
A. B. C. D.
2. 一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是
A.和
B.谐
C.沾
D.益
【总结反思】:
课题 4.1.2点、线、面、体
【学习目标】:(1)了解几何体、平面和曲面的意义,能正确判定围成几何体的面是平面还是曲面;
(2)了解几何图形构成的基本元素是点、线、面、体及其关系,能正确判定由点、
面、体经过运动变化形成的简单的几何图形;
【学习重点】:正确判定围成立体图形的面是平面还是曲面,探索点、线、面、体之间的关系。
【学习难点】:探索点、线、面、体运动变化后形成的图形。
【导学指导】
一、温故知新
1.出示一个长方体模型,请同学们认真观察。
2.回答问题:这个长方体有几个面?面与面相交成了几条线?线与线相交成几个 点?
二、自主探究
1.经过学生的独立思考,然后在小组中进行交流,在小组讨论中,评价并修正自己的结论。(教师进行巡视,及时给予指导,教师对学生分布的答案作鼓励性评价)。
2.几何体的概念
(1)长方体是一个几何体,我们还学过哪些几何体?
_______________________________________________________________________;
(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?
这些面有什么区别?
3.面的分类
通过对上面问题的解决,得出面的分类:____面和___面。
面与面相交成线,线有___线和____线;线与线相交成_____;
4. 点、线、面、体
教师指导学生看课本第121~122页内容,观察图片能发现什么结论?
点、线、面、体的关系:点动成_____,线动成___________,面动成________。
请你再举出生活中的一些实例:
5.点、线、面、体与几何图形关系.
指导学生阅读课本第123页内容,总结出点、线、面、体与几何图形的关系
几何图形都是由_______________________组成的,________是构成图形的基本元素。
【课堂练习】
课本第122页练习1、2;
【要点归纳】:
1.本节课我们主要学习了什么?
2. 本节课我们有哪些收获?
【拓展训练】:
1.人在雪地上走,他的脚印形成一条_______,这说明了______的数学原理;
2.体是由_______围成的,面和面相交形成_______,线和线相交形成______;
3.点动成________,线动成______,面动成_______;
4.将三角形绕直线L旋转一周,可以得到如下图所示立体图形的是
A B C D
【总结反思】:
课题 4.2直线、射线、线段(1)
【学习目标】: 1.能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,能用几何语言描述直线性质;
2.会用字母表示直线、射线、线段,会根据语言描述画出图形;
【重点难点】: 理解并掌握直线性质,会用字母表示图形和根据语言描述画出图形;
【导学指导】
一、知识链接
1.在小学已经学过了直线、射线、线段.请你画出一条直线、一条射线、一条线段?
直线 射线 线段
2.填写下列表格:
端点个数 延伸方向 能否度量
线段
射线
直线
二、自主探究
1、直线的性质
(1)如果你想将一根细木条固定在墙上,至少需要几个钉子?操作一下,试试看。
答:
(2)经过一个已知点的直线,可以画多少条直线?请画图说明。
答: O
(3)经过两个已知点画直线,可以画多少条直线?请画图试试。
答: A B
猜想:如果将细木条抽象成直线,将钉子抽象为点,你可以得到什么结论?
直线的基本性质:
经过两点有 条直线,并且 条直线;
简述为:
举例说明直线的性质在日常生活中的应用:
(1) 在挂窗帘时,只要在两边钉两颗钉子扯上线即可,这是因为
(2)建筑工人在砌墙时拉参照线,木工师傅锯木板时,用墨盒弹墨线,都是根据
(3)你还能从生活中举出应用直线的基本性质的例子吗?试试看:
2、直线有两种表示方法:①用一个小写字母表示;②用两个大写字母表示。
平面上一个点与一条直线的位置有什么关系?
①点在直线上;②点在直线外。
当两条直线有一个共公点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
3、射线和线段的表示方法:
如图。显然,射线和线段都是直线的一部分。
图①中的线段记作线段AB或线段a;图②中的射线记作射线OA或射线m。
注意:用两个大写字母表示射线时,表示端点的字母一定要写在前面。
思考:直线、射线和线段有什么联系和区别?
