商的近似值(人教版五年级教案设计)
“嘎吱”通过精心收集,向本站投稿了18篇商的近似值(人教版五年级教案设计),以下是小编整理后的商的近似值(人教版五年级教案设计),希望你喜欢,也可以帮助到您,欢迎分享!
篇1:商的近似值(人教版五年级教案设计)
教学目标
1.使学生会根据实际需要求“商的近似值”,找到和“求积的近似值”的联系.
2.提高学生比较、分析、判断的能力.
教学重点
会根据实际需要求商的近似值.
教学难点
理解求“积的近似值”与求“商的近似值”的异同.
教学过程
一、复习铺垫
(一)口算
8÷0.5 1.2×4 0.36×2 6.3÷2.1
0.92÷4 6÷1.2 0.5+0.14 2.4÷0.6
(二)填空
1.4561 0.9398 9.7502
保留三位小数
保留二位小数
保留一位小数
保留整数
教师提问:0.9398保留三位小数为什么是0.940,写成0.94行不行?
谈话引入:求小数的近似值在除法中有哪些应用呢?今天我们就来学习这些内容.
二、探索尝试
例6 一个玩具厂试制了35架玩具飞机,共花1560元,平均每架玩具飞机多少元?
1.读题并列式
(总价÷数量=单价)
1560÷36
2.尝试计算
3.练习:计算下面各题
4.8÷2.3(保留一位小数) 1.55÷3.9(保留两位小数)
三、质疑小结
(一)提问:今天我们学习了哪些内容?你有哪些收获?(出示课题:商的近似值)
(二)求“商的近似值”与求“积的近似值”有什么相同点,又有什么不同?
相同点:都要用到“四舍五入”法取近似值,并且都要看要保留的那一位的后一位.
不同点:求积的近似值,要先算出积的准确值再求近似数,求商的近似值不需求出商的准确值,只要求出要保留的下一位就可以了.
四、尝试练习
(一)按“四舍五入法”算出商的近似值,填入下表.
保留一位小数 保留两位小数 保留三位小数
40÷14
26.37÷31
45.5÷38
教师提问:解题时你运用了什么技巧?
(每一横行只需列一个除法竖式)
(二)求下面各题商的近似值(保留两位小数).
3.81÷7 32÷42 246.4÷13
(三)刘桐到超市买了一打乒乓球,一共花了15.8元,平均每个乒乓球多少元?
五、课后作业
计算下面各题(保留两位小数)
5.63÷6.1 2.84×0.03 0.382×0.13 4.2÷4.5
六、 板书设计
商的近似值
例6 一个玩具厂试制了35架玩具飞机,共花了156元.平均每架玩具飞机多少元?
1560÷35≈44.57(元)
答:平均每架飞机44.57元.
探究活动
调查统计
活动目的
1.使学生会根据实际需要求“商的近似值”.
2.提高学生比较、分析、判断的能力.
活动过程
调查附近停车场收费标准,算出该停车场平均每小时或每天收费多少元?
活动说明
停车场有按“时间”段收费的,超时加收费,也有的小区停车收费是按月收费的,根据不同情况调查出停车场单位时间内的收费情况.
篇2:五年级数学《商的近似值》教案设计
五年级数学《商的近似值》教案设计
教学目标:使学生理解商的近似值的意义;掌握用“四舍五入”法取商的近似值的方法,能正确地求出商的近似值。
教学重点:利用“四舍五入法”求商的近似值。
教学难点:根据保留小数的位数,正确利用“四舍五入法”求商的近似值。
教学过程:
一、复习
1、口算
0.42÷72÷51÷0.27÷8
8.4÷2.10.69÷11.26÷0.60.5÷0.2
2、按“四舍五入”法填出下表中名数的`近似值
3、计算:(指名板演)
2.479÷0.672.21÷0.034
二、新课
1、质疑导入:
在实际应用中,小数除法除得的商有时位数较多,有时除不尽,这时也可用“四舍五入”法保留一定的小数位数,求出商的近似值。(板书课题)
2、教学例6
(1)出示例6,读题,列式
(2)列式后,让学生自己算一算,想一想,人民币最小用到哪一位?需要保留几位小数?必须除到哪一位?该怎么办?能以这道题的答案应该是多少?
结论:因为保留两位小数要看后一位是几,能以只要比需要保留的小数位数多除出一位,然后进行四舍五入。
能以商应该为4.46元,横式上用什么符号?(≈)表示近似值。
3、课内练习P24做一做
三、巩固练习
1、幻灯出示课本第25页第3题
在教师指导下共同完成
2、指名板演:课本第25页第1题
3、作业P25第2、4题各第1~2题
篇3:积的近似值2(人教版五年级教案设计)
教学目标
1.理解求近似值的实际意义,掌握求积的近似值的方法.
2.培养学生应用数学知识解决实际问题的能力.
教学重点
会根据实际需要求小数乘法中积的近似值.
教学难点
会根据实际需要求小数乘法中积的近似值.
教学过程
一、复习旧知
(一)口算
0.21×0.4 3×0.6 2.5×4 0.17-0.08
0.2×0.3 1.2×0.05 0.43×20 0.5÷10
(二)按要求取下面各小数的近似值.
0.384(保留一位小数) 2.859(保留两位小数)
3.4(保留整数) 7.996(保留两位小数)
二、导入新课
教师谈话:王红的妈妈是单位的采购员,她为单位购买了如下商品,商店为她出具了一张发票.出示图片:发票,里面数据没填全,你能帮助营业员阿姨填写完整吗?
(学生试做)
教师:填的对不对呢?学完今天的知识,看谁能帮助营业员阿姨填一份标准的发票?
三、指导探索
(一)出示例5
粮库小麦收购价是每千克0.967元.小红家今年卖了小麦492千克,应得小麦款多少元?
1.请同学根据题意列式解答(指名板演)
2.讨论:为什么结果保留两位小数?保留两位小数应看哪一位数字?
3.教师介绍“四舍五入法”
4.计算下面各题
0.8×0.9(得数保留一位小数)
1.7×0.45(得数保留两位小数)
四、课堂总结
今天我们学习了用“四舍五入法”求积的近似值,关于求近似值的方法还有很多,请同学们课后自己查看资料,看谁找的多,找的全.
五、巩固练习
(一)一种面粉的价格是每千克1.92元,买14千克应付多少元?
(二)一种面粉的价格是每千克1.92元,买1.4千克应付多少元?
(三)出示图片:发票,由学生完成.
(四)思考题:一个两位小数,用“四舍五入”法取它的近似值是2.4,这个小数可能是多少?最大可能是多少?最小可能是多少?
