欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>人教新版八年级数学上册教案

人教新版八年级数学上册教案

2022-09-01 08:29:42 收藏本文 下载本文

“幻紫火焰”通过精心收集,向本站投稿了13篇人教新版八年级数学上册教案,下面是小编给大家带来关于人教新版八年级数学上册教案,一起来看看吧,希望对您有所帮助。

人教新版八年级数学上册教案

篇1:人教新版八年级数学上册教案

教学目标

1.知识与技能

领会运用完全平方公式进行因式分解的方法,发展推理能力.

2.过程与方法

经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.

3.情感、态度与价值观

培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.

重、难点与关键

1.重点:理解完全平方公式因式分解,并学会应用.

2.难点:灵活地应用公式法进行因式分解.

3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的.

教学方法

采用“自主探究”教学方法,在教师适当指导下完成本节课内容.

教学过程

一、回顾交流,导入新知

【问题牵引】

1.分解因式:

(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

(3)x2-0.01y2.

【知识迁移】

2.计算下列各式:

(1)(m-4n)2;(2)(m+4n)2;

(3)(a+b)2;(4)(a-b)2.

【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.

3.分解因式:

(1)m2-8mn+16n2(2)m2+8mn+16n2;

(3)a2+2ab+b2;(4)a2-2ab+b2.

【学生活动】从逆向思维的角度入手,很快得到下面答案:

解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;

(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.

【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.

二、范例学习,应用所学

【例1】把下列各式分解因式:

(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;

(3)(x+y)2-14(x+y)+49;(4)+n4.

【例2】如果x2+axy+16y2是完全平方,求a的值.

【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.

三、随堂练习,巩固深化

课本P170练习第1、2题.

【探研时空】

1.已知x+y=7,xy=10,求下列各式的值.

(1)x2+y2;(2)(x-y)2

2.已知x+=-3,求x4+的值.

四、课堂总结,发展潜能

由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:

a2-b2=(a+b)(a-b);

a2±ab+b2=(a±b)2.

在运用公式因式分解时,要注意:

(1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解.

五、布置作业,专题突破

篇2:人教新版八年级数学上册教案

一、 内容和内容解析

1.内容

三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.

2.内容解析

本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情.

理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.

本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.

二、目标和目标解析

1.教学目标

(1)理解三角形的高、中线与角平分线等概念;

(2)会用工具画三角形的高、中线与角平分线;

2.教学目标解析

(1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.

(2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.

(3)掌握三角形的高、中线与角平分线的画法.

(4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.

三、教学问题诊断分析

三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.

三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.

三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个 端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.

篇3:人教新版八年级数学上册教案

一、内容和内容解析

1.内容

三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.

2.内容解析

本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情.

理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.

本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.

二、目标和目标解析

1.教学目标

(1)理解三角形的高、中线与角平分线等概念.

(2)会用工具画三角形的高、中线与角平分线.

2. 教学目标解析

(1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.

(2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.

(3)掌握三角形的高、中线与角平分线的画法.

(4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.

三、教学问题诊断分析

三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.

三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.

三角形的角平分线的理解: 三角形的角平分线也是一条线段,角的顶点是一个 端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.

四、教学过程设计

1.抛砖引玉,提出问题

先演示画三角形的一条高,再给出问题:

(1)任画一个三角形,你能画出它的三条高吗?

(2)同一个三角形的三条高线有什么位置关系?

(3)不同类型的三角形的三条高线的交点位置有什么差别?

师生活动:先让学生画图实践,教师下位随机点拔,再让会画和不会画的学生相互交流提点,然后带着问题讨论,最后各小组派代表发言,师生共同归纳概念和画法.

【设计意图】这一环节是一个重要的实践活动,需要学生动手实践,动口交流,动脑思考,加深理解高线的概念和掌握画高线的作图能力.

2.从实践上升到理论,形成概念

师生活动:

定义:从三角形的一个顶点出发,向对边引垂线,这个顶点和垂足之间的连线段叫做三角形的高线,简称三角形的高.

三角形的高有三条,特别强调:钝角三角形的高有两条在三角形外部,一条在三角形内部.直角三角形的两直角边就是高线.任何三角形的三条高所在直线交于一点,这点叫三角形的垂心.

归纳:锐角三角形有 条高,它们相交于一点,交点在三角形 ;

直角三角形有 条高 ,它们相交于一点,交点在三角形 ;

钝角三 角形有 条高,它们所在直线相交于一点,交点在三角形 .

注意:三角形的高是线段.

(几何语言) ∵AD是ΔABC上的高,

∴AD⊥BC (∠ADB=∠ADC=90).

逆向:∵AD⊥BC垂足是D,

∴AD是ΔABC的边 BC 上的高.

几何语言表达可在学完三个定义之后统一学习.便于学生比较记忆形成知识结构.

【设计意图】让学生体会由实践到理论的过程,培养学生的归纳总结能力.

补充说明:要养成习惯,画好高线后,随手标明垂直的记号和垂足的字母.

师生活动:结合具体图形,教师引导学生养成良好的作图习惯.