【课堂练习】
1.下列给线段取名正确的是
A.线段M B.线段m C.线段Mm D.线段mn
2.如图,若射线AB上有一点C,下列与射线AB是同一条射线的是
A.射线BA B.射线AC
C.射线BC D.射线CB
3.下列语句中正确的个数有
①直线MN与直线NM是同一条直线 ②射线AB与射线BA是同一条射线
③线段PQ与线段QP是同一条线段
④直线上一点把这条直线分成的两部分都是射线.
A.1个 B.2个 C.3个 D.4个
4.课本129页练习
【要点归纳】:
通过本节课的学习你有什么收获?
【拓展训练】:
1.如图,线段AB上有两点C、D,则共有 条线段。
2.变形题:往返于甲、乙两地的客车中途要停靠三个车站,有多少种不同的票价?要准备多少种不同的车票?
【总结反思】:
课题 4.2直线、射线、线段(2)
【学习目标】:1、会用尺规画一条线段等于已知线段;
2、会比较两条线段的长短;
3、理解线段中点的概念,了解“两点之间,线段最短”的性质。
【学习重点】:线段的中点概念,“两点之间,线段最短”的性质是重点;
【学习难点】:画一条线段等于已知线段是难点。
【导学指导】
一、温故知新
1、过A、B、C三点作直线,小明说有三条,小颖说有一条,小林说不是一条就是三条,你认为 的说法是对的。
二、自主学习
问题:现有一根长木棒,如何从它上面截下一段,使截下的木棒等于另一根木棒的长?
上面的实际问题可以转化为下面的数学问题:
已知线段a,画一条线段等于已知线段。
1.作一条线段等于已知线段
现在我们来解决这个问题。
作法:
(1)作射线AM
(2)在AM上截取AB= a。
则线段AB为所求。
应用:已知线段a、b,求作线段AB=a+b。
解:(1)作射线AM;
(2)在AM上顺次截取AC=a,CB= b。
则AB= a+b为所求。
做一做:作线段AB=a-b。
2、比较两条线段的长短
两条线段可能相等,也可能不相等,那么怎样比较两条线段的长短呢?
我们先来回答下面的问题。
怎样比较两个同学的身高?
一是用尺子测量;二是站在一起比(脚在同一高度)。
如果把两个同学看成两条线段,那么比较两条线段就有两种方法。
(1)度量法:用刻度尺分别量出两条线段的长度从而进行比较。
( 2)把一条线段移到另一条线段上,使一端对齐,从而进行比较,我们称为叠合法。(如图)
ABCD AB=CD
3、线段的中点及等分点
如图(1),点M把线段AB分成相等的两条线段AM与BM,点M叫做线段AB的中点;
记作AM=MB或AM=MB=1/2AB或2AM=2MB=AB。
如图(2),点M、N把线段AB分成相等的三段AM、MN、NB,点M、N叫做线段AB的三等分点。类似地,还有四等分点,等等。
4、线段的性质
请同学们思考课本131页的思考?
结论:
两点所连的线中,
简单地说成:___________________________________
你能举出这条性质在生活中的一些应用吗?
两点间的距离的定义:___________________________________
注意:距离是用“数”来度量的,它是线段的长度,而不是线段本身。
【课堂练习】
1、课本131页练习1、2
2、在直线上顺次取A、B、C三点,使 AB=4㎝,BC=3㎝,点O是线段AC的中点,则线段OB的长是〔 〕
A、2㎝ B、1.5㎝ C、0.5㎝ D、3.5㎝
3、已知线段AB=5㎝,C是直线AB上一点,若BC=2㎝,则线段AC的长为
【要点归纳】:
1、画一条线段等于一条已知线段。
2、怎样比较两条线段的长短?
3、线段的性质是什么?
4、什么是两点间的距离?