六、课后作业
(一)一个长方形操场,长59.5米,宽42.5米,计算出这个操场的面积是多少平方米?
(得数保留整数.)
(二)一个三位小数“四舍五入”后成为5.70,这个数最大可能是多少?最小可能是多少?
七、板书设计
积的近似值
----“四舍五入法”
例5、粮库小麦收购价是每千克0.967元.小红家今年卖了小麦492千克,应得小麦款多少元?
教学设计点评
这节课从学生的生活实际引入,通过帮助营业员阿姨开发票,使学生真正体会到生活中处处存在着数学,学好数学能解决大量实际问题,从而提高了学生的学习兴趣。
关于积的近似值的探究活动
1.班内开展一次“用自己零花钱,募捐希望工程”的活动,把每人捐款情况记录在黑板上(钱数用小数表示),请同学帮助算出总钱数(得数保留整数)
提示:如果有捐款数目相同的,可以用乘法表示并计算。
2.在家长的陪同下,带着计算器完成一次为家里买菜的任务(去自由市场),计算出所共费的总钱数。
操场面积
活动目的
1.通过活动,使学生掌握小数乘法的计算方法.
2.使学生体会到“数学来源于生活,生活中处处有数学”.
活动准备
计算器,米尺,记录单
活动过程
1.测量一下自己一步的长度大约是几米(一般走路时的步长),并记录这个数值.
2.先步测操场的长,用正常步长走路;记下有多少步,算出操场的长.
3.用同样的方法算出操场的宽.
4.计算整个操场的面积大约是多少平方米.
篇4:商的近似值五年级数学教案
商的近似值五年级数学教案
教学目标
1.使学生会根据实际需要求“”,找到和“求积的近似值”的联系.
2.提高学生比较、分析、判断的能力.
教学重点
会根据实际需要求.
教学难点
理解求“积的近似值”与求“”的异同.
教学过程
一、复习铺垫
(一)口算
8÷0.5 1.2×4 0.36×2 6.3÷2.1
0.92÷4 6÷1.2 0.5+0.14 2.4÷0.6
(二)填空
1.4561
0.9398
9.7502
保留三位小数
保留二位小数
保留一位小数
保留整数
教师提问:0.9398保留三位小数为什么是0.940,写成0.94行不行?
谈话引入:求小数的近似值在除法中有哪些应用呢?今天我们就来学习这些内容.
二、探索尝试
例6 一个玩具厂试制了35架玩具飞机,共花1560元,平均每架玩具飞机多少元?
1.读题并列式
(总价÷数量=单价)
1560÷36
2.尝试计算
3.练习:计算下面各题
4.8÷2.3(保留一位小数) 1.55÷3.9(保留两位小数)
三、质疑小结
(一)提问:今天我们学习了哪些内容?你有哪些收获?(出示课题:)
(二)求“”与求“积的近似值”有什么相同点,又有什么不同?
相同点:都要用到“四舍五入”法取近似值,并且都要看要保留的那一位的后一位.
不同点:求积的近似值,要先算出积的准确值再求近似数,求不需求出商的准确值,只要求出要保留的下一位就可以了.
四、尝试练习
(一)按“四舍五入法”算出,填入下表. 保留一位小数保留两位小数保留三位小数40÷14 26.37÷31 45.5÷38
教师提问:解题时你运用了什么技巧?
(每一横行只需列一个除法竖式)
(二)求下面各题(保留两位小数).
3.81÷7 32÷42 246.4÷13
(三)刘桐到超市买了一打乒乓球,一共花了15.8元,平均每个乒乓球多少元?
五、课后作业
计算下面各题(保留两位小数)
5.63÷6.1 2.84×0.03 0.382×0.13 4.2÷4.5
六、 板书设计
例6 一个玩具厂试制了35架玩具飞机,共花了156元.平均每架玩具飞机多少元?
1560÷35≈44.57(元)
答:平均每架飞机44.57元.
探究活动
调查统计
活动目的.
1.使学生会根据实际需要求“”.
2.提高学生比较、分析、判断的能力.
活动过程
调查附近停车场收费标准,算出该停车场平均每小时或每天收费多少元?
活动说明
停车场有按“时间”段收费的,超时加收费,也有的小区停车收费是按月收费的,根据不同情况调查出停车场单位时间内的收费情况.
篇5:《商的近似值》五年级数学教案
《商的近似值》五年级数学教案
教学内容:冀教版《数学》五年级上册第46-47页
教学目标:
1、结合具体问题,经历用“四舍五入法”求商的近似值的过程。
2、掌握用“四舍五入法”求商的近似值的方法,能根据要求取商的近似值。
3、积极参与数学活动,对求商的近似值有兴趣,体会取商的近似值与现实问题的联系。
教学过程:
一、创设情境
师生对话。由“知道哪些自然灾害”到“自然灾害发生时哪些人战斗在第一线及经常发生哪些事情”,引出少先队员慰问解放军的问题情境。
(设计意图:丰富学生的自然常识,激发学生热爱解放军的情感,自然引出送果篮的问题,体会数学与生活的联系。)
二、自主计算
1、提出“平均每个果篮中有多少钱的水果”的问题,鼓励学生试着用竖式算一算。
(设计意图:给学生提供在已有知识背景下自主探索,初步体验商的小数位数特别多的过程,激发学习兴趣。)
2、交流计算情况。让计算出不同位数的同学生汇报计算结果,教师板书,使学生体验商的小数位太多啦。
(设计意图:展示不同计算结果,让学生感受计算结果多样化,进一步体验商的小数位数特别多,产生求知的需要,为求商的近似值打下基础。)
3、学生用计算器计算,然后观察计算结果,说说发现了什么。确信158除以7除不尽。
(设计意图:用计算器计算,满足学生的好奇心和求知欲,形成除不尽的共识。)
三、求近似值
1、教师说明,可以用“四舍五入法”取商的近似值,并提出问题,鼓励学生充分发表自己的意见。
(设计意图:激发学生的生活经验,给学生充分交流不同想法的机会,使学生体会取商的近似值与现实问题的联系,为下面用不同要求取商的近似值作铺垫。)
2、师生共同完成158÷7的'商保留两位小数、保留一位小数、保留整数取商的近似值。
(设计意图:利用学生用“四舍五入法”求整数积的近似值的已有知识经验取商的近似值。)
3、让学生读书上取商的近似值的方法。然后,鼓励学生用自己的语言说一说如何求商的近似值,给学生充分表达不同说法的机会。
(设计意图:在学生经历求商的近似值,阅读方法概念的基础上,用自己的话表述求商的近似值的方法,使知识内化,发展学生的语言表达能力。)
四、课堂练习
学生独立完成练习。
教学反思:
篇6:商的近似值
教学目标
1.使学生会根据实际需要求“商的近似值”,找到和“求积的近似值”的联系.
