欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>新人教版数学九年级下教案

新人教版数学九年级下教案

2025-02-09 07:47:53 收藏本文 下载本文

“害害”通过精心收集,向本站投稿了17篇新人教版数学九年级下教案,下面是小编给大家带来关于新人教版数学九年级下教案,一起来看看吧,希望对您有所帮助。

新人教版数学九年级下教案

篇1:新人教版九年级数学下册全册教案

一、素质教育目标

(一)知识教学点

使学生初步了解正弦、余弦概念;能够较正确地用sinA、cosA表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.

(二)能力训练点

逐步培养学生观察、比较、分析、概括的思维能力.

(三)德育渗透点

渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.

二、教学重点、难点

1.教学重点:使学生了解正弦、余弦概念.

2.教学难点:用含有几个字母的符号组sinA、cosA表示正弦、余弦;正弦、余弦概念.

三、教学步骤

(一)明确目标

1.引导学生回忆“直角三角形锐角固定时,它的对边与斜边的比值、邻边与斜边的比值也是固定的.”

2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值——正弦和余弦.

(二)整体感知

只要知道三角形任一边长,其他两边就可知.

而上节课我们发现:只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定.这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.

通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.

(三)重点、难点的学习与目标完成过程

正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.

在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图6-3:

请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力.教师板书:在△ABC中,∠C为直角,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA.

若把∠A的对边BC记作a,邻边AC记作b,斜边AB记作c,则

引导学生思考:当∠A为锐角时,sinA、cosA的值会在什么范围内?得结论0

教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“cosA、cosB”,经过反复强化,使全体学生都达到目标,更加突出重点.

例1 求出图6-4所示的Rt△ABC中的sinA、sinB和cosA、cosB的值.

学生练习1中1、2、3.

让每个学生画含30°、45°的直角三角形,分别求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.

例2 求下列各式的值:

为了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:

(1)sin45°+cos45; (2)sin30°?cos60°;

在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下,sin20°大概在什么范围内,cos50°呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神.还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小.”为查正余弦表作准备.

(四)总结、扩展

首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值.知道任意锐角A的正、余弦值都在0~1之间,即

0

还发现Rt△ABC的两锐角∠A、∠B,sinA=cosB,cosA=sinB.正弦值随角度增大而增大,余弦值随角度增大而减小.”

四、布置作业

教材习题14.1中A组3.

预习下一课内容.

篇2:新人教版九年级数学下册全册教案

1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.

2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.

重点

通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.

难点

一元二次方程及其二次项系数、一次项系数和常数项的识别.

活动1 复习旧知

1.什么是方程?你能举一个方程的例子吗?

2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.

(1)2x-1 (2)mx+n=0 (3)1x+1=0 (4)x2=1

3.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.

A.0 B.1 C.2 D.3

活动2 探究新知

根据题意列方程.

1.教材第2页 问题1.

提出问题:

(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?

(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?

(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.

2.教材第2页 问题2.

提出问题:

(1)本题中有哪些量?由这些量可以得到什么?

(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?

(3)如果有x个队参赛,一共比赛多少场呢?

3.一个数比另一个数大3,且两个数之积为0,求这两个数.

提出问题:

本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?

4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?

活动3 归纳概念

提出问题:

(1)上述方程与一元一次方程有什么相同点和不同点?

(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?

(3)归纳一元二次方程的概念.

1.一元二次方程:只含有________个未知数,并且未知数的次数是________,这样的________方程,叫做一元二次方程.

2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

提出问题:

(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?

(2)为什么要限制a≠0,b,c可以为0吗?

(3)2x2-x+1=0的一次项系数是1吗?为什么?

3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).

活动4 例题与练习

例1 在下列方程中,属于一元二次方程的是________.

(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;

(4)2x2-2x(x+7)=0.

总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.

例2 教材第3页 例题.

例3 以-2为根的一元二次方程是( )

A.x2+2x-1=0 B.x2-x-2=0

C.x2+x+2=0 D.x2+x-2=0

总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.

练习:

1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.

2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.

(1)4x2=81;(2)(3x-2)(x+1)=8x-3.

3.教材第4页 练习第2题.

4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.

答案:1.a≠1;2.略;3.略;4.k=4.

活动5 课堂小结与作业布置

课堂小结

我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?

作业布置

教材第4页习题21.1第1~7题.21.2 解一元二次方程

21.2.1 配方法(3课时)

第1课时 直接开平方法

理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.

提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.

重点

运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.

难点

通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.

一、复习引入

学生活动:请同学们完成下列各题.

问题1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.

问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?

二、探索新知

上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?

(学生分组讨论)

老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的两根为t1=1,t2=-2

例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2

分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接开平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的两根x1=-3+2,x2=-3-2

解:略.

例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.

分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2

解:设每年人均住房面积增长率为x,

则:10(1+x)2=14.4

(1+x)2=1.44

直接开平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的两根是x1=0.2=20%,x2=-2.2

因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.

所以,每年人均住房面积增长率应为20%.

(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?

共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.

三、巩固练习

教材第6页 练习.

四、课堂小结

本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.

五、作业布置

教材第16页 复习巩固1.第2课时 配方法的基本形式

理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.

通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.

新人教版九年级数学下册全册教案

篇3:人教版数学九年级下册教案

教材分析

本节内容是上一节课在学习余角补角基础上学习的,学生有了一定的基础,为以后学__面直角坐标系的学习做好准备。

学情分析

本节课对于学生来说学习起来并不太难,在小学阶段学生已经接触过方位角的内容,而且本节课内容和生活中的方向联系紧密,故学生比较有兴趣。

教学目标

理解方位角的意义,掌握方位角的判别和应用,通过现实情境,充分利用学生的生活经验去体会方位角的意义。

教学重点和难点

重点:方位角的判别与应用

难点:方位角的画法及变式题

教学过程(本文来自优秀教育资源网斐.斐.课.件.园)

教学环节教师活动预设学生行为设计意图

一 、创设情境,导入新课

二、讲授新课

三、巩固练习

四、课时小结五、布置作业 由四面八方这个成语引出学生对八个方位的理解

1.先以一个具体图形告诉学生基本知识点,方位角一般是以正南正北为基准,然后向东或西旋转所成的角的始边方向。

2.师示范方位角的画法

3.出示补充例题,引对学生通过小组合作完成。 思考并回答老师提出的问题

生观察图并理解老师的讲解。

生观察并独立完成书中的例题

生先独立思考然后与同学合作完成。 激发学生的学习兴趣

通辽具体图形使学生初步认识方位角的表示方法。

使学生通辽具体操作掌握画方位角的方法

进一步掌握方位角的有关知识,达到知识提升。

板书设计

4.3.3余角和补角(二)——方位角

学生学习活动评价设计

我先将学生按人数分成若干小组,在课前先给学生发放导学单,课上先给学生充分的讨论时间后学生由小组推荐代表发言,累积分数,每个小组轮流回答一次,学生代表回答完毕后,其它同学补充纠错,然后从知识点是否准确,语言是否流利,思维是否创新,逻辑是否合理严密等方面来做出评价,然后给出相应分数。累积到小组积分中课上知识回答后在练习部分,设计抢答题,小组抢答完成。最后计算出总分评出本节课小组及个人奖,给予口头表扬。

教学反思

本节课是在上节课余角和补角的基础上学习的,而且在小学阶段也已经接触过这部分知识了,基于这个特点,在课堂上我主要采取了自主学习的方式,学生接受的不错,本节课的知识虽然简单但很重要是为以后学__面直角坐标系做准备的。出现的问题是有个别同学对于A看B是北偏东30度,则B看A是什么方向不太清楚,我采取的措施是让明白的同学讲给不明白的同学听,指导其主要从哪方面入手解决此类问题,还有一点,学生在画图后容易忽略写结论,应强调。以前在上本节课时,我是采取的讲授法,感觉学生不是很爱听,后来一想,知道了是因为小学时他们已经接触了这部分知识,所以不爱听,针对于这种情况,这次我采用了自主学习的方式感觉学生的积极性上来了,一节课气氛很好,相信效果也不错。以后再讲这节课我将继续采用这种方式,在此基础上使其更加完善。

篇4:人教版九年级下数学教案

回顾与反思 当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?