【拓展训练】:
1、把弯曲的河道改直后,缩短了河道的长度,这是因为 ;
2、已知,如图,AB=16㎝,C是BC的中点,且AC=10㎝,D是AC的中点,E是BC的中点,求线段DE的长。
【总结反思】:
课题 4.3.1角
【学习目标】:1、在现实情景中,理解角的概念,掌握角的表示方法;
2、认识角的度量单位:度、分、秒,学会进行简单的换算和角度的计算。
【重点难点】:角的表示和角度的计算是重点;角的适当表示是难点。
【导学指导】
一、知识链接
观察课本136页图4.3.1;思考问题:
如图,时钟的时针与分针,棱锥相交的两条棱,直尺相交的两条边,给我们什么平面图形的形象?
二、自主学习
1.角的定义1: 有__________________的两条射线组成的图形叫做角。
这个公共端点是角的________,这两条射线是角的__________。
∠AOB;
②用一个大写字母表示:∠O;
③用一个希腊字母表示:∠a;
④用一个阿拉伯数学表示:∠1。
思考:用适当的方法表示下图中的每个角:
演示:把一条射线由OA的位置绕点O旋转到OB的位置,如图(1)
射线开始的位置OA与旋转后的位置OB组成了什么图形?
角。
3.角的定义2: 角也可以看作由一条射线绕着它的端点旋转面形成的图形。
如图(2),当射线旋转到起始位置OA与终止位置OB在一条直线上时,形成_____角;
如图(3),继续旋转,OB与OA重合时,又形成________角;
思考:平角是一条直线吗?周角是一条射线吗?为什么?
4、角的度量
阅读课本137页;填空:
1周角=_____0 , 1平角=_____0;
10=____′, 1′=_____′′;
如∠a的度数是48度56分37秒,记作∠a=48056′37′′。
度、分、秒是常用的角的度量单位,以度、分、秒为单位的角的度量制,叫做角度制,
注意:角的度、分、秒与时间的时、分、秒一样,都是60进制,
计算时,借1当成60,满60进1。
例 计算:(1)53028′+47035′; (2)17027′+3050′;(学生自己完成)
【课堂练习】:
课本138页1、2。
【要点归纳】:
1、什么是角、平角、周角?
2、怎么表示角?
3、角的度量单位是什么?它们是如何换算的?
【拓展训练】:
1、(37.145)0 = 度 分 秒;98030′18′′= 度。
2、下午2时30分,钟表中时针与分针的夹角为〔 〕
A、900 B、1050 C、1200 D、1350
3、如图,A、B、C在一直线上,已知 1=53°, 2=37°;CD与CE垂直吗?
【总结反思】:
课题 4.3.2角的比较与运算
【学习目标】:1、会比较两个角的大小,能分析图中角的和差关系;
2、理解角平分线的概念,会画角平分线。
【重点难点】:角的大小比较和角平分线的概念是重点;从图形中观察角的和差关系是难点。
【导学指导】
一、知识链接
回顾线段大小的比较,,怎样比较图中线段AB、BC、CA的长短?
(1) 度量法;(2)叠合法。
AB
那么怎样比较∠A、∠ B、∠ C的大小呢?
二、自主学习
1、比较角的大小
(1)度量法:用量角器量出角的度数,然后比较它们的大小。
(2)叠合法:把两个角叠合在一起比较大小。
教师演示:
(1)∠AOB<∠AOB′;(2)∠AOB=∠AOB′;(3)∠AOB>∠AOB′。
2、认识角的和差
思考:如图,图中共有几个角?它们之间有什么关系?
图中共有3个角:∠AOB、∠AOC、∠BOC。它们的关系是:
∠AOC=∠AOB+∠BOC;
∠BOC=∠AOC-∠AOB;
∠AOB=∠AOC-∠BOC
3、用三角板拼角
探究:借助三角尺画出150,750的角。
一副三角板的各个角分别是多少度?___________________________________
学生尝试画角。
你还能画出哪些角?有什么规律吗?