【设计意图】进一步加深学生对几何符号和几何语言的熟悉.

3.类比学习,掌握几何探究的基本方法

用相同的探究方法引导学生学习三角形的中线和角平分线.

师生活动:与高线的探究类似.

人教新版八年级数学上册教案

篇4:人教五年级数学上册教案

教学目标:

1、通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征;

2、掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴

3、培养和发展学生的实验操作能力,发现美和创造美的能力。

重点难点:

会利用轴对称的知识画对称图形。

教学方法:

1、创设情景,引发思维。

2、组织讨论,深化思维。

3、加强练习,发展思维。

预习作业:

1、欣赏P1的图片,你发现了这些图形有什么相同点和不同点?

2、同桌互相说说什么样的图形叫作轴对称图形?

3、仔细观察例1中的图形,你发现了什么?你知道怎么画对称图形吗?

4、试着在例2的格子图片上画一画

5、你能用预习到的知识用纸来折、剪出一个轴对称图形吗?

教学过程:

一、复习引入

1、轴对称图形的概念

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

2、通过例题探究轴对称图形的性质

二、例题1

你能发现什么规律。

三、交流

教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。

四、教学画对称图形。

例题2

1、在研究的基础上,让学生用铅笔试画。

2、通过课件演示画的全过程,帮助学生纠正不足。

五、练习

1、欣赏下面的图形,并找出各个图形的对称轴。

2、学生相互交流

你们还见过哪些轴对称图形?

用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,

(1)思考

A、怎样画?先画什么?再画什么?

B、每条线段都应该画多长?

3、课内练习一-----第1、2题。

4、课外作业:通过丰富的轴对称图形与轴对称的实例,让学生欣赏并体会轴对称,发展学生的审美能力、鉴赏能力,更激发了学习数学的兴趣

5、《新课程标准》强调,动手实践,自主探索与合作交流是学生进行有效的数

学学习活动的`重要方式。教学中要鼓励每个学生亲自实践,积极思考,体会活动的乐趣,在乐学的氛围中,培养学生动手能力,并学会且应用新知。

板书设计:

轴对称

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

篇5:八年级数学上册教案

初二数学上册教案:与三角形有关的线段

一、内容和内容解析

1.内容

三角形中相关元素的概念、按边分类及三角形的三边关系.

2.内容解析

三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解.

本节课的教学重点:三角形中的相关概念和三角形三边关系.

本节课的教学难点:三角形的三边关系.

二、目标和目标解析

1.教学目标

(1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素.

(2)理解并且灵活应用三角形三边关系.

2.教学目标解析

(1)结合具体图形,识三角形的概念及其基本元素.

(2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类.

(3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题.

三、教学问题诊断分析

在探索三角形三边关系的过程中,让学生经历观察、探究、推理、交流等活动过程,培养学生的和推理能力和合作学习的精神.

四、教学过程设计

1.创设情境,提出问题

问题1 回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义.

师生活动:先让学生分组讨论,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,如下图,指出其不完整性,加深学生对三角形概念的理解.

设计意图:三角形概念的获得,要让学生经历其描述的过程,借此培养学生的语言表述能力,加深学生对三角形概念的理解.

2.抽象概括,形成概念

动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义.

师生活动:

三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.

设计意图:让学生体会由抽象到具体的过程,培养学生的语言表述能力.

补充说明:要求学生学会三角形、三角形的顶点、边、角的概念以及几何表达方法.

师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡.

设计意图:进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用.

3.概念辨析,应用巩固

如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来.

(1)以AB为一边的三角形有哪些?

(2)以∠D为一个内角的三角形有哪些?

(3)以E为一个顶点的三角形有哪些?

(4)说出ΔBCD的三个角.

师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解.

4.拓广延申,探究分类

我们知道,按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,如果要按照边的大小关系对三角形进行分类,又应该如何分呢?小组之间同学进行交流并说说你们的想法.

师生活动:通过讨论,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解.

三角形按边分类:

设计意图:通过这一活动的设计,提高学生分类讨论和归纳概括的能力,加深学生对三角形按边分类的理解.

5.联系实际,突破难点

情境引入:如图三角形中,假设有一只小虫要从点B出发沿着三角形的边爬到点C,它有几条路线可选择?

各条路线的长一样吗?

师生活动:引导学生讨论分析,得到两条路线:

(1)B直接到C即BC;

(2)先由B到A再到C即BA+AC.

显然,路线(1)中的BC要短一些,即:BC

最后,师生共同得到:

BC

即:三角形的两边之和大于第三边.

设计意图:根据“两点之间线段最短”这一几何公理,推理出三角形任意两边之和大于第三边,让学生亲历知识的形成过程,同时加深对 “三角形两边之和大于第三边”的理解.

6. 应用巩固

例 用一条长为18cm的细绳围成一个等腰三角形.

(1)如果腰长是底边的2倍,那么各边的长是多少?

(2)能围成有一边的长是4cm的等腰三角形吗?为什么?