探索 观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数 与 的图象之间的关系吗?

例2.在同一直角坐标系中,画出函数 与 的图象,并说明,通过怎样的平移,可以由抛物线 得到抛物线 .

解 列表.

x … -3 -2 -1 0 1 2 3 …

… -8 -3 0 1 0 -3 -8 …

… -10 -5 -2 -1 -2 -5 -10 …

描点、连线,画出这两个函数的图象,如图26.2.4所示.

可以看出,抛物线 是由抛物线 向下平移两个单位得到的.

回顾与反思 抛物线 和抛物线 分别是由抛物线 向上、向下平移一个单位得到的.

探索 如果要得到抛物线 ,应将抛物线 作怎样的平移?

例3.一条抛物线的开口方向、对称轴与 相同,顶点纵坐标是-2,且抛物线经过点(1,1),求这条抛物线的函数关系式.

解 由题意可得,所求函数开口向上,对称轴是y轴,顶点坐标为(0,-2),

因此所求函数关系式可看作 , 又抛物线经过点(1,1),

所以, ,

解得 .

故所求函数关系式为 .

回顾与反思 (a、k是常数,a≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:

开口方向 对称轴 顶点坐标

[当堂课内练习]

1. 在同一直角坐标系中,画出下列二次函数的图象:

, , .

观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线 的开口方向及对称轴、顶点的位置吗?

2.抛物线 的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线 向平移 个单位得到的.

3.函数 ,当x 时,函数值y随x的增大而减小.当x 时,函数取得最 值,最 值y= .

[本课课外作业]

A组

1.已知函数 , , .

(1)分别画出它们的图象;

(2)说出各个图象的开口方向、对称轴、顶点坐标;

(3)试说出函数 的图象的开口方向、对称轴、顶点坐标.

2. 不画图象,说出函数 的开口方向、对称轴和顶点坐标,并说明它是由函数 通过怎样的平移得到的.

3.若二次函数 的图象经过点(-2,10),求a的值.这个函数有还是最小值?是多少?

B组

4.在同一直角坐标系中 与 的图象的大致位置是( )

5.已知二次函数 ,当k为何值时,此二次函数以y轴为对称轴?写出其函数关系式.

篇5:人教版九年级下数学教案

教材内容

1.本单元教学的主要内容:

二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.

2.本单元在教材中的地位和作用:

二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.

教学目标

1.知识与技能

(1)理解二次根式的概念.

(2)理解 (a≥0)是一个非负数,( )2=a(a≥0), =a(a≥0).

(3)掌握 ? = (a≥0,b≥0), = ? ;

= (a≥0,b>0), = (a≥0,b>0).

(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.

2.过程与方法

(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.

(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.

(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.

(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.

3.情感、态度与价值观

通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.

教学重点

1.二次根式 (a≥0)的内涵. (a≥0)是一个非负数;( )2=a(a≥0); =a(a≥0)及其运用.

2.二次根式乘除法的规定及其运用.

3.最简二次根式的概念.

4.二次根式的加减运算.

教学难点

1.对 (a≥0)是一个非负数的理解;对等式( )2=a(a≥0)及 =a(a≥0)的理解及应用.

2.二次根式的乘法、除法的条件限制.

3.利用最简二次根式的概念把一个二次根式化成最简二次根式.

教学关键

1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.

2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.

单元课时划分

本单元教学时间约需11课时,具体分配如下:

21.1 二次根式 3课时

21.2 二次根式的乘法 3课时

21.3 二次根式的加减 3课时

教学活动、习题课、小结 2课时

21.1 二次根式

第一课时

教学内容

二次根式的概念及其运用

教学目标

理解二次根式的概念,并利用 (a≥0)的意义解答具体题目.

提出问题,根据问题给出概念,应用概念解决实际问题.

教学重难点关键

1.重点:形如 (a≥0)的式子叫做二次根式的概念;

2.难点与关键:利用“ (a≥0)”解决具体问题.

教学过程

一、复习引入

(学生活动)请同学们独立完成下列三个问题:

问题1:已知反比例函数y= ,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.

问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.

问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.

老师点评:

问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标( , ).

问题2:由勾股定理得AB=

问题3:由方差的概念得S= .

二、探索新知

很明显 、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.

(学生活动)议一议:

1.-1有算术平方根吗?

2.0的算术平方根是多少?

3.当a<0, 有意义吗?

老师点评:(略)

例1.下列式子,哪些是二次根式,哪些不是二次根式: 、、、(x>0)、、、- 、、(x≥0,y≥0).

分析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0.

解:二次根式有: 、(x>0)、、- 、(x≥0,y≥0);不是二次根式的有: 、、、.

例2.当x是多少时, 在实数范围内有意义?

分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0, 才能有意义.

解:由3x-1≥0,得:x≥

当x≥ 时, 在实数范围内有意义.

三、巩固练习

教材P练习1、2、3.

四、应用拓展

例3.当x是多少时, + 在实数范围内有意义?

分析:要使 + 在实数范围内有意义,必须同时满足 中的≥0和 中的x+1≠0.

解:依题意,得

由①得:x≥-

由②得:x≠-1

当x≥- 且x≠-1时, + 在实数范围内有意义.

例4(1)已知y= + +5,求 的值.(答案:2)

(2)若 + =0,求a+b2004的值.(答案: )

五、归纳小结(学生活动,老师点评)

本节课要掌握:

1.形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.

2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.

六、布置作业

1.教材P8复习巩固1、综合应用5.

2.选用课时作业设计.

3.课后作业:《同步训练》

第一课时作业设计

一、选择题 1.下列式子中,是二次根式的是( )

A.- B. C. D.x

2.下列式子中,不是二次根式的是( )

A. B. C. D.

3.已知一个正方形的面积是5,那么它的边长是( )

A.5 B. C. D.以上皆不对

二、填空题

1.形如________的式子叫做二次根式.

2.面积为a的正方形的边长为________.

3.负数________平方根.

三、综合提高题

1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?

2.当x是多少时, +x2在实数范围内有意义?

3.若 + 有意义,则 =_______.

4.使式子 有意义的未知数x有( )个.

A.0 B.1 C.2 D.无数

5.已知a、b为实数,且 +2 =b+4,求a、b的值.