还能画出___________________________________
规律是:凡是 的倍数的角都能画出。
4、角平分线
在一张纸上画出一个角并剪下,将这个角对折,使其两边重合.想想看,折痕与角两边所成的两个角的大小有什么关系?
如图(1)
角的平分线:从一个角的_____出发,把这个角分成_______的两个角的射线,叫做这个角的平分线。 类似地,还有角的三等分线等。如图(2)中的OB、OC。
OB是∠AOC的一平分线,可以记作:
∠AOC=2∠AOB=2∠BOC或∠AOB=∠BOC= 。
5、例题学习
例1 如图,O是直线AB上一点,∠AOC=53017′,求∠ BOC的度数。
例2 把一个周角7等分,每一份是多少度的角(精确到分)
【课堂练习】:
课本140-141页1、2、3。
【要点归纳】:
1、角的大小比较的方法和角的和差关系;
2、用一副三角板画角;
3、角的平分线及表示。
【拓展训练】:
1、如图,O为直线AB上一点,射线OD、OE分别平分∠AOC、∠BOC,求∠DOE的度数。
【总结反思】:
课题:余角和补角(1)
【学习目标】在具体的现实情境中,认识一个角的余角和补角;
【重点难点】正确求出一个角的余角和补角。
【导学指导】
一、知识链接
思考:
(1) 在一副三角板中同一块三角板的两个锐角和等于多少度?
(2) 如图1,已知∠1=61°,∠2=29°,那么∠1+∠2= 。
(3) 如 图 2,已知点A、O、B在一直线上 ,∠COD=90°,那么∠1+∠2= 。
二、自主探究
1.互为余角的定义:
思考:
(1) 如图3,已知∠1=62°,∠2=118°,那么 ∠1+∠2=
(2) 如图4,A、O、B在同一直线上,∠1+∠2=
2.互为补角的定义:
问题1:以上定义中的“互为”是什么意思?
问题2:若 ∠1+∠2 +∠3 =180° ,那么∠1、∠2、∠3互为补角吗?
3.新知应用:
例1:若一个角的补角等于它的余角4倍,求这个角的度数。
X k b 1 . c o m
例2:如图,∠AOC=∠COB=90°,∠DOE=90°,A、O、B三点在一直线上
(1)写出∠COE的余角,∠AOE的补角;
(2)找出图中一对相等的角,并说明理由;
【课堂练习】:
课本141页练习1、2、3;
【要点归纳】:
【拓展训练】:
1、一个角的余角比它的补角的 还少 ,求这个角的度数。
2、若 和 互余,且 : =7:2,求 、的度数。
【总结反思】:
课题:余角和补角(2)
【学习目标】:1、掌握余角和补角的性质。
2、了解方位角,能确定具体物体的方位。
【重点难点】掌握余角和补角的性质;方位角的应用;
【导学指导】
一、知识链接
1.70°的余角是 ,补角是 ;
2.∠a(∠a <90°)的它的余角是 ,它的补角是 ;
二、自主学习
1.探究补角的性质:
例3、如图, ∠1与∠2互补,∠3与∠4互补, ∠1= ∠3,那么∠2与∠4相等吗?为什么?
分析:(1)∠1与∠2互补,∠2等于什么?∠2=1800 - ,
∠3与∠4互补,∠4等于什么? ∠4=1800 - 。
(2)当∠1= ∠3时,∠2与∠4有什么关系?为什么?
∠2=∠4(等量减等量,差相等)
上面的结论,用文字怎么叙述?
补角的性质:等角的 相等。
2.探究余角的性质:
如图∠1 与∠2互余,∠3 与∠4互余 ,如果∠1=∠3,那么∠2与∠4相等吗?为什么?