解:(1)设底边长为xcm,则腰长为2xcm.

x+2x+2x=18.

解得x=3.6.

所以,三边长分别为3.6cm,7.2cm,7.2cm.

(2)因为长为4的边可能是腰,也可能是底边,所以需要分情况讨论.

如果4cm长的边为底边,设腰长为xcm,

则 4+2x=18

解得x=7.

如果4cm长的边为腰,设底边长为xcm,

则 2×4+x=18

解得x=10.

因为4+4<10,不符合三角形两边的和大于第三边,所以不能围成腰长是4的等腰三角形.

由以上讨论可知,可以围成底边长是4cm的等腰三角形.

引导学生通过解决这样的应用问题,特别是(2)中思想方法,让学生学会什么情况下要用到分类讨论的思想,并通过问题的解答过程加深对三角形三边关系理解.

设计意图:设计有一定综合性的题目,考查学生的灵活运用知识的能力,培养学生分类讨论的数学思想,还能突破难点加深学生对三角形三边关系的理解,一举多得.

补充说明:应用三角形的三边关系时要灵活应变,最简洁的方法只需判断两小边之和大于最大边即可组成三角形.

师生活动:结合具体图形,教师引导学生分析,活学活用.

7.总结反思

教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.

(1)三角形的定义?三角形的相关元素的概念(边、顶点、角)?三角形的表示方法.

(2)三角形按边的分类.

(3)三角形三边之间的关系.

师生活动:教师引导,学生小结.

设计意图:学生共同总结,互相取长补短,再一次突出本节课的学习重难点.

8.布置作业:

教科书第8页第1,2题.

初二数学上册教案:乘法公式

教学设计思想

因为乘法公式实际上是整式乘法的特殊情况,因此,呈现方式是直接推演.所以本节教学过程以学生做自主活动为主线来组织,根据学生的探究情况补充讲解.乘法公式有平方差公式和完全平方公式两部分,本节课讲解完全平方公式.

首先让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.然后引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力.接着从几何背景更为形象地认识两数和的平方公式,最后举例分析如何正确使用完全平方公式,适时练习并总结,从实践到理论再回到实践,以指导今后的解题.

教学目标

知识与技能:

1.熟记完全平方公式,并能说出它的几何背景

2.会运用公式进行简单的乘法运算

3.提高进一步地掌握、灵活运用公式的能力

过程与方法:

1.经历对完全平方公式的探索和推导,进一步发展符号(字母)的识别运用能力和推理能力

2.通过对公式的推导及理解,养成思维严密的习惯

情感态度价值观:

感知数学公式的结构美、和谐美,在灵活运用中体验数学的乐趣

二、学法引导

1.教学方法:学生探索与老师讲解相结合.

重点•难点及解决办法

重点:会推导完全平方公式,并能运用公式进行简单的计算

难点:掌握完全平方公式的结构特征,理解字母表示的广泛含义.

课时安排

1课时.

教具学具准备

投影仪或电脑、自制胶片.

教学过程设计

看谁算得快

(1) (x+2)(x+2)

(2) (1+3a)(1+3a)

(3) (-x+5y)(-x+5y)

(4) (-m-n)(-m-n)

相乘的两个多项式的项有什么特点?它们相乘的结果又有什么规律?

引例:计算 ,

学生活动:计算 , ,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.

或合并为:

教师引导学生用文字概括公式.

方法:由学生概括,教师给予肯定、否定或更正,同时板书.

两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.

【教法说明】

看谁算得快部分,一是复习乘法公式,二是找规律,总结完全平方公式特征.

证明:(a-b)2=[a+(-b)]2=a2+2a(-b)+(-b)2=a2-2ab+b2

公式特征:

(1)积为二次三项式;

(2)积中两项为两数的平方和;

(3)另一项是两数积的2倍,且与乘式中间的符号相同.

(4)公式中的字母a,b可以表示数,单项式和多项式

1.首平方,尾平方,积的2倍放中央.

2.结合图形,理解公式

根据图形完成下列问题:

如图:A、B两图均为正方形,

(1)图A中正方形的面积为 ,(用代数式表示)

图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为 .

(2)图B中,正方形的面积为 ,

Ⅲ的面积为 ,

Ⅰ、Ⅱ、Ⅳ的面积和为 ,

用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积 .

分别得出结论:

学生活动:在教师引导下回答问题.

【教法说明】利用图形讲解,增强学生对公式的直观理解,以便更好地掌握公式,同时也培养学生数形结合的数学思想.

3.例题

(1)引例:计算

教师讲解:在 中,把x看成a,把3y看成b,则 就可用完全平方公式来计算,即

【教法说明】 引例的目的在于使学生进一步理解公式的结构,为运用公式打好基础.

(2)例2 运用完全平方公式计算:(2) ;(3)

学生活动:学生独立在练习本上尝试解题,2个学生板演.

【教法说明】 让学生先模仿公式解题,学生可能会出现一些问题,这也正是学生对公式理解、应用和熟练程度上存在的需要解决的问题,反馈后要紧扣公式,重点讲解,达到解决问题的目的,关于例2中(3)的计算,可对照公式直接计算,也可变形成 ,然后再进行计算,同时也可训练学生灵活运用学过的知识的能力.