第一课时作业设计答案:

一、1.A 2.D 3.B

二、1. (a≥0) 2. 3.没有

三、1.设底面边长为x,则0.2x2=1,解答:x= .

2.依题意得: ,

∴当x>- 且x≠0时, +x2在实数范围内没有意义.

3.

4.B

5.a=5,b=-4

21.1 二次根式(2)

第二课时

教学内容

1. (a≥0)是一个非负数;

2.( )2=a(a≥0).

教学目标

理解 (a≥0)是一个非负数和( )2=a(a≥0),并利用它们进行计算和化简.

通过复习二次根式的概念,用逻辑推理的方法推出 (a≥0)是一个非负数,用具体数据结合算术平方根的意义导出( )2=a(a≥0);最后运用结论严谨解题.

教学重难点关键

1.重点: (a≥0)是一个非负数;( )2=a(a≥0)及其运用.

2.难点、关键:用分类思想的方法导出 (a≥0)是一个非负数;用探究的方法导出( )2=a(a≥0).

教学过程

一、复习引入

(学生活动)口答

1.什么叫二次根式?

2.当a≥0时, 叫什么?当a<0时, 有意义吗?

老师点评(略).

二、探究新知

议一议:(学生分组讨论,提问解答)

(a≥0)是一个什么数呢?

老师点评:根据学生讨论和上面的练习,我们可以得出

(a≥0)是一个非负数.

做一做:根据算术平方根的意义填空:

( )2=_______;( )2=_______;( )2=______;( )2=_______;

( )2=______;( )2=_______;( )2=_______.

老师点评: 是4的算术平方根,根据算术平方根的意义, 是一个平方等于4的非负数,因此有( )2=4.

同理可得:( )2=2,( )2=9,( )2=3,( )2= ,( )2= ,( )2=0,所以

( )2=a(a≥0)

例1 计算

1.( )2 2.(3 )2 3.( )2 4.( )2

分析:我们可以直接利用( )2=a(a≥0)的结论解题.

解:( )2 = ,(3 )2 =32?( )2=32?5=45,

( )2= ,( )2= .

三、巩固练习

计算下列各式的值:

( )2 ( )2 ( )2 ( )2 (4 )2

四、应用拓展

例2 计算

1.( )2(x≥0) 2.( )2 3.( )2

4.( )2

分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;

(4)4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2≥0.

所以上面的4题都可以运用( )2=a(a≥0)的重要结论解题.

解:(1)因为x≥0,所以x+1>0

( )2=x+1

(2)∵a2≥0,∴( )2=a2

(3)∵a2+2a+1=(a+1)2

又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1

(4)∵4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2

又∵(2x-3)2≥0

∴4x2-12x+9≥0,∴( )2=4x2-12x+9

例3在实数范围内分解下列因式:

(1)x2-3 (2)x4-4 (3) 2x2-3

分析:(略)

五、归纳小结

本节课应掌握:

1. (a≥0)是一个非负数;

2.( )2=a(a≥0);反之:a=( )2(a≥0).

六、布置作业

1.教材P8 复习巩固2.(1)、(2) P9 7.

2.选用课时作业设计.

3.课后作业:《同步训练》

人教版九年级下数学教案

篇6:新人教版九年级物理下册教案

教学目标

1, 理解动能和重力势能的转化,能举例说明动能和重力势能的转化.

2, 理解动能和弹性势能的转化,能举例说明动能和弹性势能的转化.

3, 分析和解释实例,说明动能和势能的转化过程,动能、势能、机械能的变化情况.

4, 建立能量的概念,树立能量转化和守恒的观念,为后面学习能的转化和守恒大小基础.

5、通过分析生产和生活中的实例,养成学生理论联系实践的习惯和能力.

教材分析

教材首先安排了麦克斯韦滚摆实验来说明动能和重力势能的相互转化,接着又安排了把用细线悬挂起来的金属小球拉到一定高度放开,以及木球与弹簧片碰撞两个实验,来说明动能和弹性势能的相互转化.使学生一开始就注意到动能和这两种势能都可以相互转化.在动能和势能的相互转化过程中,机械能减少转化为内能的问题安排在下一章讲,在这里没有涉及.教材最后分析了人造卫星绕地球运行过程中动能和势能的相互转化,目的是加强物理知识与现代科技的联系,使学生了解他们所学的物理知识,也可以用来解释一些高科技中的问题,激发学生学习物理的兴趣.

教法建议

注重实验教学,分析上抛小球的实验到观察麦克斯韦实验,在教学过程中要使学生明确实验的目的和观察物理现象,清楚具体的过程,从速度变化、高度变化到能量变化,学生能从能量变化中知道能量的转化.

课本实验中动能和弹性势能的转化不用细致分析,但是要在教学过程中让学生注意观察的分析木球碰撞弹簧片的过程,由于碰撞非常短,所以应当帮助学生想象弹簧片的形变,从而理解动能和弹性势能的转化.

教学中注意把学的知识应用到实践中,注重分析实例,例如分析射箭过程中的能量转化,分析卫星运行时动能和势能的转化.在分析卫星运行时,应当利用板图标出远地点和近地点,使学生养成画图帮助分析的习惯.

教学设计示例

第二节 动能和势能的转化

【课题】动能和势能的转化

【重点难点解析】动能和势能的转化;分析转化过程.人造地球卫星绕地球运行过程中的能量转化过程.

【教学过程】

1, 实验引课

观察滚摆实验,用板图帮助分析.

实验时要注意观察:滚摆在下降过程中速度如何变化;上升阶段速度如何变化.

注意分析的问题:到点时,高度、速度特点;说明了什么;到最低点时,高度、速度特点;说明了什么;在下降过程中,高度、速度如何变化,说明了什么;在上升过程中,高度、速度如何变化,说明了什么.

实验结论:物体的动能和重力势能可以相互转化.

2,新授课:动能和势能的转化.

1)分析实例

方法1:针对基础较好的学生,可以由学生自己列举能体现动能和重力势能相互转化的现象,并具体分析能量转化的过程.用讨论分析的方法完成课堂学习.

方法2:一般情况下,可以分析重点实例,例如分析乒乓球从某一高度自由下落过程中,不考虑空气的阻力,注意分析:乒乓球从某他高度下落到接触地面的过程;乒乓球从接触地面到发生弹性形变的过程;乒乓球逐渐恢复原来形状到反弹起来的瞬间;乒乓球反弹起来后上升到点的过程.

2)结论:在上升和下降过程中,是动能和重力势能的相互转化,在乒乓球发生弹性形变过程和恢复原来的形状的过程中,是动能和弹性势能的相互转化.所以动能也可以和弹性势能相互转化.

3)其他实例分析:可以做课本上的实验2和实验3,并由学生自行分析在实验过程中的能量转化.

4)难点分析:人造地球卫星在绕地球转动的过程中,分析能量的转化.

方法1,一把般情况下,学生由板图观察近地点和远地点的高度和速度的特点,从而分析人造地球卫星在从近地点到远地点和从远地点到近地点移动的过程中,动能和重力势能的相互转化,并知道机械能的总量是保持不变的,也为以后学习能量转化和守恒定律打下基础.

方法2,针对基础较好的学生,可以由板图观察近地点和远地点的高度的特点,并告知学生在人造地球卫星绕地球转动的过程中机械能的总量保持不变,让学生分析在卫星到达近地点和远地点的位置时,运行速度的特点是什么,并想象卫星是如何绕地球转动的,从而增强学生想象事物的能力.