余角性质:等角的 相等
3.方位角:
(1)认识方位:
正东、正南、正西、正北、东南、
西南、西北、东北。
(2)找方位角:
乙地对甲地的方位角 ; 甲地对乙地的方位角
例4:如图.货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线。
(师生共同完成)
【课堂练习】:
1、和 都是 的补角,则 ;
2、如果 ,则 的关系是 ,
理由是 ;
3、A看B的方向是北偏东21°,那么B看A的方向
A 南偏东69° B 南偏西69° C 南偏东21° D 南偏西21°
4、在点O 北偏西60°的某处有一点A,在点O南偏西20°的某处有一点B,则∠AOB的度数是 A 100° B 70° C 180° D 140°
【要点归纳】:补角的性质:
余角的性质:
【拓展训练】:
1. 如图,∠AOB=90°,∠COD=∠EOD=90°,C,O,E在一条直线上,且∠2=∠4,
请说出∠1与∠3之间的关系?并试着说明理由?
【总结反思】:
课题 第四章 图形认识初步复习(两课时)
【复习目标】:1.直观认识立体图形,掌握平面图形(线段、射线、直线)的基本知识;
2.掌握角的基本概念,能利用角的知识解决一些实际问题。
【复习重点】: 线段、射线、直线、角的性质和运用
【复习难点】:角的运算与应用;空间观念建立和发展;几何语言的认识与运用。
【导学指导】
篇10:九年级数学上册教案
第1章反比例函数
1.1反比例函数
教学目标
【知识与技能】
理解反比例函数的概念,根据实际问题能列出反比例函数关系式.
【过程与方法】
经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.
【情感态度】
培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.
【教学重点】
理解反比例函数的概念,能根据已知条件写出函数解析式.
【教学难点】
能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.
教学过程
一、情景导入,初步认知
1.复习小学已学过的反比例关系,例如:
(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)
(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)
2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?
【教学说明】对相关知识的复习,为本节课的学习打下基础.
二、思考探究,获取新知
探究1:反比例函数的概念
(1)一群选手在进行全程为3000米的比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.
(2)利用(1)的关系式完成下表:
(3)随着时间t的变化,平均速度v发生了怎样的变化?
(4)平均速度v是所用时间t的函数吗?为什么?
(5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?
【归纳结论】一般地,如果两个变量x,y之间可以表示成y=(k为常数且k≠0)的形式,那么称y是x的反比例函数.其中x是自变量,常数k称为反比例函数的比例系数.
【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自变量t可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t代表的是时间,且时间不能为负数,所有t的取值范围为t>0.
【教学说明】教师组织学生讨论,提问学生,师生互动.
三、运用新知,深化理解
1.见教材P3例题.
2.下列函数关系中,哪些是反比例函数?
(1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;
(2)压强p一定时,压力F与受力面积S的关系;
(3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系.
(4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式.
分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=(k是常数,k≠0).所以此题必须先写出函数解析式,后解答.
解:
(1)a=12/h,是反比例函数;
(2)F=pS,是正比例函数;
(3)F=W/s,是反比例函数;
(4)y=m/x,是反比例函数.
3.当m为何值时,函数y=是反比例函数,并求出其函数解析式.分析:由反比例函数的定义易求出m的值.解:由反比例函数的定义可知:2m-2=1,m=3/2.所以反比例函数的解析式为y=.
4.当质量一定时,二氧化碳的体积V与密度ρ成反比例.且V=5m3时,ρ=1.98kg/m3
(1)求p与V的函数关系式,并指出自变量的取值范围.
(2)求V=9m3时,二氧化碳的密度.
解:略
5.已知y=y1+y2,y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式.
分析:y1与x成正比例,则y1=k1x,y2与x2成反比例,则y2=k2x2,又由y=y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y与x间的函数关系式.
解:因为y1与x成正比例,所以y1=k1x;因为y2与x2成反比例,所以y2=,而y=y1+y2,所以y=k1x+,当x=2与x=3时,y的值都等于19.
【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式.
四、师生互动、课堂小结
先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.
课后作业
布置作业:教材“习题1.1”中第1、3、5题.
教学反思
学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.
篇11:九年级数学上册教案
1.2反比例函数的图象与性质
第1课时反比例函数的图象与性质(1)
教学目标
【知识与技能】
1.会用描点法画反比例函数图象;2.理解反比例函数的性质.