2.提高学生比较、分析、判断的能力.
教学重点
会根据实际需要求商的近似值.
教学难点
理解求“积的近似值”与求“商的近似值”的`异同.
教学过程
一、复习铺垫
(一)口算
8÷0.5 1.2×4 0.36×2 6.3÷2.1
0.92÷4 6÷1.2 0.5+0.14 2.4÷0.6
(二)填空
1.4561
0.9398
9.7502
保留三位小数
保留二位小数
保留一位小数
保留整数
教师提问:0.9398保留三位小数为什么是0.940,写成0.94行不行?谈话引入:求小数的近似值在除法中有哪些应用呢?今天我们就来学习这些内容.
二、探索尝试
例6 一个玩具厂试制了35架玩具飞机,共花1560元,平均每架玩具飞机多少元?
1.读题并列式
(总价÷数量=单价)
1560÷36
2.尝试计算
3.练习:计算下面各题
4.8÷2.3(保留一位小数) 1.55÷3.9(保留两位小数)
三、质疑小结
(一)提问:今天我们学习了哪些内容?你有哪些收获?(出示课题:商的近似值)
(二)求“商的近似值”与求“积的近似值”有什么相同点,又有什么不同?
相同点:都要用到“四舍五入”法取近似值,并且都要看要保留的那一位的后一位.
不同点:求积的近似值,要先算出积的准确值再求近似数,求商的近似值不需求出商的准确值,只要求出要保留的下一位就可以了.
四、尝试练习
(一)按“四舍五入法”算出商的近似值,填入下表. 保留一位小数保留两位小数保留三位小数40÷14 26.37÷31 45.5÷38
教师提问:解题时你运用了什么技巧?
(每一横行只需列一个除法竖式)
(二)求下面各题商的近似值(保留两位小数).
3.81÷7 32÷42 246.4÷13
(三)刘桐到超市买了一打乒乓球,一共花了15.8元,平均每个乒乓球多少元?
五、课后作业
计算下面各题(保留两位小数)
5.63÷6.1 2.84×0.03 0.382×0.13 4.2÷4.5
六、 板书设计
篇7:商的近似值
例6 一个玩具厂试制了35架玩具飞机,共花了156元.平均每架玩具飞机多少元?
1560÷35≈44.57(元)
答:平均每架飞机44.57元.
探究活动
调查统计
活动目的
1.使学生会根据实际需要求“商的近似值”.
2.提高学生比较、分析、判断的能力.
活动过程
调查附近停车场收费标准,算出该停车场平均每小时或每天收费多少元?
活动说明
停车场有按“时间”段收费的,超时加收费,也有的小区停车收费是按月收费的,根据不同情况调查出停车场单位时间内的收费情况.
篇8:五年级数学《商的近似值》教案
五年级数学《商的近似值》教案
教学要求:使学生学会用“四舍五入法”根据实际需要和要求截取商是小数的近似值。
教学重点:使学生掌握求出商的近似值的方法。
教学难点:使学生明确,取商的近似值时,计算出的小数位数都要比要求保留的小数位数多一位,然后按“四舍五入法”省略尾数。
教学用具:投影片(或小黑板)若干。
教学过程:
一、激发
1.计算下面各题:1.54×0.25(得数保留两位小数。)
0.38×6.72(得数保留三位小数。)
2.揭示课题:跟小数乘法一样,在实际应用中,小数除法除得的商也可用“四舍五入法”保留一定的小数位数,求出商的近似值。(板书课题:商的近似值)
二、尝试
1.出示例6:一个玩具厂试制了35架玩具飞机,共花了156元。平均每架玩具飞机多少元?
2.生根据题意列式并计算。(指名板演)
3.引导学生思考:
(1)计算时你们发现什么?
(2)实际计算钱数时,通常只算到“分”。所以只需保留几位小数?除的时候该怎么办?
4.指导解答:这道题应该保留两位小数,但计算时要算出三位小数(如:4.457),然后按“四舍五入法”省略百分位后面的尾数就是4.46,2...让学生写出答案。
156÷35≈4.46(元)
4.457
35)156
140
160
140
200
175
250
245
5
答:平均每架玩具飞机约4.46元。
5.比较求积或商近似数的异同点。
师问:求积或商的.近似数有什么相同点和不同点?
使学生分清:求积的近似值要算出乘得的积以后再取近似值(如复习题);而求商的近似值只要计算时,比要保留的小数位数多除出一位就可以了。
三、应用
1.做一做:按“四舍五入法”算出商的近似值,填入下表。
保留一位小数
保留两位小数
保留三位小数
40÷14
26.37÷31
45.5÷38
(1)让学生按要求进行计算,并指3名学生将第l题保留一位小数、第2题保留两位小数、第3题保留三位小数的竖式写在黑板上,集体订正。
(2)介绍一种取商的近似值的简便方法。
以学生板书的3道竖式为例讲解:除到要保留的小数位数后,不再继续除了,只要把余数同除数做比较。若余数比除数的一半小,说明求出的下一位商要直接舍去;若余数等于或大于除数的一半,就说明要在已除得的商的末一位数上加1。
2.练习六第3题:按照过程计算7.2÷2.1
(得数保留一位小数)
步骤:开始写出2.1)7.2化成除数是整数的除法
想:商要计算到第位小数按上步要求计算出商商的末一位是不是满5?
是去掉商的末一位
写出商的近似值
不是去掉上的末一位并在前一位加1
结束
生看清题目,按照框图的顺序一步一步地在练习本上做。做完后再说一说思考和计算的过程。
3.练习六第1题:计算下面各题。
4.8÷2.3(保留一位小数)1.55÷130(保留两位小数)
学生独立做题,教师巡视并辅导有困难的学生。集体订正时,可让学生讲自己取商的近似值的方法。
4.练习六第6题:有些应用题取近似值时,要想一项实际情况。下面两题的答案应取多少才合适?(保留整数)
⑴每套童装用布2.2米,50米可以做多少套?
50÷2.2=22.727272......(舍去小数部分)
⑵每个油桶最多装油4.5千克,要装60千克油,需要多少个这样的油桶?
604.5=13.3333......(向整数部分进1)
四、体验
本节课学习了什么?你是怎样解决难点的?