【板书设计】

新人教版九年级物理下册教案

篇7:新人教版九年级数学下册知识点总结

1.解直角三角形

1.1.锐角三角函数

锐角a的正弦、余弦和正切统称∠a的三角函数。

如果∠a是Rt△ABC的一个锐角,则有

1.2.锐角三角函数的计算

1.3.解直角三角形

在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。

2.直线与圆的位置关系

2.1.直线与圆的位置关系

当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。

直线与圆的位置关系有以下定理:

直线与圆相切的判定定理:

经过半径的外端并且垂直这条半径的直线是圆的切线。

圆的切线性质:

经过切点的半径垂直于圆的切线。

2.2.切线长定理

从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。

切线长定理:过圆外一点所作的圆的两条切线长相等。

2.3.三角形的内切圆

与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的内心是三角形的三条角平分线的交点。

3.三视图与表面展开图

3.1.投影

物体在光线的照射下,在某个平面内形成的影子叫做投影。光线叫做投影线,投影所在的平面叫做投影面。由平行的投射线所形成的投射叫做平行投影。

可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。

3.2.简单几何体的三视图

物体在正投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。

主视图、左视图和俯视图合称三视图。

产生主视图的投影线方向也叫做主视方向。

3.3.由三视图描述几何体

三视图不仅反映了物体的形状,而且反映了各个方向的尺寸大小。

3.4.简单几何体的表面展开图

将几何体沿着某些棱“剪开”,并使各个面连在一起,铺平所得到的平面图形称为几何体的表面展开图。

圆柱可以看做由一个矩形ABCD绕它的一条边BC旋转一周,其余各边所成的面围成的几何体。AB、CD旋转所成的面就是圆柱的两个底面,是两个半径相同的圆。AD旋转所成的面就是圆柱的侧面,AD不论转动到哪个位置,都是圆柱的母线。

圆锥可以看做将一根直角三角形ACB绕它的一条直角边(AC)旋转一周,它的其余各边所成的面围成的一个几何体。直角边BC旋转所成的面就是圆锥的底面,斜边AB旋转所成的面就是圆锥的侧面,斜边AB不论转动到哪个位置,都叫做圆锥的母线。

一个底面半径为r,母线长为的圆锥,它的侧面展开图是一个半径为母线长,弧长为底面圆周长的扇形,由此得到的圆锥的侧面积和全面积公式为:

若设圆锥的侧面展开图扇形的圆心角为,则由,得到圆锥侧面展开图扇形的圆心角度数的计算公式:

篇8:新人教版九年级数学下册知识点总结

2.直线与圆的位置关系

2.1.直线与圆的位置关系

当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。

直线与圆的位置关系有以下定理:

直线与圆相切的判定定理:

经过半径的外端并且垂直这条半径的直线是圆的切线。

圆的切线性质:

经过切点的半径垂直于圆的切线。

2.2.切线长定理

从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。

切线长定理:过圆外一点所作的圆的两条切线长相等。

2.3.三角形的内切圆

与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的内心是三角形的三条角平分线的交点。

3.三视图与表面展开图

3.1.投影

物体在光线的照射下,在某个平面内形成的影子叫做投影。光线叫做投影线,投影所在的平面叫做投影面。由平行的投射线所形成的投射叫做平行投影。

可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。

3.2.简单几何体的三视图

物体在正投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。

主视图、左视图和俯视图合称三视图。

产生主视图的投影线方向也叫做主视方向。

3.3.由三视图描述几何体

三视图不仅反映了物体的形状,而且反映了各个方向的尺寸大小。

3.4.简单几何体的表面展开图

将几何体沿着某些棱“剪开”,并使各个面连在一起,铺平所得到的平面图形称为几何体的表面展开图。

圆柱可以看做由一个矩形ABCD绕它的一条边BC旋转一周,其余各边所成的面围成的几何体。AB、CD旋转所成的面就是圆柱的两个底面,是两个半径相同的圆。AD旋转所成的面就是圆柱的侧面,AD不论转动到哪个位置,都是圆柱的母线。

圆锥可以看做将一根直角三角形ACB绕它的一条直角边(AC)旋转一周,它的其余各边所成的面围成的一个几何体。直角边BC旋转所成的面就是圆锥的底面,斜边AB旋转所成的面就是圆锥的侧面,斜边AB不论转动到哪个位置,都叫做圆锥的母线。

篇9:新人教版九年级数学下册知识点总结

一、锐角三角函数

正弦等于对边比斜边

余弦等于邻边比斜边

正切等于对边比邻边

余切等于邻边比对边

正割等于斜边比邻边

二、三角函数的计算

幂级数

c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)

c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)

它们的各项都是正整数幂的幂函数,其中c0,c1,c2,...cn...及a都是常数,这种级数称为幂级数.

泰勒展开式(幂级数展开法)

f(x)=f(a)+f'(a)/1!(x-a)+f''(a)/2!(x-a)2+...f(n)(a)/n!(x-a)n+...

三、解直角三角形

1.直角三角形两个锐角互余。

2.直角三角形的三条高交点在一个顶点上。

3.勾股定理:两直角边平方和等于斜边平方

四、利用三角函数测高

1、解直角三角形的应用

(1)通过解直角三角形能解决实际问题中的很多有关测量问.

如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.

(2)解直角三角形的一般过程是:

①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).

②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.

篇10:新人教版七年级数学下册教案

一、教材分析

1、教材的地位和作用

课题学习《从数据谈节水》,是人教实验版数学七年级(上)教材第十一章《数据的描述》的第三节。这一节是在学习了用统计图表描述数据以后的一节活动课,它是对七年级第四章《数据的收集与整理》及本章数据的描述等知识的巩固和深化,是对所学的有关数据处理知识的综合运用。在这一活动中让学生感受统计与实际生活的联系以及在解决实际问题中的作用,促使学生掌握基本的统计方法,通过对数据的直观描述尽可能多地获取有用的信息,同时增强学生的节水意识及环保意识。

2、教学目标

根据学生的学习内容、新课程理念和认知水平,特制定如下目标:

(1)知识与技能:进一步巩固处理数据的基本步骤和方法,能灵活选用统计图对具体问题的数据进行清晰、有效地描述,并获取有用信息并作出合理决策。

(2)过程与方法:让学生亲身经历独立思考、动手操作、团结合作、互相交流的学习过程,积累数学活动的经验,学会合理处理信息,发展数学应用意识。

(3)情感与态度:使学生感受统计在生产生活中的作用;培养学生的数感;使学生乐于接触社会环境中的数学信息,激发学生的节水及环保意识。

3、重点和难点

(1)重点:培养学生的数感和统计观念。

(2)难点:能根据具体问题选择适当的统计图描述数据并获取有用的信息,并作出合理的判断和预测。

二、学情分析

我今天所授课的班级,应该说学生的数学素质参差不齐,有部分学生在课堂上乐于参与数学活动,而另一部分学生则学习基础较差,会被动参与,因此应激发学生参与活动学习的兴趣,使之获得成就感。

三、教法和学法分析

枯燥的数据是令人乏味的,首先可采用激趣法:恰当收集选取图片和视频资料,为课题学习营造学生熟悉的生活情境,吸引学生,巧妙设疑,激发学生的活动兴趣。分层安排活动,能力强的学生自主思考,独立完成,能力差的学生分组分工合作完成,然后全班交流。例外,提供更多的学习扩展资料供学生浏览。这样可让所有学生有信心、能积极主动地参与活动,尽可能为每个学生提供获取知识的空间,让他们在活动中获得的成功,让每个学生的能力都能得到提高,让他们体验学习的快乐、获得成就感。

四、教学形式和课前准备

本课题在多媒体教室进行学习。学生在课前也收集了一些有关水资源的资料,准备直尺、铅笔、圆规、量角器等作图工具。

五、教学过程分析

教学过程 设计意图说明

新课引入

资料展示(投影)当前世界淡水资源及我国有关缺水的形势的资料图片问题:(1)看了这些图片,你有哪些感受?