【过程与方法】
观察、比较、合作、交流、探索.
【情感态度】
通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质.
【教学重点】
画反比例函数的图象,理解反比例函数的性质.
【教学难点】
理解反比例函数的性质,并能灵活应用.
教学过程
一、情景导入,初步认知
你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?
【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.
二、思考探究,获取新知
探究1:反比例函数图象的画法画出反比例函数y=的图象.分析∶画出函数图象一般分为列表、描点、连线三个步骤.
(1)列表:取自变量x的哪些值?
x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.
(2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.
(3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.
思考:
(1)观察上图,y轴右边的各点,当横坐标x逐渐增大时,纵坐标y如何变化?y轴左边的各点是否也有相同的规律?
(2)这两条曲线会与x轴、y轴相交吗?为什么?探究2:反比例函数所在的象限画出函数y=的图形,并思考下列问题:
(1)函数图形的两个分支分别位于哪些象限?
(2)在每一象限内,函数值y随自变量x的变化是如何变化的?
【归纳结论】一般地,当k>0时,反比例函数y=的图象由分别在第一、三象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而减小.
探究3:反比例函数y=-的图象.可以引导学生采用多种方式进行自主探索活动:
(1)可以用画反比例函数y=-的图象的方式与步骤进行自主探索其图象;
(2)可以通过探索函数y=与y=-之间的关系,画出y=-的图象.
【归纳结论】一般地,当k<0时,反比例函数y=的图象由分别在第二、四象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而增大.
探究4:反比例函数的性质反比例函数y=-与y=的图象有什么共同特征?
【教学说明】引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.
【归纳结论】反比例函数y=(k≠0)的图象是由两个分支组成的曲线.当k>0时,图象在一、三象限;当k<0时,图象在二、四象限.反比例函数y=与y=-(k≠0)的图象关于x轴或y轴对称.
【教学说明】学生动手画反比函数图象,进一步掌握画函数图象的步骤.观察函数图象,掌握反比例函数的性质.
篇12:人教版数学九年级上册教案
一、教材分析:
1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。
2、教学目标要求:
(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;
(2)能根据具体问题的实际意义,检验结果是否合理;
(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;
(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
3、教学重点和难点:
重点:列一元二次方程解与面积有关问题的应用题。
难点:发现问题中的等量关系。
二.教法、学法分析:
1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
三.教学流程分析:
本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:
活动1 复习回顾解决课前参与
活动2 封面设计问题的探究
活动3 草坪规划问题的延伸
活动4 课堂回眸
这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
活动1 复习回顾解决课前参与
由学生展示课前参与题目,集体订正。目的在于回顾常用几何图形的面积公式,并且引出本节学习内容—— 面积问题。
活动2 封面设计问题的探究
通过学生自己独立审题,找寻等量关系,教师引导学生对“正中央矩形与封面长宽比例相同”题意的理解,使学生明白中央矩形长宽比为9:7,从而进一步突破难点:上下边衬与左右边衬比也为9:7,为学生设未知数提供帮助。之后由学生分组完成方程的列法,以及取法。讲解中注重简便设法及解法的指导与评价。
活动3 草坪规划问题的延伸
放手给学生处理,以学生合作完成为主。突出利用平移变换为主的解决方式。多由学生分析不同的处理方法。