(3)(补充)例3 你觉得怎样做简单:

① 102²

② 99²

思考

(a+b)²与(-a-b)²相等吗?

(a-b)²与(b-a)²相等吗?

(a-b)²与a²-b²相等吗?

为什么?

4.尝试反馈,巩固知识

练习一(P90)

学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决.

5.变式训练,培养能力

练习二

运用完全平方公式计算:

(l) (2) (3) (4)

学生活动:学生分组讨论,选代表解答.

练习三

(1)有甲、乙、丙、丁四名同学,共同计算,以下是他们的计算过程,请判断他们的计算是否正确,不正确的请指出错在哪里.

甲的计算过程是:原式

乙的计算过程是:原式

丙的计算过程是:原式

丁的计算过程是:原式

(2)想一想, 与 相等吗?为什么?

与 相等吗?为什么?

学生活动:观察、思考后,回答问题.

【教法说明】 练习二是一组数字计算题,使学生体会到公式的用途,也可以激发学生学习兴趣,调动学生的学习积极性,同时也起到加深理解公式的作用.练习三第(l)题实际是课本例4,此题是与平方差公式的综合运用,难度较大.通过给出解题步骤,让学生进行判断,使难度降低,学生易于理解,教师要注意引导学生分析这类题的结构特征,掌握解题方法.通过完成第(2)题使学生进一步理解 与 之间的相等关系,同时加深理解代数中“a”具有的广泛意义.

7. 总结、扩展

⑴学习了完全平方公式.

⑵引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.

8.布置作业

P91 A组 1,4,5

篇6:八年级数学上册教案

一、创设情景,明确目标

多媒体展示:内角三兄弟之争

在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷.同学们,你们知道其中的道理吗?

二、自主学习,指向目标

学习至此:请完成《学生用书》相应部分.

三、合作探究,达成目标

三角形的内角和

活动一:见教材P11“探究”.

展示点评:从探究的操作中,你能发现证明的思路吗?图中的直线L与△ABC的边BC有什么关系?你能想出证明“三角形内角和的方法”吗?证明命题的步骤是什么?证明三角形的内角和定理.

小组讨论:有没有不同的证明方法?

反思小结:证明是由题设出发,经过一步步的推理,最后推出结论正确的过程.三角形三个内角的和等于180°.

针对训练:见《学生用书》相应部分

三角形内角和定理的应用

活动二:见教材P12例1

展示点评:题中所求的角是哪个三角形的一个内角吗?你能想出几种解法?

小组讨论:三角形的内角和在解题时,如何灵活应用?

反思小结:当三角形中已知两角的读数时,可直接用内角和定理求第三个内角;当三角形中未直接给出两内角的度数时,可根据它们之间的关系列方程解决.

针对训练:见《学生用书》相应部分

四、总结梳理,内化目标

1.本节学习的数学知识是:三角形的内角和是180°.

2.三角形内角和定理的证明思路是什么?

3.数学思想是转化、数形结合.

《三角形综合应用》精讲精练

1. 现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )

A.1个 B.2个 C.3个 D.4个

2. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2,3,4,6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝之间的距离最大值是( )

A.5 B.6 C.7 D.10

3.下列五种说法:①三角形的三个内角中至少有两个锐角;

②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有________(填序号).

《11.2与三角形有关的角》同步测试

4.(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?

(2)如图②,在Rt△ABC中,∠C=90°,D,E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状.为什么?

(3)如图③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A与∠D有什么关系?为什么?

篇7:八年级数学上册教案

一、创设情景,明确目标

多媒体投影一组图片,让同学们从中抽象出平面图形,从而引出课题。

二、自主学习,指向目标

学习至此:请完成《学生用书》相应部分。

三、合作探究,达成目标

多边形的定义及有关概念

活动一:阅读教材P19。

展示点评:多边形是怎么组成的?常见的多边形有哪些?边数最少的多边形是几边形?什么是多边形的边、内角、外角?

小组讨论:结合具体图形说出多边形的边、内角、外角?

反思小结:多边形的定义及相关概念。

针对训练:见《学生用书》相应部分

多边形的对角线

活动二:(1)十边形的对角线有35条。

(2)如果经过多边形的一个顶点有36条对角线,这个多边形是39边形。

展示点评:结合图形说明什么是多边形的对角线?三角形是否有对角线?从五边形的一个顶点出发可以引几条对角线?五边形有几条对角线?从n边形的一个顶点出发可以引几条对角线?n边形有多少条对角线?表达式中的(n—3)是什么意思?为什么要除以2?

反思小结:当n为已知时,可以直接代入求得对角线的条数,当对角线条数已知时,可以化为方程来求多边形的边数。

小组讨论:如何灵活运用多边形对角线条数的规律解题?

针对训练:见《学生用书》相应部分

正多边形的有关概念

活动二:阅读教材P20。

展示点评:画图说明什么是凸多边形和凹多边形?正多边形要求的条件是什么?边数最少的正多边形是什么?