(2)你了解世界及我国有关水资源的现状吗? 借助图片展示,是学生对我国国有资源现状有直观感受,触发他们的节水意识!

探究新知活动一:

阅读课本80页的“背景资料”,从中收集数据,画出统计图,并回答下列问题:

(1) 地球上的水资源和淡水资源分布情况怎么样?

(2) 我国农业和工业耗水量情况怎么样?

(3) 我国不同年份城市生活用水的变化趋势怎么样?

(4) 根据国外的经验,一个国家的用水量超过其可利用水资源的20%,就有可能发生“水危机”,依据这个标准,我国1990年是否曾出现“水危机”?

学生阅读资料,通过小组合作、讨论的形式完成活动一。

活动二:收集全班同学各家人均月用水量,用频数分布直方图和频数折线图描述这些数据,并回答下列问题:

(1) 家庭人均月用水量在哪个范围的家庭最多?这个范围的家庭占全班家庭的百分之几?

(2)家庭人均月用水量最多和最少的各有多少家庭?各占全班家庭的百分之几?

(3)全班同学家庭人均日用水量的平均数是多少?按生活基本日均需水量(BWR)50升的用水标准,这个平均数是否超过用水标准?

(4)如果每人节约用水10升,按13亿人口计算,一天可以节约多少吨水?按BWR标准计算,这些水可提供给1个人多少年的生活用水?

(5)你还可以得到哪些信息?

(教师巡视,指导各小组开展调查实验活动)

活动三:资料展示:(投影)我国水资源利用情况的有关资料,讨论工农业生产及生活节约用水的好办法。

课堂小结:

1.当前水资源状况,

2.节约水资源带来的价值,

3.节约水资源的办法

布置作业

整理本节课内容,统计相关数据;查找有关“节约水资源”的课题报告;并分析课题报告的写法。

通过具体数据使学生了解水资源现状,更深刻体会节水的重要性!

篇11:新人教版七年级数学下册教案

教学重难点分析:

1、学情分析:从知识基础看,学生在小学已学习了求正方形的面积及正方体的体积,具备求一个正数的平方和立方的知识水平,且刚学完有理数的乘法,能帮助学生很好的理解乘方的定义及表示,实现知识的正迁移。但学生对于有理数乘方的符号法则的掌握上会有难度,对于这类计算容易混淆,是本节课的难点。

2、教学重、难点

教学重点:理解乘方定义,会进行有理数的乘方运算;

教学难点:有理数乘方运算的符号法则的形成与运用

教法学法分析:

教法:启发式教学,多媒体辅助教学;

学法:观察、比较、归纳,合作探究。

教学过程设计:

1、创设情境提出问题

(1)、边长为3的正方形的面积是___ 3×3可以记作___,读作_________.

(2)、棱长为3的正方体的体积是___ 3×3×3可以记作___,读作_________.

通过创设问题情境,唤起旧知,为学习新知做好铺垫

2、自主探索形成新知

观察下列各式有何特征?

(1)2×2×2×2=

(2)(-3)×(-3)×(-3)=

引导学生通过类比、探究、归纳乘方定义及表示,实现知识的迁移,培养学生归纳、概括的能力。明确乘方是乘法的特殊形式,体现化归的数学思想。

3、应用新知 巩固概念

练习1、2巩固乘方定义及乘方表示的注意点,培养学(cn-teacher.com)生良好的学习习惯。例题进一步强化乘方运算

4、探索研究 发现规律

通过题组训练,探索规律,合作交流,获得乘方运算的符号法则,充分发挥学生的学习主体作用,体现分类的数学思想。

5、应用新知 巩固训练

进一步巩固学生对符号法则的运用及利用乘方的知识解决问题的能力

6、拓展思维 知识延伸

利用故事提高学生学习数学兴趣,培养学生应用数学解决解决问题能力,激发学生的探索的热情。

7、课堂小结 归纳反思

锻炼学生及时总结的良好习惯和归纳能力

教学评价分析:

对学生探究过程的参与及与同学合作交流进行评价,以增强学生学习主动性;

(1)关注学生的智力参与度

(2)学生的课堂参与度

2、对不同层次的学生采取分层练习的评价方式,以满足不同层次的学生知识技能的发展。

新人教版七年级数学下册教案

篇12:新人教版一年级数学下册教案

教学目标:

1.在具体的情境中,进一步体会加减法的意义,感受数学与生活的联系。

2.探索并掌握两位数加减整十数的计算方法。

教学重点:

探索并掌握两位数加减整十数的计算方法。

教学难点:

探索并掌握两位数加减整十数的计算方法。

养成教育训练点:

初步经历在具体情境中提出问题和解决问题的过程,发展解决简单实际问题的意识和能力。

教学准备:

计数器、课件

学具准备:

小棒

教学过程:

一、探究方法:

1.出示课题,简单社会公益教育。

2.出示情景图:观察,说出主要信息。

大青蛙吃了56只害虫,小青蛙吃了30只害虫。

3.你能提出哪些数学问题?

(问题一): 大青蛙和小青蛙一共吃了多少只害虫?

列式: 56 + 30 =

观察:两个数分别是什么样的数?(两位数加整十数)

用小棒摆摆,同桌合作探究计算方法。

师在计数器上演示

拨珠子:先拨56,5个十,6个一。

加30该怎样拨?(为什么把“ 3”加在十位上?)

观察:加完“30”后,计数器十位、个位各有什么变化?

(十位:50 + 30 = 80 个位:没有变化)

完成算式: 56 + 30 = 86

对比:56 + 3 =

小结:两位数加整十数,十位相加,个位没有变化。

(问题二):

大青蛙比小青蛙多吃多少只?

小青蛙比大青蛙少吃多少只?

列式: 56 - 30 =

学生摆小棒探究计算计算方法。

师在计数器上演示

拨珠子,总结计算的方法;

完成算式

小结:两位数减整十数,十位相减,个位不变。

二、解决问题:

1.口算:P25 3

2.P25 1 看图,你能提出什么数学问题?列式解答。

“两只啄木鸟一共吃了多少条虫子?”

“大啄木鸟比小啄木鸟多吃多少条虫子?”小学资源网:www.xj5u.com

3.P25 2

看图,提问:原来有多少只青蛙?后来呢?

问“跳下去多少只青蛙”,怎样算?