活动4 课堂回眸
本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。
作业布置
共3个题目,前两个为必做题,全员均作;最后一个选作题,可供学有余力学生能力提升用。
篇13:人教版数学九年级上册教案
卢老师的这节复习课,教学设计好,导入自然,环节紧凑、流畅,既有对优秀教学方法的吸收,又有个人的创新、独到之处,把教学过程变成学生对知识的探索过程,完全体现了新课程对教师的要求。从整体上处理复习中的内容,把握上复习课的引入、拓展、变式、探究,注重课堂与生成的和谐。将围成矩形的材料通过一步一步的拓展,强化了学生列一元二次方程的能力。
探究环节处理的比较好,卢老师首先引导学生得出列方程解应用题的步骤及列方程解应用的关键,然后由扶到放,让学生自主探究得出应用题的等量关系。以后环节,无论是审题、设适当的未知数、找等量关系、列方程、找答案,卢老师充分放手让学生自己动手,动口,老师只引导点拨,使学生主动获取知识,在潜移默化中领悟知识,使学生完全成为课堂主人,达到知识学习与能力培养的统一。
另外,注重数学思想方法的培养与渗透,现实生活中很多实际的问题,都可以用列方程的办法解决,学会把实际问题转化为方程来解决是很重要的数学思想方法。充分体现数学来源于实践又服务于实践的数学思想。郑老师通过对实际问题的分析探究,学生会更加感受生活中数学的重要性。从而提高学生学习数学的信心和兴趣,这对今后的学习有着十分重要的意义。卢老师遵循从特殊到一般,从一般到特殊的思考方法,又引入对称的哲学观点,让学生从整体、系统的角度领悟教材,为学生以后的学习打下良好的认知基础。
一点建议:出示问题后,应该给予学生足够的时间,让学生进行探究。
人教版数学九年级上册教案
篇14:北师大版九年级数学上册教案
学习目标
1.了解圆周角的概念.
2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
4.熟练掌握圆周角的定理及其推理的灵活运用.
设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题
学习过程
一、温故知新:
(学生活动)同学们口答下面两个问题.
1.什么叫圆心角?
2.圆心角、弦、弧之间有什么内在联系呢?
二、自主学习:
自学教材P90---P93,思考下列问题:
1、什么叫圆周角?圆周角的两个特征: 。
2、在下面空里作一个圆,在同一弧上作一些圆心角及圆周角。通过圆周角的概念和度量的方法回答下面的问题.
(1)一个弧上所对的圆周角的个数有多少个?
(2).同弧所对的圆周角的度数是否发生变化?
(3).同弧上的圆周角与圆心角有什么关系?
3、默写圆周角定理及推论并证明。
4、能去掉“同圆或等圆”吗?若把“同弧或等弧”改成“同弦或等弦”性质成立吗?
5、教材92页思考?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?
三、典型例题:
例1、(教材93页例2)如图, ⊙O的直径AB为10cm,弦AC为6cm,,∠ACB的平分线交⊙O于D,求BC、AD、BD的长。
例2、如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?
四、巩固练习:
1、(教材P93练习1)
解:
2、(教材P93练习2)
3、(教材P93练习3)
证明:
4、(教材P95习题24.1第9题)
五、总结反思:
达标检测
1.如图1,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC等于( ).
A.140° B.110° C.120° D.130°
(1) (2) (3)
2.如图2,∠1、∠2、∠3、∠4的大小关系是( )
A.∠4<∠1<∠2<∠3 B.∠4<∠1=∠3<∠2
C.∠4<∠1<∠3∠2 D.∠4<∠1<∠3=∠2
3.如图3,(中考题)AB是⊙O的直径,BC,CD,DA是⊙O的弦,且BC=CD=DA,则∠BCD等于( )
A.100° B.110° C.120° D.130°
4.半径为2a的⊙O中,弦AB的长为2 a,则弦AB所对的圆周角的度数是________.
5.如图4,A、B是⊙O的直径,C、D、E都是圆上的点,则∠1+∠2=_______.
(4) (5)
6.(中考题)如图5, 于 ,若 ,则
7.如图,弦AB把圆周分成1:2的两部分,已知⊙O半径为1,求弦长AB.
拓展创新
1.如图,已知AB=AC,∠APC=60°
(1)求证:△ABC是等边三角形.
(2)若BC=4cm,求⊙O的面积.
3、教材P95习题24.1第12、13题。
布置作业教材P95习题24.1第10、11题
【九年级数学上册电子教案第四章完】相关文章:
10.九年级语文上册人教版教案






文档为doc格式