小组讨论:判断一个多边形是否是正多边形的条件?

反思小结:由正多边形的概念知:满足各边、各角分别相等的多边形是正多边形。

针对训练:见《学生用书》相应部分

四、总结梳理,内化目标

本节学习的数学知识是:

1、多边形、多边形的外角,多边形的对角线。

2、凸凹多边形的概念。

五、达标检测,反思目标

1、下列叙述正确的是(D)

A、每条边都相等的多边形是正多边形

B、如果画出多边形某一条边所在的直线,这个多边形都在这条直线的同一侧,那么它一定是凸多边形

C、每个角都相等的多边形叫正多边形

D、每条边、每个角都相等的多边形叫正多边形

2、小学学过的下列图形中不可能是正多边形的是(D)

A、三角形B。正方形C。四边形D。梯形

3、多边形的内角是指多边形相邻两边组成的角;多边形的外角是指多边形的边与它的邻边的延长线组成的角;多边形的内角和它相邻的外角是邻补角关系。

4、已知一个四边形的四个内角的比为1∶2∶3∶4,求这个四边形的各个内角的度数。

篇8:八年级数学上册教案

教学目标

1.认识变量、常量.

2.学会用含一个变量的代数式表示另一个变量.

教学重点

1.认识变量、常量.

2.用式子表示变量间关系.

教学难点

用含有一个变量的式子表示另一个变量.

教学过程

Ⅰ.提出问题,创设情境

情景问题:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.行驶时间为t小时.

1.请同学们根据题意填写下表:

t/时 1 2 3 4 5

s/千米

2.在以上这个过程中,变化的量是________.变变化的量是__________.

3.试用含t的式子表示s.

Ⅱ.导入新课

首先让学生思考上面的几个问题,可以互相讨论一下,然后回答.

从题意中可以知道汽车是匀速行驶,那么它1小时行驶60千米,2小时行驶2×60千米,即120千米,3小时行驶3×60千米,即180千米,4小时行驶4×60千米,即240千米,5小时行驶5×60千米,即300千米……因此行驶里程s千米与时间t小时之间有关系:s=60t.其中里程s与时间t是变化的量,速度60千米/小时是不变的量.

这种问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化过程.其实现实生活中有好多类似的问题,都是反映不同事物的变化过程,其中有些量的值是按照某种规律变化,其中有些量的是按照某种规律变化的,如上例中的时间t、里程s,有些量的数值是始终不变的,如上例中的速度60千米/小时.

[活动一]

1.每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元.设一场电影售票x张,票房收入y元.怎样用含x的式子表示y?

2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含有重物质量m的式子表示受力后的弹簧长度?

引导学生通过合理、正确的思维方法探索出变化规律.

结论:

1.早场电影票房收入:150×10=1500(元)

日场电影票房收入:205×10=20xx(元)

晚场电影票房收入:310×10=3100(元)

关系式:y=10x

2.挂1kg重物时弹簧长度: 1×0.5+10=10.5(cm)

挂2kg重物时弹簧长度:2×0.5+10=11(cm)

挂3kg重物时弹簧长度:3×0.5+10=11.5(cm)

关系式:L=0.5m+10

通过上述活动,我们清楚地认识到,要想寻求事物变化过程的规律,首先需确定在这个过程中哪些量是变化的,而哪些量又是不变的.在一个变化过程中,我们称数值发生变化的量为变量(variable),那么数值始终不变的量称之为常量(constant).如上述两个过程中,售出票数x、票房收入y;重物质量m,弹簧长度L都是变量.而票价10元,弹簧原长10cm……都是常量.

[活动二]

1.要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含有圆面积S的式子表示圆半径r?

2.用10m长的绳子围成矩形,试改变矩形长度.观察矩形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律:设矩形的长度为xcm,面积为Scm2.怎样用含有x的式子表示S?

结论:

1.要求已知面积的圆的半径,可利用圆的面积公式经过变形求出S= r2r=

面积为10cm2的圆半径r= ≈1.78(cm)

面积为20cm2的圆半径r= ≈2.52(cm)

关系式:r=

2.因矩形两组对边相等,所以它一条长与一条宽的和应是周长10cm的一半,即5cm.

若长为1cm,则宽为5-1=4(cm)

据矩形面积公式:S=1×4=4(cm2)

若长为2cm,则宽为5-2=3(cm)

面积S=2×(5-2)=6(cm2)

… …

若长为xcm,则宽为5-x(cm)

面积S=x?(5-x)=5x-x2(cm2)

从以上两个题中可以看出,在探索变量间变化规律时,可利用以前学过的一些有关知识公式进行分析寻找,以便尽快找出之间关系,确定关系式.

Ⅲ.随堂练习

1.购买一些铅笔,单价0.2元/支,总价y元随铅笔支数x变化,指出其中的常量与变量,并写出关系式.

2.一个三角形的底边长5cm,高h可以任意伸缩.写出面积S随h变化关系式,并指出其中常量与变量.