小结方法:原来的 – 剩下的 = 跳下去的

列式: 38 – 5 = 33(只)

4. P25 4

看图,说说图意:

来了42名同学,只有30把椅子。

提问:会出现什么现象?为什么?

(有的同学会没有椅子坐,因为椅子少了。)

讨论:有多少名小朋友没有座位?

(椅子比人少多少,就有多少人没座位。)

列式解答。

新人教版一年级数学下册教案

篇13:新人教版二年级数学下册教案

第1课时数数(一)

【教学内容】教科书第2~3页例1~例3及课堂活动。

【教学目标】通过动手操作,经历计数单位(千、万)产生的过程,认识计数单位“千”、“万”,理解相邻两个计数单位之间的进率是10,进一步培养数感。

【教学重点】认识计数单位“千”、“万”。

【教学难点】理解相邻两个计数单位之间的进率。

【教学准备】

教具:主题图、小棒、方格、木块(课件或挂图)、计数器。

学具:小棒、学生用计数器。

【教学过程】

一、调查感知、情景引入

1、学生交流课前学习成果

组织学生课前调查:生活中比100大的数有哪些?举出几个例子说一说。对于比100大的数,还知道些什么?

2、情景引入

教师出示主题图。学生观察、汇报:从图中了解到哪些信息?有哪些发现?引入新课:既然我们身边有这么多比100大的数,那就肯定会有比“个”、“十”、“百”还大的计数单位,小朋友想知道吗?板书:计数单位。

二、动手操作、探索新知

1、回顾旧知

出示小棒,单独1根,1捆10根,1捆100根,让学生猜一猜各是多少根,并说一说10根1捆里有多少个一,100根1捆里有多少个十。板书:10个一是十,10个十是一百。

教师:“一”、“十”、“百”是以前学过的计数单位,有了这些计数单位,才能帮助大家数数和读数。

2、探索新知

教师激发学生兴趣,让学生猜一猜比一、十、百还大的计数单位是什么?(千)

(1)认识一千。

①数一数。

课件(或实物、挂图)出示一千,先让学生猜一猜一千里有几个一百,然后课件演示,学生跟着数:一百,二百,三百??一千。

提问:一百一百地数,几个一百是一千?

教师板书:10个一百是一千。说明:“千”是比“百”更大的计数单位。②拨一拨。

学生在自己的计数器上拨出100、200、300、1000。学生之间交流自己是怎样拨的,然后抽学生汇报。

③填一填。

说一说线段上的括号里该填什么,为什么?填好以后,一起数一数。

教师在计数器上拨出100、500、1000、,让学生快速的看出是多少,并说出前两个数里有几个一百,后两个数里有几个一千。

(2)认识一万。

①数一数。

教师:你会一千一千地数吗?谁来数数看?然后出示课件(或实物、挂图)演示,师生一起数一数。教师介绍计数单位“万”。

出示例2示意图。一摞纸是1000张,这里一共有多少张?学生在示意图上独立一千一千地数一数,并和同桌一起讨论。教师引导学生发现10个一千是一万,板书:10个一千是一万。

②拨一拨。

学生在自己的计数器上拨出1000、2000、3000??10000。

3、整体认知计数单位,掌握相邻两个计数单位的进率

(1)看一看、读一读。

教师出示计数单位对比图(第3页例3),让学生看着图,读一读:一、十、一百、一千、一万。

(2)拨一拨、说一说。

学生在计数器上拨一拨,再次体验一、十、一百、一千、一万产生的过程。教师提问:你们有什么发现?引导学生归纳:个、十、百、千、万都是计数单位,相邻两个计数单位间的进率是10。

三、巩固新知、拓展提高

(1)互相说一说。

张1角是1元,()张1元是10元,()张10元是100元,10张100元是()元,10个一千元是()元。

(2)完成第4页课堂活动第1~4题,学生独立思考,试做。然后小组交流,相互帮助解决问题。

集体反馈,评价课堂活动。

[点评:通过独立思考、合作交流,培养学生合作的意识和与人交流的能力。]

(3)挑战题:看图思考。

10箱里面有多少个乒乓球?

四、课堂小结

教师:大家学到了什么知识,是怎样学习这些知识的?

教师引导学生一方面对所学知识进行自我评价,另一方面也对学习方式、情感态度等方面进行自我评价。

篇14:人教版九年级下数学复习提纲

人教版九年级下数学复习提纲

1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同

当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;

当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.

4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的两根.这两点间的距离AB=|x?-x?|

当△=0.图象与x轴只有一个交点;

当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax^2+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).

中学复习阶段的数学复习方法

1.回归课本,基础知识掌握牢固

结合考纲考点,采取对账的方式,做到点点过关,单元过关。对每一单元的常用公式,定义,要熟练,做到张口就来。对于每个章节的主要解题方法和主要题型等,要做到心中有数。

2.适当练题

要多做习题,目的是要从习题中掌握学习的技术和窍门,不同的题有不同的方法,用不同的技巧,尤其是函数中的动点题是现在出题的热点,要多做,但不要做太难的题,以会为主。

同时,不要过于在意刷题的数量,要做到每做一道题,就能搞明白这道题背后运用的公式定理、同类型题目的做题思路,学会举一反三,不仅能提高复习效率,还能更好掌握知识点。

3.掌握重难点

初中数学的学习重点是函数(包括一次函数,正比例函数,反比例函数,二次函数),重点是意义和性质;三角形(包括基本性质,相似,全等,旋转,平移,对称等);四边形(包括平行四边形,梯形,棱形,长方形,正方形,多边形)的性质,定义,面积。

在一轮的专题复习中,一定要注意以上重点,形成自己的知识网,同时梳理各个知识点之间的连接,这样才能轻松应对最后的压轴题。

4.错题重做

冲刺阶段里,要重拾做错的题,特别是大型考试中出错的题,通过回归教材,分析出错的原因,从出错的根源上解决问题。错题重做是查漏补缺的很好途径,这样做可以花较少的时间,解决较多的问题。

数学学习技巧

按部就班

数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。

强调理解

概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。

基本训练

学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉的题型,训练要做到有的放矢。

篇15:新人教版九年级政治教案

(一)知识与技能目标:

(1)识记:主次矛盾、矛盾主次方面的含义,培养理论联系实际的能力。

(2)理解:a主次矛盾辩证关系原理

b矛盾主次方面辩证关系原理

c坚持两点论与重点论相统一

(3)分析:运用实例说明,主次矛盾、矛盾主次方面关系原理及方意义、提高全面的、一分为二的分析问题的能力

(二)过程与方法目标

采用知识导入——自主学习——知识梳理等过程与方法,实现生生互动,师生互动

(三)情感、态度、价值观目标:

(1)、坚持用两点论和重点论相统一的认识方法认识事物,正确认识形势、明确我国目前以经济建设为中心的道理。

(2)、学会用“一分为二”的观点击看待人和事、看待自己,这既是一个思维方法的学习过程,也是一个道德、觉悟提高的过程。

3、说教学重、难点

根据高二新课程标准,在吃透教材基础上,我确定了以下的教学重点和难点

教学重点:主次矛盾与矛盾主次方面的辩证关系原理;

重点的依据:只有理解掌握了主次矛盾与矛盾主次方面的辩证关系原理,才能正确认识形势、明确我国目前以经济建设为中心的道理;学会用“一分为二”的观点击看待人和事、看待自己。

