欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 实用文>第八单元《分数加法和减法》教材分析 备课资料(北师大版五年级下册)

第八单元《分数加法和减法》教材分析 备课资料(北师大版五年级下册)

2024-01-21 07:44:58 收藏本文 下载本文

“那个谁哈”通过精心收集,向本站投稿了7篇第八单元《分数加法和减法》教材分析 备课资料(北师大版五年级下册),下面是小编为大家整理后的第八单元《分数加法和减法》教材分析 备课资料(北师大版五年级下册),仅供参考,欢迎大家阅读,希望可以帮助到有需要的朋友。

第八单元《分数加法和减法》教材分析 备课资料(北师大版五年级下册)

篇1:第八单元《分数加法和减法》教材分析 备课资料(北师大版五年级下册)

三年级(上册)教材已经教学了同分母分数的加、减法,本单元教学异分母分数的加法和减法,内容分三部分编排。

第80~82页教学两个分数相加或相减,重点是异分母分数的加、减法。

第83~85页教学三个分数的加、减计算,积累一些计算经验。

第86~87页实践与综合应用,介绍一些有关图形密铺的知识。

1 在现实的情境里体会计算异分母分数的加法和减法,要先通分。

在掌握了同分母分数加、减法的基础上,教学异分母分数加、减法,重点在先通分,把异分母分数转化成同分母分数后计算。教材把“先通分”不单看成法则,还看作策略,设计了“体验--迁移--总结”的教学线索。

例1在计算12+14的情境中体验为什么要先通分。第一种方法是根据12和14的意义,用折纸和涂色的方法计算。把一张长方形纸对折涂色表示这张纸的12,如果表示14,还要把这张纸再对折一次。经过两次对折,12变成24,12+14变成24+14。学生在操作中初步感受到异分母分数相加可以转化成同分母分数相加。第二种方法是考虑12和14的分母不同,如果把这两个分数化成同分母分数,就可以用“分子相加、分母不变”的方法写出结果,由此诱发出先通分再计算的方法。

在理出计算12+14的思路后,用填空的形式完成计算,教学了异分母分数相加的算法。“试一试”对学生是有挑战性的,先是把异分母分数加法的计算经验迁移到异分母分数减法中来。然后联系1可以写成分子、分母相等的分数的知识,计算1-49。计算结果能约分的要约成最简分数,也是以前没有遇到的情况。教材要求验算两道减法的计算,除了确认或纠正计算外,还有两个目的: 一是在验算56-13=12时再进行一次异分母分数加法计算,从而巩固算法;二是让学生体会49+59=99=1,并应用到以后的计算中去。

经过例1和“试一试”,对异分母分数加法和减法有了体验,教材通过“要注意些什么”引导学生思考和交流,及时总结算法,掌握新知识。

练习十四配合例1的教学,在安排上有两个显著特点。一是重视对计算法则的掌握。第1题通过在图形中涂色写得数,再次体验同分母分数可以直接相加,异分母分数要先通分再相加。第2题通过题组比较,尤其是前两组题参加运算的两个分数相同,进一步体会异分母分数的加法和减法都要先通分。第5题是特殊的分数相加、减,这些分数的特殊表现在两点上: 它们的分子都是1;同一道题里的两个分数的公分母是这两个分数分母的乘积。这些题都要先通分,再加、减。如果能发现并理解下面的规律,是非常好的收获: 这样的特殊分数相加,和的分子是两个加数的分母相加,和的分母是两个加数的分母相乘;这样的特殊分数相减,差的分子是减数的分母减被减数的分母,差的分母是被减数与减数的分母相乘。二是重视培养数感。第6题在八个分数中找出最接近0、1和12的分数,最接近0的应该是这些分数中最小的那一个;最接近1的应该是其中最大的1个;最接近12的是分子乘2最接近分母的那一个。这些经验的获得,是关于数感的体验,也是进行第7题的估计所需要的经验。

2 通过三个分数的加法和减法,培养计算能力。

例2教学三个分数的加、减计算,而且被减数是1。这道例题要解决两个问题: 一是为什么把被减数写成1,二是怎样计算。

本册教材第36页在概括分数的意义时说: 一个物体、一个计量单位、一个整体,都可以用自然数1来表示,把它看作单位“1”。这道例题里把花园的面积看作单位“1”,所以它可以用自然数1来表示。围绕“大象”卡通提出的问题进行讨论,不仅要找到看作单位“1”的量,还要把它表示为数1,参与列式和计算。