五、作业:
练习六第2、4、5题
篇9:五年级数学商的近似值练习题
五年级数学商的近似值练习题精选
1.写出下面各小数的`近似值。(得数保留三位小数。)
5.456456……≈( )17.49898……≈( )
0.08383……≈( )1.89726……≈( )
16.353535……≈( )2.05656……≈( )
2.计算下面各题。(得数保留两位小数。)
9.4÷715.6÷0.274.15÷1.8
3.做一张方桌需要2.5平方米木板,9.9平方米木板最多可以做几张方桌?
4.小明家有一个房间,长4米,宽3.8米。用面积为0.25平方米的方砖铺地,至少需要多少块这样的方砖?
源于教材、宽于教材、拓展探究显身手。
5.先算出(1)(2)(3)题的商,找出规律后直接写出后面几题的商,并求出它们的近似值。(得数保留两位小数。)
(1)1÷9=________≈________(2)2÷9=________≈________
(3)3÷9=________≈________(4)4÷9=________≈________
(5)5÷9=________≈________(6)6÷9=________≈________
(7)7÷9=________≈________(8)8÷9=________≈________
6.一堆煤有27.4吨,用载重5吨的卡车,至少要运多少次才能运完?
7.用一块长2.3米、宽1.6米的铁皮来加工铁皮箱子,平均每个箱子要耗费铁皮0.85平方米,这块铁皮最多能做成多少个铁皮箱子?
篇10:商的近似值的说课稿
有关商的近似值的说课稿
一、 说教材
教材中截取近似值有积的近似值和商的近似值,一般是采取“四舍五入”法截取,前面已学过积的近似值截取,对商的近似值截取,有一个初步的了解,在教学时,通过结合实例教学,要求学生明确截取商的近似值的实际意义(当小数除法有时碰到永远除不尽或有时虽然除尽,但实际上不需要那么多的小数位数,这就需要取商的近似值),初步学会在小数除法中用“四舍五入”法截取近似值。进一步体验学习数学的目的,能够把学到的知识应用于生活实践。
二、 说学生的认识
学生用“四舍五入”法截取近似值已基本掌握,也已学习了积的近似值的截取,对商的近似值的截取也能略知一二,但在实际操作中会出现很多的问题。如:把得数保留两位小数,除到百分位,就看百分位上的数直接截取,应看千位上的数是用“四舍法”或“五入法“再来截取,尤其在解决实际问题时,就感到更加困难了,如:有一堆煤共有100吨,用一辆载重3吨的汽车来运,几次能运完?学生计算得100÷3=33次……1吨,往往是根据已学的知识用“四舍法”把余数1吨直接舍去,直观地取整数33次,这样出现了这堆煤还留有一部分,学生这种直观地思考忽略了没有从实际情况出发去考虑。
三、 说指导学生学习
根据教材的内容,学生的认知基础、年龄特点,结合学生的生活实际,精心设计指导学生学习的过程,揭露认知上的矛盾。
1、 简单回顾四舍五入法截取近似值,设计让学生求6.8496 保留一位小数( )两位小数( )三位小数( )。设计的这个数字既有四舍,也有五入,还有保留三位“五入”后的数字变化,可以说一题中涵概了许多知识分量。
2、 生活实例引入,在探索中求知:
(1)例1 我们五(一)班期中考试,全班总分是5089分,请你算一算他们班的平均分有多少分?
不告诉学生人数,让学生自己搜集信息的能力得到了培养,他们当然能够计算这题的平均分:5089÷55 尝试计算后,学生发现此题不能除尽,得5089÷55=92.52727……(分)
此时教师归纳:在日常生活中,当我们遇到小数除法不能除尽时,我们按实际情况保留一定的小数位数,取它的近似值,应是多少分?(五入法 92.5分)。
整个过程是让学生自己充分思考、判断、推理,由实际生活知识引入到所要学的内容,并在从中悟出其中的道理。
3、反馈练习:
(1)要求学生从下列每组中自由任选一题进行计算(板演和自练)
a、保留一位小数 49.6÷3 3.85÷0.76
b、保留两位小数 4.84÷25 38.36÷12
让学生把自己的学习成果展示在黑板上,并指名说说截取商的近似值的方法,肯定对的,找出错误原因,加以纠正,然后由学生互相去讨论,总结商的近似值的取法,最后加以归纳总结,使学生更加明确截取商的近似值的方法,即要保留一位,要看第二位,也就要除到第二位。这个方法是学生在尝试练习中自己得出的结论,是本课教学的重点所在。语文教学需要感悟,数学教学也同样需要学生的感悟,感悟方法,感悟规律。
(2)我国的原煤产量1981年是6.2亿吨,1991年达到10.9亿吨,1991年的原煤产量是1981年的多少倍?(得数保留一位小数)
a、学生读题后,问你读题后想到什么?教给学生读数学题的方法,读了题目,学生应该知道用除法计算,并且是不能除尽,要保留一位,需要除到第二位。让学生养成先通盘考虑,然后进行计算的好习惯。培养习惯应该是数学课的重要任务,不能只授知识,无素质、习惯的培养。
计算后,强调一些细节问题:如横式中用“约等于”连接,竖式的正确书写及答案中写上“约”字等,培养学生良好的计算和书写习惯。
4、巩固练习:
(1)按要求在下表里填上商的近似值:这个表是书本的试一试,我把它放到巩固练习处理,因为这个题,不仅仅是保留方法的训练,还有计算技巧的素质培育。所以在学生对保留有更深的认识后再练习,是练习层次性的体现
保留一位小数
保留两位小数
保留三位小数
43÷19
0.487÷2.5
a、学生练习,比一比谁最快。
b、计算并介绍好的'方法(可能出现)。
①先除到百分位保留一位小数,再列式除到千分位,保留两位小数,以此类推。
②先除到百分位(第二位小数)保留一位小数,再在原式上继续往下除,保留两位小数以此类推。
③看最多保留三位小数,先直接除到万分位(第四位小数)然后再一位小数、两位小数、三位小数的进行保留。
c、通过学生的方法介绍后,问学生认为哪一种方法,既快又简便,并说出为什么。
第③种方法简便,因为他从全局出发只列一个竖式,而且保留小数时,只要一位一位往下看,也不易出错。
(2)为了强化数学教学的生活应用性,我还设计了一题生活性题目:
7个小朋友合买了一份的礼物,去看望生病住院的老爷爷,请小虹去商店买了76.5元的礼品,每个人应掏多少钱?