教学难点:主要矛盾和矛盾的主要方面的区分

难点的依据:学生对哲学的作用之前有一定的知识储备,但没有系统地概括,因此不易理解,学生“对一个复杂事物不只包含一个矛盾”和“矛盾的不平衡性”缺乏理论和实践上的认识,比较难以理解。

4、说课时安排:1课时

二、说学情

哲学是比较抽象的东西,而高二学生只是容易把握形象思维,却缺乏一定的辩证思维能力,因此对哲学有关知识的理解有一定的困难。如果教师只是采用单一的教学方法和手段,则会使学生对自己丧失信心,对政治课失去兴趣。

三、说教法及依据

我们都知道哲学是一门培养人的理性思维,并能够加以应用的重要学科。因此,在教学过程中,不仅要使学生学习相应的哲学知识,更重要的是让学生对哲学产生浓厚的兴趣,使得应用哲学是学生自觉的行为,这也将对他们将来的人生产生裨益。因此对学生学习兴趣的激发,将作为这堂课的中心任务。

考虑到我校高二年级学生的现状,我主要采取学生参与活动的教学方法,让学生真正的融入课堂,体验哲学的魅力,从而产生践行的愿望。培养学生将课堂教学和自己的思想和行动结合起来,充分引导学生全面的看待发生在身边的现象,发展思辩能力,注重学生锻炼学生思考生活的能力。

当然教师自身也是非常重要的教学资源。教师本人应该通过课堂教学感染和激励学生,充分调动起学生参与活动的积极性,激发学生对解决实际问题的渴望,并且要培养学生以理论联系实际的能力,从而达到的教学效果。同时也体现了课改的精神。

基于本框题的特点,我主要采用了以下的教学方法:

1、直观演示法:利用图片、幻灯片多媒体等现代教学手段辅助进行直观演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握。

2、活动探究法:引导学生通过创设情景等活动形式获取知识,以学生为主体,使学生的独立探索性得到了充分的发挥,培养学生的自学能力、思维能力、活动组织能力。

3、集体讨论法:针对课前自主探究的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生的团结协作的精神,并且让学生展示自己的探究成果,获得成就感,树立信心。

四、说学法及依据

学生学习背景分析:学生在小学开始学习成语,了解了一些哲学道理。高年级之后懂得用这些道理来阐释自己的人生感悟。到了初中以后懂得用一些诗句,长篇来体会人生。到了高中之后,有了哲学,应该能借用这一系统的哲理来体验人生。所以,要做好这个哲学的命题,就是让学生学了哲学之后能够自觉地利用哲学智慧来思考人生,经营人生。

学法的指导是体现学生主体性的重要要求。让学生把握一般哲学道理和哲学的不同,进行相应的知识转化。充分利用学生的哲学道理积累,让学生展现自己的思维,从而成为真正的学习的主人。这节课在指导学生的学习方法和培养学生的学习能力方面主要采取以下方法:课后自我探究法、分析归纳法、合作探究法、课后探究法。

最后我具体来谈谈这一堂课的教学过程:

五、说教学过程

在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动交流,限度唤起学生的学习兴趣。激发学生兴趣可采用设疑和创设情景的方式来进行。

1、导入新课:

创设情景:幻灯片《辽沈战役》(在攻锦、攻沈问题上的犹豫不决;毛主席攻锦的决心;解放军攻克锦州,辽沈战役的结局),教师可设计以下问题:辽沈战役的首攻点选择在哪里?攻打锦州对辽沈战役和其它战场乃至对全国战局有何意义?东北战场存在哪几处敌我矛盾?哪个矛盾起决定作用?从哲学上来看,它体现了什么道理?学生边看边结合学过的历史知识思考,带着兴趣和疑问进入新课学习。

2、新课讲授:讲议结合,导学相依

“学贵有疑”,精心设计问题,以疑导入,启发思考,层层诱导,讲议结合。

(1)对原理的教学:在学生观看幻灯片思考的基础上,引导学生分析主次矛盾的含义、地位、作用等关系。可在学生阅读教材的基础上设置以下问题:主、次矛盾是不是一个矛盾?它们存在的环境是什么?主、次矛盾的地位和作用分别是怎样的?什么是主要矛盾、次要矛盾?学生回答后,教师点拨,再请学生指出辽沈战役中的主、次矛盾分别是什么?并从理论上简要说明为什么辽沈战役的关键是锦州战役?及时加以巩固。

幻灯片:《辽沈战役》(我国在攻打锦州时对长春、沈阳之敌的包围,及黑山、大虎山阻击战的场景)设疑:在解放锦州的时候,我军对其它战场的敌人采取了什么策略?这说明了什么哲学道理?指出:主次矛盾的相互联系、相互依赖、相互影响的这种关系要求我们在重点抓住主要矛盾的同时,必须注意解决好次要矛盾。

设疑:主次矛盾的地位是不是绝对的,永远不变的?主次矛盾的相互转化有哪两种情形?这里的一定条件指的是什么?投影出示图表(2)(略),学生分析说明两个图例分别属于哪一种“转化”情况?最后由学生小结原理内容,并齐读两遍

通过事例《赌饼破家》说明我们想问题办事情应该牢牢抓住主要矛盾,不能主次不分,丢了西瓜拣芝麻,因小失大,办事情要善于抓住重点。

通过朗诵诗歌

蔷薇花总是有刺。我相信,天上可爱的天使,她们也决不会没有瑕疵。天幕上最光洁的星辰,要是伤了风,也会坠入凡尘。的苹果酒常带着木桶的味道,太阳里也会有黑点看到。然后设问:这首诗说明了什么哲学道理?

针对学生已有的知识,我设制了这一探究活动:俗话说,“金无足赤,人无完人”。我们应该怎样对待同学、老师、家长和自己?请结合实际,谈谈你的想法。

老师引导:概括起来说事物的性质主要是由矛盾的主要方面规定的。肯定主要方面,不能夸大次要方面。评价一个人,评价一项工作,要分清功与过、成绩和缺点,才能得出客观的结论。不能求全责备,因为“人无完人,金无足赤。

导入矛盾的主、次方面辩证关系原理。

教师结合学生的实际分析:不论是主要矛盾还是次要矛盾。每一矛盾中的两个方面的力量又是不平衡的。其中,必有一方处于支配地位,起着主导作用。而另一方则处于被支配地位。前者是矛盾的主要方面,后者是矛盾的次要方面。

事物的性质是由矛盾的主要方面决定的。矛盾的主要方面与次要方面既相互排斥,又相互依赖,并在一定的条件下相互转化。

所以我们在对待同学、老师、家长和自己时,一定要抓住矛盾的主要方面,要抓住主流。

主要矛盾和次要矛盾、矛盾的主要方面和次要方面辩证关系的原理要求我们,要坚持一分为二的矛盾分析法,坚持两点论和重点论相统一的认识方法。

由于学生刚接触到主要矛盾、次要矛盾、矛盾的主次方面的概念,容易混淆。可以用列表的方式加以区别。

(2)对方意义的教学:加强理论与实际的相结合,通过学生自己的观察、分析、比较、讨论、运用等多种方式来突破教学难点。

首先:请学生根据对原理的学习,从理论依据、正反对比、找出并分析教材上的相关俗语、成语、谚语、语录的哲学寓意,说明善于抓住重点、统筹兼顾的重要性。

其次:投影出示漫画:“截指”、“投哪个好”、“圈套”、“儿童歌咏比赛”“世上最苦的人”“只抓物质文明,不抓精神文明”等漫画,让学生幽默轻松的学习气氛中,通过自己分析哲学寓意,加深对知识的理解。