解:1.买1支铅笔价值1×0.2=0.2(元)

买2支铅笔价值2×0.2=0.4(元)

……

买x支铅笔价值x×0.2=0.2x(元)

所以y=0.2x

其中单价0.2元/支是常量,总价y元与支数x是变量.

2.根据三角形面积公式可知:

当高h为1cm时,面积S= ×5×1=2.5cm2

当高h为2cm时,面积S= ×5×2=5cm2

… …

当高为hcm,面积S= ×5×h=2.5hcm2

篇9:八年级数学上册教案

Ⅰ.教学任务分析

教学目标

知识与技能 使学生理解正比例函数的概念,会用描点法画正比例函数图象,掌握正比例函数的性质.

过程与能力 培养学生数学建模的能力.

情感与态度 实例引入,激发学生学习数学的兴趣.

教学重点 探索正比例函数的性质.

教学难点 从实际问题情境中建立正比例函数的数学模型.

Ⅱ.教学过程设计

问题及师生行为 设计意图

一、创设问题,激发兴趣

【问题1】将下列问题中的变量用函数表示出来:

(1)小明骑自行车去郊游,速度为4km/h,其行驶路程y随时间x变化而变化;

(2)三角形的底为10cm,其面积y随高x的变化而变化;

(3)笔记本的单价为3元,买笔记本所要的钱数y随作业本数量x的变化而变化.

解:(1)y=4x;(2)y=5x;(3)y=3x.

教师提出问题,学生独立思考并回答问题.

教师点评,并且提醒学生注意用x表示y. 问题引入,为新知作好铺垫.

二、诱导参与,探究新知

思考:观察函数关系式:

① y=4x; ② y=5x; ③ y=3x.

这些函数有什么特点?

都是y等于一个常量与x的乘积.

教师提出问题,并引导学生观察:

学生观察思考并回答问题.

三、引导归纳,提炼新知

(板书)正比例函数的概念:

一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数.

注意:x 的取值范围是全体实数.

由教师引导,学生观察得出结论.体现学生为主体,教师为主导的关系.

通过板书,突出本节课的重点.

四、指导应用,发展能力

1.下列函数是否是正比例函数?比例系数是多少?

(1) 是,比例系数k=8. (2) 不是.

(3) 是,比例系数k= . (4) 不是.

填空

1.若函数y=(2m2+8)xm2-8+(m+3)是正比例函数,则m的值是___-3____.

题 1请学生口答, 题2学生独立完成,并到黑板板书,教师评价书写规范.

在本次活动中,教师要关注:

学生能否准确地理解正比例函数的定义,注意二次项系数不能为0.

五、探究新知

例1 画出正比例函数y=x的图象.

解:(1)列表:

x --- -2 -1 0 1 2 ---

y --- -2 -1 0 1 2 ---

画出函数y=x的图象.

(1)列表: (2)描点: (3)连线:

想一想

除了用描点法外,还有其他简单的方法画正比例函数图象吗?

根据两点确定一条直线,我们可以经过原点与点(1,k)画直线,即两点法.

同理,画出y=-x的图象.

师生共同分析:两个图象的共同点:都是经过原点的直线.不同点:函数y=x的图象从左向右呈上升状态,即随着x的增大y也增大,经过第一、三象限.

函数y=-x的图象从左向右呈下降状态,即随x增大y反而减小,经过第二、四象限.

归纳:一般地,正比例函数y=kx(k是常数,k≠ 0)的图象是一条经过原点的直线.

当k>0时,图象经过一、三象限,从左向右上升,即随x的增大y也增大;

当k<0时,图象经过二、四象限,从左向右下降,即随x增大y反而减小.

由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.

六、指导应用,发展能力

例2 在同一直角坐标系中画出y=x,y=2x,y=3x的函数图象,并比较它们的异同点.

相同点:图象经过一、三象限,从左向右上升;

不同点:倾斜度不同, y=x,y=2x,y=3x的函数图象离y轴越来越近.

例3 在同一直角坐标系中画出y=-x,y=-2x,y=-3x的函数图象,并比较它们的异同点.

相同点:图象经过二、四象限,从左向右下降;

不同点:倾斜度不同, y=-x,y=-2x,y=-3x的函数图象离y轴越来越近.

在y=kx中,k的绝对值越大,函数图象越靠近y轴.

篇10:八年级数学上册教案

【教学目标】

知识目标:

解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算。

能力目标:

(1)经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力;

(2)体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力。

情感目标:

充分调动学生学习的积极性、主动性

【教学重点】

单项式与多项式的乘法运算

【教学难点】

推测整式乘法的运算法则。

【教学过程】

一、复习引入

通过对已学知识的复习引入课题(学生作答)

1.请说出单项式与单项式相乘的法则:

单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。

(系数×系数)×(同字母幂相乘)×单独的幂

例如:( 2a2b3c) (-3ab)

解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c

= -6a3b4c

2.说出多项式2x2-3x-1的项和各项的系数项分别为:2x2、-3x、-1系数分别为:2、-3、-1

问:如何计算单项式与多项式相乘?例如:2a2· (3a2 - 5b)该怎样计算?