这题没有直接告诉学生要保留多少位小数,但涉及到钱,应该最多也是两位小数,元、角、分,除到10.929,说说应付给小虹多少元呢?可以教给学生许多做人的知识,应付11元,不能太小气而付10.9元,但作为小虹应该找给其余小朋友0.1元,不能多拿。这样就很好地落实了素质教育的要求,不能光在知识中打圈。
通过以上练习,提高学生计算能力和速度,巩固商的近似值的截取方法,进一步加深具体情况,具体分析的观念,培养学生观察问题要从实际出发去思考、探索、解决一些简单的实际问题,使学生感受到数学就在我们的身边,与现实生活有着密切联系,调动学生学习数学的积极性。
(3)开放题练习:
一个小数保留一位小数后得到近似值是1.4,这个小数可能是多少?
设计意图:
想到这是个两位小数:1.35、1.36、……1.43、1.44。
再启发学生作答,使他们想到是个无数位的小数:只要十分位是3、百分位上是5到9的小数或十分位是4、百分位是0到4的小数都行。
通过开放题的设计训练,使学生很好地进行了创新的意识培养。
篇11:五年级数学上册商的近似值练习题
五年级数学上册商的近似值练习题
1.写出下面各小数的近似值。(得数保留三位小数。)
5.456456……≈( )17.49898……≈( )
0.08383……≈( )1.89726……≈( )
16.353535……≈( )2.05656……≈( )
重难疑点,一网打尽。
2.计算下面各题。(得数保留两位小数。)
9.4÷715.6÷0.274.15÷1.8
3.做一张方桌需要2.5平方米木板,9.9平方米木板最多可以做几张方桌?
4.小明家有一个房间,长4米,宽3.8米。用面积为0.25平方米的方砖铺地,至少需要多少块这样的方砖?
源于教材、宽于教材、拓展探究显身手。
5.先算出(1)(2)(3)题的'商,找出规律后直接写出后面几题的商,并求出它们的近似值。(得数保留两位小数。)
(1)1÷9=________≈________(2)2÷9=________≈________
(3)3÷9=________≈________(4)4÷9=________≈________
(5)5÷9=________≈________(6)6÷9=________≈________
(7)7÷9=________≈________(8)8÷9=________≈________
篇12:通分(五年级)(人教版五年级教案设计)
教学目标
1.理解通分的意义.
2.掌握通分的方法.
教学重点
掌握通分的方法.
教学难点
通分一般方法的概括过程.
教学步骤
一、铺垫孕伏.
1.说出下面每组数的最小公倍数.
6和8 8和9 9和27
教师提问:求最小公倍数有几种情况?
(1)一般情况下,求两个数的最小公倍数用短除的方法,除到两个商互质后,把各除数和商连乘.
(2)特殊的情况是:
①当一个数是另一个数的倍数时,较大的数就是这两个数的最小公倍数;②当两个数是互质数时,它们的最小公倍数就是这两个数的积.
2.填空.
3.比较下面分数大小.
○ ○ ○ ○
二、探究新知.
(一)教学通分的意义.
1.出示例3,比较 和 的大小.
2.小组讨论:怎样运用我们以前学的知识来解决这个问题呢?
(根据分数的基本性质,先把它们化成分母相同的分数然后再进行比较)
3.教师明确:这个相同的分母叫做两个分数的公分母.这个公分母应该是两个分母的公倍数.
4.教学两个分数化成同分母的分数.
教师板书:
5.教师明确:把异分母分数分别化成和原来分数相等的同分母分数叫做通分.
(二)如何比较分数大小.
思考:通分时先干什么?然后干什么?
(三)教学例4.
1.出示例4:(1) (2)
2.启发学生思考:应该怎样想?
(四)教学例5.
1.出示例5:把 、
2.学生独立解答,集体订正
3.板书:
三、全课小结.
这节课你又学习了什么知识?
四、随堂练习.
1.说出下面每组中的两个分数的公分母.
2.做一做 把下面每组中的分数通分,再比较它们的大小.
3.下面哪组分数的通分是对的?哪组不对?哪组不够简单?
(1) (2) (3)
4.比较下面每组中两个分数的大小.
○ ○
五、布置作业.
1.把下面每组中的两个分数通分.
2.比较下面每组中两个分数的大小
○ ○
六、板书设计
通 分
例3.比较 和 的大小
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分.
例4.
例5.把 通分
篇13:约分(五年级)(人教版五年级教案设计)
教学目标
(一)理解并掌握最简分数的概念。
(二)理解并掌握约分的方法。
(三)培养学生良好的书写习惯和检查习惯。
教学重点和难点
(一)最简分数的概念。
(二)约分的方法和正确的书写格式。
教学用具
投影片
教学过程设计
(一)复习准备
1.口答填空:(投影片)
2.请说出解答上面各题的依据是什么?
3.说出下面各组数的最大公约数。(投影)
45和15 30和12 28和42
13和39 36和27 29和30
4.指出下面哪几组数中的两个数是互质数。(投影片)
3和8 12和18
15和16 13和23
25和40 21和42
5.分别说一说能被2,3,5整除数的特征。
教师:学习了分数基本性质后,我们可以把一个分数的分子和分母同时乘以或除以相同的数(零除外),得到一个与原来分数相等的新分数。今天我们来研究怎样把一个分数化成与它相等,而分子分母又比较小的分数。
(二)学习新课
1.最简分数与约分的意义。
能利用我们学过的旧知识把它变为大小相等,而分子、分母又比较小的分数?
学生试算,小组讨论后汇报,老师根据学生汇报选择板书:(也可以让各小组代表板书。)
教师:请再说一说第一步,第二步是怎样做的?(用分子、分母的公约数分别去除分子和分母。)
(板书:最简分数。)
教师:请指出下面哪些分数是最简分数。(投影片)
教师:请两人一组,各举出5个最简分数。
做什么?
学生口答后,老师说明:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(板书课题:约分。)
教师:请再说一说什么叫约分?
学生口答后,老师板书出约分的意义。
2.约分和一般书写格式。
教师:约分时,一般要连续地做除法口算,如果像上面例题那样写,比较繁,一般采用省略除数,直接写出商的形式来写。
教师边板书边介绍:
第一步,先用什么数去除分子和分母?
教师:12除以2商6,分子只写出6;30除以2商15,分母只写出15。看这时的分子和分母还有没有除1以外的公约数(即是不是最简分数)?