再次:通过社会主义初级阶段的中心工作及根本任务,经济建设和其他建设的关系的实例分析,培养学生运用哲学知识分析解决实际问题的能力,并加深对党的路线方针政策的认识和理解。

在教学过程中,我突出教材的重点,明了地分析教材的难点。还根据教材的特点,学生的实际、教师的特长,以及教学设备的情况,我选择了多媒体辅助教学手段。这些教学手段的运用可以使抽象的知识具体化,枯燥的知识生动化,乏味的知识兴趣化。还重视教材中的疑问,适当对题目进行引申,使它的作用更加突出,有利于学生对知识的串联、积累、加工,从而达到举一反三的效果。

3、课堂小结

课堂小结,可以把课堂传授的知识尽快地转化为学生的素质;简单扼要的课堂小结,可使学生更深刻地理解政治理论在实际生活中的应用,并且逐渐地培养学生具有良好的个性。

六、说板书设计

(一)、矛盾分析法是认识事物的根本方法

1.主次矛盾辩证关系原理。

(1)主、次矛盾的含义。

a主要矛盾:在事物发展过程中处于支配地位、对事物发展起决定作用的矛盾,就是主要矛盾。

b次要矛盾:是指处于从属地位、对事物发展不起决定作用的矛盾。

(2)主要矛盾和次要矛盾的关系。

a主要矛盾和次要矛盾相互依赖、相互影响。

b在一定条件下,主要矛盾和次要矛盾可以相互转化。

第一,原来的主要矛盾解决了,或者基本解决了,这时原来处于次要地位的某种矛盾就会突出起来,成为主要矛盾。

第二,有的时候原来的主要矛盾虽然并没有解决,但由于出现了新的条件,也会发生主次矛盾的相互转化。

2.矛盾主次方面辩证关系原理。

(1)矛盾主要方面和次要方面的含义。

a矛盾的主要方面:是指在事物内部居于支配地位、起主导作用的矛盾方面。

b矛盾的次要方面:是指处于被支配地位、不起主导作用的矛盾方面。

(2)矛盾主、次方面辩证关系。

a二者相互排斥。

b二者相互依赖。

c二者在一定条件下可以相互转化。

3.坚持两点论和重点论相统一。

(1)坚持两点论:

a就是在认识复杂事物的发展过程时,既要看到主要矛盾,又要看到次要矛盾。

b在认识某一矛盾时,既要看到矛盾的主要方面,又要看到矛盾的次要方面。

(2)坚持重点论。

a在认识复杂事物的发展过程时,要着重把握主要矛盾,“牵牛要牵牛鼻子”。

b在认识某一矛盾时要着重把握矛盾的主要方面,

七、说教后反思

1.教学效果:

学生积极参与,课堂活跃、轻松、有序,教学目标能落到实出。通过本课学习同学了解了我们在做任何事情时要用矛盾分析的方法。采用合作学习和自我探究学习法调动了同学们的学习积极性

2.教学不足:

(1)语速较快

(2)学生辩论时,还可更加深入,更加透彻。

(3)学生活动时,有些地方衔接不够紧密,浪费了一些时间。

3.教学心得:

在本堂课中,我力求做到“以学生为本”,充分发挥学生的主体作用,力求实现三维目标的结合,突出情感、态度价值观目标的主导地位,收到了好的效果。教学过程师生轻松愉快,互动良好,效果不错。

篇16:人教版数学九年级上册教案

一、教材分析:

1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。

2、教学目标要求:

(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;

(2)能根据具体问题的实际意义,检验结果是否合理;

(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;

(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。

3、教学重点和难点:

重点:列一元二次方程解与面积有关问题的应用题。

难点:发现问题中的等量关系。

二.教法、学法分析:

1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。

2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

三.教学流程分析:

本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:

活动1 复习回顾解决课前参与

活动2 封面设计问题的探究

活动3 草坪规划问题的延伸

活动4 课堂回眸

这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

活动1 复习回顾解决课前参与

由学生展示课前参与题目,集体订正。目的在于回顾常用几何图形的面积公式,并且引出本节学习内容—— 面积问题。

活动2 封面设计问题的探究

通过学生自己独立审题,找寻等量关系,教师引导学生对“正中央矩形与封面长宽比例相同”题意的理解,使学生明白中央矩形长宽比为9:7,从而进一步突破难点:上下边衬与左右边衬比也为9:7,为学生设未知数提供帮助。之后由学生分组完成方程的列法,以及取法。讲解中注重简便设法及解法的指导与评价。

活动3 草坪规划问题的延伸

放手给学生处理,以学生合作完成为主。突出利用平移变换为主的解决方式。多由学生分析不同的处理方法。

活动4 课堂回眸

本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。

作业布置

共3个题目,前两个为必做题,全员均作;最后一个选作题,可供学有余力学生能力提升用。

篇17:人教版数学九年级上册教案

卢老师的这节复习课,教学设计好,导入自然,环节紧凑、流畅,既有对优秀教学方法的吸收,又有个人的创新、独到之处,把教学过程变成学生对知识的探索过程,完全体现了新课程对教师的要求。从整体上处理复习中的内容,把握上复习课的引入、拓展、变式、探究,注重课堂与生成的和谐。将围成矩形的材料通过一步一步的拓展,强化了学生列一元二次方程的能力。

探究环节处理的比较好,卢老师首先引导学生得出列方程解应用题的步骤及列方程解应用的关键,然后由扶到放,让学生自主探究得出应用题的等量关系。以后环节,无论是审题、设适当的未知数、找等量关系、列方程、找答案,卢老师充分放手让学生自己动手,动口,老师只引导点拨,使学生主动获取知识,在潜移默化中领悟知识,使学生完全成为课堂主人,达到知识学习与能力培养的统一。

另外,注重数学思想方法的培养与渗透,现实生活中很多实际的问题,都可以用列方程的办法解决,学会把实际问题转化为方程来解决是很重要的数学思想方法。充分体现数学来源于实践又服务于实践的数学思想。郑老师通过对实际问题的分析探究,学生会更加感受生活中数学的重要性。从而提高学生学习数学的信心和兴趣,这对今后的学习有着十分重要的意义。卢老师遵循从特殊到一般,从一般到特殊的思考方法,又引入对称的哲学观点,让学生从整体、系统的角度领悟教材,为学生以后的学习打下良好的认知基础。

一点建议:出示问题后,应该给予学生足够的时间,让学生进行探究。

人教版数学九年级上册教案

【新人教版数学九年级下教案】相关文章:

1.人教版数学九年级上册教案

2.新人教版七年级数学下教学设计

3.九年级下数学教学计划

4.新人教版一年级数学下册教案

5.九年级人教版数学知识点

6.人教版九年级数学知识点

7.语文版九年级下教案

8.新人教版九年级物理教学计划

9.人教版九年级政治教案

10.九年级语文人教版教案

下载word文档
《新人教版数学九年级下教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部