这便是我们今天要研究的问题。

二、新知探究

已知一长方形长为(a+b+c),宽为m,则面积为:m(a+b+c)

现将这个长方形分割为宽为m,长分别为a、b、c的三个小长方形,其面积之和为ma+mb+mc因为分割前后长方形没变所以m(a+b+c)=ma+mb+mc

上一等式根据什么规律可以得到?从中可以得出单项式与多项式相乘的运算法则该如何表述?(学生分组讨论:前后座为一组;找个别同学作答,教师作评)

结论单项式与多项式相乘的运算法则:

用单项式分别去乘多项式的每一项,再把所得的积相加。

用字母表示为:m(a+b+c)=ma+mb+mc

运算思路:单×多

转化

分配律

单×单

三、例题讲解

例计算:(1)(-2a2)· (3ab2– 5ab3)

(2)(- 4x) ·(2x2+3x-1)

解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②

(2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①

篇11:八年级数学上册教案

教学目标

知识与能力:

1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.

2.理解平行四边形的另一种判定方法,并学会简单运用.

过程与方法:

1.经历平行四边行判别条件的探索过程,在有关活动中发展学生的合情推理意识.

2.在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.

情感、态度与价值观:

通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.

教学方法启发诱导式 教具 三角尺

教学重点平行四边形判定方法的探究、运用.

教学难点对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用

教学过程:

第一环节 复习引入:

问题1:

1.平行四边形的定义是什么?它有什么作用?

2.判定四边形是平行四边形的方法有哪些?

(1)两组对边分别平行的四边形是平行四边形.

(2)一组对边平行且相等的四边形是平行四边形.

(3)两条对角线互相平分的四边形是平行四边形.

第二环节 探索活动

活动:

工具:两对长度分别相等的木条。

动手:能否在平面内用这四根笔摆成一个平行四边形?

思考1.1:你能说明你所摆出的四边形是平行四边形吗?

已知:四边形ABCD中,AD=BC,AB=CD. 试说明四边形ABCD是平行四边形.

思考1.2:以上活动事实,能用文字语言表达吗?

学生以小组为单位,利用课前准备好的学具动手操作、观察,完成探究活动1,共同得到:

(1)只有将两两相等的木条分别作为四边形的两组对边才能得到平行四边形.

(2)通过观察、实验、猜想到:

两组对边分别相等的四边形是平行四边形.

在此活动中,教师应重点关注:

(1)学生在拼四边形时,能否将相等两木条作为四边形的对边;

(2)转动四边形,改变它的形状的过程中,能否观察得到在此过程中它始终是一个平行四边形;

(3)学生能否通过独立思考、小组合作得出正确的证明思路.

第三环节 巩固练习

例1 如图:在四边形ABCD中,∠1=∠2,∠3=∠4.四边形ABCD是平行四边形吗?为什么?

八年级数学上册教案例2 如图所示,AC=BD=16,AB=CD=EF=15,CE=DF=9,图中有哪些互相平行的线段?

随堂练习

1.判断下列说法是否正确

(1)一组对边平行且另一组对边相等的四边形是平行四边形 ( )

(2)两组对角都相等的四边形是平行四边形 ( )

(3)一组对边平行且一组对角相等的四边形是平行四边形 ( )

(4)一组对边平行,一组邻角互补的四边形是平行四边形 ( )

2.有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?为什么?

3.如图所示,四个全等的三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由.

4.如图:AD是ΔABC的边BC边上的中线.

(1)画图:延长AD到点E,使DE=AD,连接BE,CE;

(2)判断四边形ABEC的形状,并说明理由.

第四环节 小结:

师生共同小结,主要围绕下列几个问题:

(1)判定一个四边形是平行四边形的方法有哪几种?

(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?

(3)平行四边形判定的应用 集备意见 个案补充

篇12:人教小学四年级数学上册教案

教学目标:

1、知识与技能。认识自然数,知道自然数可以分为奇数和偶数。了解自然数的规律以及奇数和偶数规律。

2、过程与方法。通过数一数,看一看,议一议,说一说等活动,引导学生经历知识的形成过程。

3、情感态度与价值观。感受生活中的数学,培养学生语言表达能力、概括能力以及用数学解决问题的能力。

教学重难点:

引导学生经历发现数学规律的形成过程,体验成功的感受。

教学准备:

七彩泡泡一瓶,幻灯片(电影院图片、练习题),小试卷。

教学过程:

一、创设情境

师:同学们,今天老师给大家带来了一个礼物,大家看是什么? 教师出示七彩泡泡。

请一名学生来吹泡泡。其他同学注意发现其中的数学问题。 生开始吹泡泡。

吹了一会儿,师喊停。

问:发现了什么数学问题?