第二步,用6和15的公约数3再分别去除它们,分子商2,分母商
教师:约分时,通常要把原分数化为最简分数。
学生口答练习:
学生口答,教师板书。
分数?学生口答,教师板书:
数?学生口答,教师板书:
教师:由上可见,要使约分过程比较简便,应该怎样做?(选用分子和分母的最大公约数去除。)
(3)练习(投影片)
把下面各分数约数:
请同学用投影片写,选出全对且书写好的作标准评价,选出几份有错误的,请全班讨论错误原因,并纠正。
教师小结:什么是约分。约分的过程。
(三)巩固反馈
1.观察下面每个分数的分子和分母,哪些有公约数2?哪些有公约数3?哪些有公约数5?(投影片)
2.在下列分数中找出最简分数。(投影片)
3.下面哪些分数没有约成最简分数?(投影)
4.判断正误,并说明理由。(投影)
5.把下面各分数约分。(投影)
(四)课堂总结与课后作业
1.最简分数?
2.什么是约分?怎样约分?
3.作业:课本112页练习二十四,2,3。
课堂教学设计说明
约分是分数基本性质的直接应用,所以约分的方法让学生试算,自己去掌握。最简分数的概念,放在试算化简之后,这样可以使学生对概念的认识,即分子分母为互质数,有充分的感知基础。约分中用分子和分母的公约数去除它们的方法和算理,都很容易掌握,但是要能准确熟练地进行约分,必须要求学生掌握好求几个数的公约数,最大公约数,判断互质数,除法口算等旧知识,也要掌握好约分一般书写格式中省略除数的写法,所以本课设计时,在复习准备和巩固反馈中,都安排了较多的,形式多样的练习进行训练,以提高学生约分的能力。
板书设计
篇14:最小公倍数(人教版五年级教案设计)
教学目标
(一)认识公倍数和最小公倍数。
(二)理解求两个数的最小公倍数的算理,掌握方法。
(三)通过教学,培养学生的比较推理和抽象概括的能力。
教学重点和难点
(一)几个数的公倍数和最小公倍数的概念。
(二)理解求最小公倍数的算理、掌握计算方法。
教学用具
投影片,有数轴的小片子。
教学过程设计
(一)复习准备
教师:请说出几个4的倍数,几个6的倍数。(学生口答教师板书。)
4 6
8 12
12 18
16 24
20 30
…… ……
教师:我们列出的两组倍数,都分别是4或者是6一个数的倍数。前面我们已研究过两个数的约数,今天来研究两个数的倍数。
(二)学习新课
1.公倍数与最小公倍数。
(1)投影片出示数轴。
老师:请在数轴上分别找出表示4的倍数和6的倍数的点。
学生用两种不同颜色的点在自己的数轴(小片子)上分别描出这些点。教师:从数轴上可以看出4和6公有的倍数是哪些?最小的是几?有没有最大的?(学生口答后,老师再在投影片上表示出来。)
教师:想一想我们已经学过的公约数和最大公约数,谁能给几个数公有的倍数,和其中最小的一个取个名字?(公倍数、最小公倍数。)
教师:请说一说什么是公倍数和最小公倍数?(学生口答老师板书。)板书:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
教师:研究两个数的倍数,主要是研究公倍数和最小公倍数。这节课我们就学习这个内容。板书课题:最小公倍数。
教师:为什么集合圈里要写上省略号?(一个数的倍数是无限的,几个数的公倍数也是无限的。)
(3)练习:(投影片)
把6和8的倍数和公倍数不超过50的填在下面的空圈里,再找出它们的最小公倍数是几。
请一位同学填在投影片上,其余同学填在书上。集体订正。
2.求两个数的最小公倍数。
教师:上面我们用列举的方法找到两个数的最小公倍数,下面来研究如何直接求出两个数的最小公倍数。
请回忆一下,求最大公约数是通过什么途径研究的?(分解质因数。)
(1)教师:我们也从分解质因数入手,看一看一个数和它的倍数的质因数之间有什么关系。(用口答复习题的板书,把4,6的倍数逐个分解质因数。)
板书:
4=2×2 6=2×3
8=2×2×2 12=2×2×3
12=2×2×3 18=2×3×3
16=2×2×2×2 24=2×2×2×3
20=2×2×5 30=2×3×5
24=2×2×2×3 36=2×2×3×3
…… ……
教师:请观察4的倍数的质因数与4的质因数有什么关系?6的倍数的质因数与6的质因数有什么关系?
学生口答后,教师板书:(或贴出小黑板)
4的倍数的质因数包含了4的全部质因数;6的倍数的质因数包含了6的全部质因数。
教师:12是4的倍数吗?请说明理由。
(2)板书例2,求18和30的最小公倍数。
请用短除式分解质因数。(学生口答,教师板书。)
教师:请观察板书,哪些是18和30相同的质因数?哪些是18和30各自独有的质因数?
学生口答后,老师用红色粉笔将2,3框上,说明这是公有的质因数,其余的3是18独有的,5是30独有的质因数。
教师:请讨论①18和30的公倍数应包括哪些质因数?②18和30的最小公倍数是多少?这个最小公倍数包含了哪些质因数?
学生讨论时老师巡视。然后学生总结,老师板书:18和30的最小公倍数是:
2×3×3×5=90
(3)教师指板书问:为什么18和30全部公有的质因数只各选一个数(即“代表”)?
学生讨论后归纳:为了保证倍数最少。
教师:请再说一说几个数的最小公倍数里包含哪些质因数?(学生口答后教师板书。)
(4)老师:利用分解质因数的方法可以求出两个数的最小公倍数,为了简便,通常用一个短除式来分解。板书介绍写法。
方法:用公有的质因数2去除,用公有的质因数3去除,商3,5为互质数。把所有的除数和最后的商乘起来。
练习:求30和45的最小公倍数。(一位同学写投影片,其余同学写本上。)
订正时要求说出过程。教师:除数是什么质因数?商呢?
(公有的,各自独有的。)
教师:请说一说用短除式求两个数的最小公倍数的方法?
引导学生归纳:先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来。
(三)巩固反馈
1.口答:(投影片)
10的倍数( );15的倍数( );
10和15的公倍数( );10和15的最小公倍数( )。
2.口答:(投影片)
60=2×2×3×5;90=2×3×3×5;
60和90公有的质因数是( );
60独有的质因数是( );
90独有的质因数是( )。
3.A=2×2×3×5,B=2×3×7,A,B的最小公倍是( ),A,B有没有最大公倍数?为什么?
4.用短除式求下面两组数的最小公倍数。
18和 27 36和 42
5.讨论解答:
A=2×5×7 B=( )×( )×5
A,B的最小公倍数是2×3×5×7=210。
(四)课堂总结和课后作业
1.公倍数,最小公倍数。两个数的质因数里包含哪些质因数。
2.用短除法求两个数的最小公倍数的方法。
3.作业:课本75页练习十五,1,2。
课堂教学设计说明
本节课根据教材编排顺序,先利用倍数的旧知识,和数轴表示数引入公倍数和最小倍数概念,再用集合图表示来加强概念的理解。求最小公倍数的方法,关键是要让学生理解几个数的最小公倍数里包含了全部公有的质因数和各自独有的质因数。教学中,安排学生借助分解质因数式子进行对比讨论,使学生认识到几个数的公倍数里,要包含这几个数的全部质因数,几个数的最小公倍数里,公有的质因数只选一次,即是选“代表”,否则将不是“最小”。在学生理解了算理、了解了算法后再介绍用短除式求最小公倍数的一般形式,进而归纳出求解的步骤。
新课学习分两部分。
第一部分学习公倍数和最小公倍数的概念。
第二部分学习求两个数的最小公倍数。
板书设计
篇15:通分(五年级)(人教版五年级教案设计)
教学目标
(一)理解通分的意义。
(二)掌握通分的方法,能比较熟练地进行通分。
(三)教学中渗透转化的数学思想,培养学生的自学能力。
教学重点和难点
(一)通分的一般方法。
(二)确定公分母。
教学用具
投影片
教学过程设计
(一)复习准备
1.(投影片)请说出下面各组数有什么特点?说出每组数的最小公倍数?并说出用什么方法求出的最小公倍数?
8和9 9和27 5和6
6和8 12和18 10和15
2.(投影片)口答填空,并说明你是如何算出括号里应填的数的。
投影片做。)
用学生投影片订正。
4.说一说第3题中计算的依据是什么?相同的分母15,与原分母3和5的关系?(15是3和5的最小公倍数。)
同,我们称它们是同分母分数(板书:同分母分数)。由异分母分数到同分母分数这个转化过程是依据分数基本性质来实现的。(板书:转化,分数基本性质。)
问:能直接比它们的大小吗?想用什么办法就可以比较它们的大小了?(化为同分母分数。)
(二)学习新课
1.认识公分母和通分的意义。
母分数的“相同分母”。)
问:想一想,“相同的分母”与4和6是什么关系?
教师:请试一试把它们化为同分母分数。(请几位同学写投影片,各种程度的都有。)
学生写完后,请一人口答老师板书:
老师:还有不同的算式吗?
先请有不同算式的同学口答,再从学生的投影片中挑出如下等式的答案投影出来。
教师:请观察这几个算式,有没有达到把异分母分数转化为同分母分数的目的?请对比一下,“相同分母”选哪个数比较好?为什么?
学生小组讨论后汇报。
教师:我们在把异分母分数转化为同分母分数时,首先选定的“相同分母”我们称为公分母。一般我们选已知分数分母的最小公倍数作它们的公分母。
教师:(指板书)把异分母分数分别化成和原来分数相等的同分母分数,叫通分。板书补出“→”。这就是我们这节课的内容,(板书课题:通分)
(2)我们从下面的图中看一看,通分前后的两个分数,什么发生变化了?什么没有发生变化?
学生口答。
教师:由图上可以清楚地看出,通分并没有改变分数的大小,把异分母分数转化为和原来分数相等的同分母分数,使它们的分数单位相同了,这样就可以比较它们的大小了。(指原题)
学生口答,教师板书:
2.通分的方法。
(1)板书例4 把下面每组中的两个分数通分。
教师:请想一想,要把这两组分数分别通分,第一步要做什么?第二步做什么?
学生讨论后试算。
学生口答,教师板书:
教师:说一说第①题的公分母21是怎样确定的?第②题的公分母12是怎样确定的?
3倍是如何确定的?
子分母不用扩大?
学生讨论后汇报。
教师:能说一说通分的一般方法吗?
学生口答后,老师归纳并板书:先求出原来几个分母的最小公倍数,然后把各分数分别化成用这个最小公倍数作分母的分数。
(2)按通分的方法口答填空:(投影片)
学生先小组讨论,然后汇报口答,如小组汇报有错误,请其它同学帮助,找出错误原因并纠正。
笔算练习:(投影)把下面两组分数通分。
请几位同学写投影片,其余同学写本上。集体订正。
教师:请再说一说通分过程分几步?每步做什么?
(三)巩固反馈
1.说出下面每组分数的公分母。(投影)
2.下面哪组分数的通分是对的?哪组不对?哪组不够简便?
3.下面题中的a,b,c各代表几?□里应填多少?(投影)
(四)课堂总结与课后作业
1.什么叫通分?通分的一般方法?
2.作业:课本116页,练习二十五1,2,4。
课堂教学设计说明
通分也是分数基本性质的应用,它是把几个分母不同的分数化成分母是指定数的同分母分数题目的进一步发展。所以分数转化的方法学生并不陌生,学生可以直接减算,但是新问题是要自己去确定转化后的“相同分母”,所以学习通分的关键是确定公分母以及找出原分数的分子分母需要扩大的倍数。因此,在学习通分方法时,先提示,再试算,在试算后设计了一组讨论题帮助学生理清思路,准确地掌握通分的方法。
本节课的新知识不多,算理也不难理解,安排了较多的学生试算、讨论,意在培养学生的自学能力。
本节新课教学分为两部分。
第一部分是让学生了解公分母和通分的意义。分两层。通过试算,认识公分母的概念和通分的意义;借助图形直观形象的优势,加深学生对通分实质的理解。
第二部分是学习通分的方法。分为学习归纳步骤和巩固练习两层。
板书设计
篇16:约分(五年级)(人教版五年级教案设计)
教学目标
1.理解和掌握约分的方法.
2.掌握最简分数的概念.
教学重点
掌握约分的方法.
教学难点
训练学生很快看出分子、分母的公约数,并能够准确判断约分的结果是不是互质数.
教学步骤
一、铺垫孕伏.
1.口算.
135÷5 52÷13 33÷3 56÷7 99÷3
45÷9 66÷11 24÷8 36÷12 125÷5
2.投影出示下列各题,学生自由回答.
(1)说出能被2、3、5整除的数有哪些特征?
(2)说出下面每组两个数的公约数.
18和 24 12和 30 9和 72
(3)指出下面哪两个数是互质数.
3和8 12和8 5和2 7和4
(4)在括号里填上适当的数,并说出你的根据.
二、探究新知.
(一)教学例1.
例1.把 化简.
1.启发学生思考化简的实际含义.
教师提问:看到例题1这个题目,你想做些什么呢?
学生回答:把分数的分子分母都变小.根据分数的基本性质能把 化成分子、分母都比较小的分数.
2.分组讨论:结合分数的基本性质,怎样将 化简?
(1)分母24、分子18有公约数2,先用公约数2去除分子、分母
(板书: )
(2)9和12还有公约数3
(板书: )
教师明确:分子和分母是互质数就不能再化简了,这种过程叫约分.