有的学生说一共12个泡泡,有的说10个,还有的说13个……

师:这样吧,让这位同学重新吹一下,我们大家一起大声的数出来。

一生吹泡泡,其他人数:1、2、3、4、5、6、7、8、9、10、11、12、13、14、…… 师板书。

师写到20多的时候停了下来。

说:我太累了,什么时候能数完?

生:数到10000。

师:数到一万还能接着数吗?

生:能。10001,10002…

生:永远也数不完。

师:永远也数不完我应该用什么号结束?

生:省略号,代表还有无数个数。

师拿起七彩泡泡说:我也会吹。结果一个也没吹出来。这应该用几表示?

生:0. 师板书。

二、探索建模

探索自然数的规律。

师揭示:像0、1、2、3、4、5、6、7、8、9、10、11、12、13……这样数出来的数我们把它们叫做自然数。

板书课题。

今天我们就来研究一下自然数。自然数除了可以这样一个一个写出来,还可用直线上的点来表示。

师在黑板上画数轴表示。

接下来我们一起研究研究自然数有哪些特点?

学生讨论。全班汇报。

师在学生汇报时注意帮学生完善语言,适时引导。

引导学生明确(幻灯片出示):

⑴最小的自然数是0,没有的自然数。

⑵自然数的个数是无限的。

⑶相邻的两个自然数相差1.

3、再次体验。

⑴小游戏数一数。老师说一个数,学生接着数。

⑵幻灯片出示数轴,学生填空。

⑶(幻灯片出示)选一选哪些是自然数,哪些不是。

4、找一找生活中的自然数。

学生自由发言。如日历,电话号,车牌号书页…

5、探索奇数和偶数的规律。

师:自然数在生活中处处可见,请看老师找到的图片。(幻灯片出示电影院的座位号)

同学们读一读,师板书。

1、 3、 5、 7、 9 11、13、15、17、19 21、23、25、27、29…… 这些数有什么特点?

生:都是单数。

师:对,我们把生活中的单数叫做奇数。 奇数有哪些特点? 学生讨论,汇报。

最后(幻灯片出示)师总结这都是刚才大家自己总结的:

⑴最小的奇数是1,没有的奇数。

⑵奇数的个数是无限的。

⑶相邻的两个奇数相差2.

⑷奇数的个位分别是1、3、5、7、9. 同样的方法认识偶数。

放手让学生自己总结偶数的规律。

6、小游戏。

抢答:快速判断老师说的数是奇数还是偶数。

100045、140、3000019…

说一说怎样快速判断。

生:就是看个位。个位是1、3、5、7、9的数是奇数。个位是0、2、4、6、8的数偶数。

三、应用实践

小试卷

1、选择自然数,奇数,偶数,填到合适的圈内。

2、填数轴。

3、填数列。 全班订正同桌互判。

全课小结。

篇13:八年级数学教学计划人教板

一、学生知识现状的分析:

本班学生虽已是八年级的学生,但是思想上仍不成熟,属于玩心较重的一群孩子。他们有想学好的心,但因为懒,缺乏恒心,学习基础差以及学习能力的欠缺,全班平均成绩仍属于年级中下水平。

本班学生思想单纯,也乐于接受老师的批评,但是诚恳的答应之后却总是缺乏实际行动,或是三分钟热度。另外,学生的.行为习惯比较差,常常有点随心所欲,但都没有太坏的心眼,一旦被老师指出也会乐于接受,但是反复性较强。因为爱玩,因为没有恒心,所以学生整体的学习习惯比较差,这形成了恶性循环,也导致成绩止步不前。

二、本学期教学的主要任务和要求

上半学期完成第一章到第四章第四节,下半学期完成第四章第五节到本册教材结束。掌握平方根与立方根、实数、平面坐标系、一次函数、勾股定理、四边形性质等知识并形成相应数学技能。在情感与价值观上认识图形中的数量关系,培养学生的实事求是认真严肃的学习态度,在民主和谐合作的学习过程中养成独立探究勤与思考大胆创新,发展学生的非智力因素提高学生的数学素质与素养。

三、教材的重点和难点(章节):

重点:勾股定理探索、四边形性质的探索、实数的概念、一次函数图象及其应用、二元一次方程组及其应用。而勾股定理探索、四边形性质的掌握一次函数图象及其应用的数形结合技能、二元一次方程组及其应用能力培养又是难点。

四、本学期提高教学质量的主要措施:

1、教师要使每个学生都能够在学习过程中获得最适合自己的发展;

2、适时向学生提供现实的有趣的和富有挑战性的素材;

3、尽量为学生提供探索、交流的时间和空间;

4、向学生展示知识的形成和应用过程;

5、让每个学生尽可能获得最大发展

【人教新版八年级数学上册教案】相关文章:

1.八年级数学上册教案

2.初中数学八年级上册教案

3.人教版八年级数学上册教案

4.数学因式分解八年级上册教案

5.人教三年级上册数学期中考试卷

6.八年级上册数学期末复习教案

7.粤教版八年级地理上册教案

8.《三峡》教学案(八年级上册)

9.八年级上册数学教学计划

10.八年级上册数学期末试卷

下载word文档
《人教新版八年级数学上册教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部