3.引导学生总结归纳出约分的意义.
板书:
4.揭示最简分数的概念.
5.反馈练习.
指出下面哪些分数是最简分数.
(二)教学例2.
例2.把 约分.
1.学生独立解答,集体订正.
2.师生共同小结:在约分时要把分子、分母的公约数记在脑子里,直接口算,通常要
除到得出最简分数为止.如果一下能看出分子和分母的最大公约数,直接用它们的最大公约数一次约分比较简便.
3.反馈练习.
把下面的分数约分.
三、全课小结.
通过今天的学习,谈谈你学到了哪些新知识?
四、随堂练习.
1.回答.
(1)判断下面哪些分数是最简分数,并说出为什么?
(2)观察下面每个分数的分子和分母,哪些有公约数2?哪些有公约数5?哪些有公
约数3?
2.下面哪些分数没有约成最简分数?
五、布置作业.
把下面各分数约分.
六、板书设计
篇17:循环小数(五年级)(人教版五年级教案设计)
教学目标
(一)理解循环小数,初步认识有限小数和无限小数。
(二)通过观察、比较,培养学生的抽象、概括能力。
教学重点和难点
理解循环小数,并会用循环小数的近似值表示除法的商。
教学过程设计
(一)复习准备
1.求下面各数的近似值(保留两位小数):
54.246 7.685 5.354 14.2971
2.分组计算比赛:
一组:2.4÷3= 0.75÷2.5=
二组:10÷3= 58.6÷11=
讨论:为什么一组做得快,二组做得慢?(一组题能够除尽,二组题除不尽,使学生对有限小数和无限小数有了初步印象。)
(二)学习新课
1.师生共同研究二组题。
2.观察思考:这两题的商有什么特点?想一想,这是为什么?(第1小题因为余数重复出现1,所以商就重复出现3,总也除不尽;第2小题因为余数重复出现3和8,所以商就会重复出现27,总也除不尽。)
教师用黄色粉笔描出竖式中重复出现的余数1和3,8。
3.在比较中认识有限小数和无限小数。
思考讨论:一组题与二组题的商小数部分的数位有什么不同?(一组题除得尽,商的小数部分的位数是有限的,二组题除不尽,商的小数部分的位数是无限的。)
教师说明:当小数部分的位数是无限的,可以用省略号表示:
10÷3=3.33… 58.6÷11=5.32727…
总结:两个数相除,如果不能得到整数商,会有两种情况:
一种情况是:除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限的。也就是说被除数能够被除数除尽。如一组题。
另一种情况是:除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的。如二组题。
教师讲解:小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
4.理解循环小数。
下面我们共同研究无限小数中的一种:循环小数。(板书:循环小数)像二组题中的商3.333…,5.32727…就是循环小数。
(1)出示思考题:
①二组两题中商的小数部分有什么特点?(一题的商中有一个数字3重复出现;二题的商中两个数字27重复出现。)
小结:小数部分的一个数字或几个数字重复出现。
②小数部分的数字重复出现的地方有什么区别?(一题是从小数部分第一位就开始重复出现;二题是从小数部分第二位才开始重复出现。)
小结:小数部分从某一位起,数字开始重复出现。
(2)引导学生概括循环小数的定义:请你说说什么样的小数叫循环小数?
讨论后看书理解:一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。
(3)加深理解:循环小数后边的省略号表示什么?(小数部分的位数是无限的。)进一步说明:循环小数是无限小数。
(4)循环小数的简便写法:
练习:判断下面的数,哪些是循环小数,为什么?是循环小数的用循环点表示。
0.9375 1.5353…
5.1281414… 0.2142857142857…
5.314162… 8.4666…
3.1415926… 0.19292
5.用循环小数的近似值表示除法的商。
循环小数也可以根据需要取它的近似值。
(1)投影出示例9:一辆汽车的油箱里装130千克汽油,行驶一段路
学生试做后讲解:130÷6=21.666…≈21.67(千克。)
答:大约用去21.67kg。
强调:①保留两位小数,要在千分位上四舍五入;
②用四舍五入法得到的近似值要用“≈”表示。
(2)练习:P27“做一做”。
计算下面各题,除不尽的先用循环小数表示所得的商,再保留两位小数写出它的近似值。
28÷18= 2.29÷11.1= 153÷7.2=
(三)巩固反馈
1.下面哪道题的商是有限小数?哪道题的商是无限小数?
10÷9 1.332÷4 23÷3.33
2.写出下面各循环小数的近似值(保留三位小数):
3.在○里填上“>”,“<”或“=”符号。
4.思考题:
用循环小数表示1÷7,2÷7,3÷7的商,比较小数部分有什么规律?并根据这一规律直接写出4÷7,5÷7,6÷7的商。
5.课后作业:P29:1,2,3。
课堂教学设计说明
因为循环小数属于无限小数,因此,先让学生通过计算认识有限小数与无限小数,然后在无限小数知识的范围内进一步学习循环小数,使学生明确知识的结构。
教学由计算比赛引入,使全体学生积极参与。既激发学生学习兴趣,又创设情境,吸引学生产生疑问,从而促进学生积极思维,去探究其中的原因。
在循环小数的意义的教学中,通过两个有思考性的问题:①二组两题中商的小数部分有什么特点?②小数部分数字重复出现的地方有什么区别?使学生抓住循环小数的本质特征。通过讨论,顺利概括出循环小数的意义,培养学生抽象概括能力。
板书设计(略
篇18:商的近似值教学反思
这几天教学了国标五上《商的近似值》这一内容,教学中困惑多多。
困惑一:教材中这一内容的编排是否合理?
这部分内容主要分为两课时进行教学,第一课时教学“用四舍五入法求商的近似值”,第二课时教学“根据实际需要合理使用去尾法或进一法求商的近似值”。作为一名普通教师,我似乎没有权力质疑由各权威级数学专家编订的教材是否合理。但通过实际教学我认为这一内容的编排如能进行适当调整会更好。
学生在第一课时学习结束后形成了一个错误的认识:只有当除法计算除不尽时才根据需要用“四舍五入”的方法取商的近似值,即将取商的近似值与取循环小数的近似值划上了等于号。学生将求商的近似值方法与求积的近似值方法进行了对比,都认为取积的近似值可以先通过计算求出积的准确值,后根据要求用“四舍五入”的方法求出积的近似值;而求商的近似值则无法求出准确值,只要“除到比要保留的位数多一位就可以了”。
【商的近似值(人教版五年级教案设计)】相关文章:






文档为doc格式