例2在列出算式以后,把计算留给学生完成。这是由于他们已经能计算两个异分母分数的加法和减法,应用已有的计算知识解决新颖的计算问题,能积累计算经验,发展计算能力。在某种意义上说,也是在实践中创新。计算列出的两个式子,要把1写成分子、分母相等的假分数,在例1的“试一试”里已经这样做了。计算1-14+13,由于先算14+13=712,因此把1写成1212是毫无疑问的。计算1-14-13,会出现两种情况。如果从左往右依次计算,那么把1写成44,先减14得34,再算34-13;如果先把14和13通分,分别化成312和412,那么1只要写成1212。这两种算法都是好的,也是教材预计到的,允许学生喜欢怎样算就怎样算。

在此基础上计算“练一练”里的59+23-25,学生中可能出现两种算法:

59+23-25

=119-25

=3745

59+23-25

=2545+3045-1845

=3745

前一种算法比较适宜多数学生,因为按运算顺序可以分两步计算,而且每一步计算都是两个异分母分数加法或减法,和例1是衔接的,有利于巩固基础知识和基本技能。后一种算法要把三个分数同时通分,而第三单元只教学求两个数的最小公倍数,第六单元只教学两个异分母分数的通分。如果学生有能力这样算是可以的,如果没有这样的能力则不必勉强。更不要补充教学求三个数的最小公倍数和三个异分母分数的通分等内容。

练习十五第1~4题配合例2的教学。可以看到,安排的纯计算题不多,仅第1题中有4道。这是因为对三个分数的加法和减法的教学要求是学生能正确地计算,只要两个异分母分数的加法和减法掌握得比较好,达到这样的要求并不困难,完全不需要大量的练习。但是有两点要提醒学生注意: 如果最后的得数不是最简分数,应该约分;如果最后的得数是假分数,不必一定化成带分数。

在练习十五第6~9题里进一步培养计算技能,发展思维的灵活性,包括三方面内容。一个内容是应用加法运算律进行简便计算。第6题里有两道分数连加的题,要求都用两种方法计算: 一种方法是按异分母分数加法的一般算法计算,另一种方法是应用加法运算律计算。从中体会两种算法的得数相同,后一种方法的计算简便,并研究计算简便的原因。从而得到两点收获: 一是确认整数加法的运算律,对分数加法同样适用;二是为第8题的简便计算作充分的准备。第二个内容是体会减法的性质。第7题中同组两道题的运算顺序不同,得数相同。说明一个数减两个数的和,可以用被减数逐个减这两个数。反之,一个数连续减两个数,可以用被减数减两个减数的和。在整数减法和小数减法中,都让学生体验过这样的规律。现在再次体验,可以加强感受。但暂时不要求应用于简便计算。第三个内容是第9题的解方程。以前只在整数和小数范围内解这些方程,把解方程扩展到分数范围,是新知识的灵活应用。

篇2:第四单元《认识分数》教材分析 备课资料(北师大版五年级下册)

学生在三年级教材里初步认识了分数,其中三年级(上册)教材是一个物体(或图形)的几分之一、几分之几,(下册)教材是若干个物体组成的整体的几分之一、几分之几。本单元继续教学分数的意义,涉及的有关知识比较多,大致分成五部分编排。

第36~37页分数的意义和分数单位。

第38~43页真分数与假分数,用分数表示两个数量的关系。

第44~46页分数与除法的关系,用分数表示除法的商。

第47~50页带分数,假分数化成整数或带分数,分数与小数相互改写。

第51~54页全单元内容的整理与练习。

编排的三道思考题都与本单元教学的知识直接有关,对理解分数意义和发展数感十分有益。

1 教学分数的定义,重点是建立单位“1”的概念。

把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。这是关于分数的描述式定义,单位“1”、平均分、表示一份或几份的数是定义里的三个主要内涵。相对于后两个内涵,单位“1”较难理解,是教学分数意义的关键,是必须突破的难点。

例1的教学分四步进行: 第一步用分数表示一块饼、一个长方形、一根表示1米的线条、一个集合的几分之一或几分之几,并结合图说说写出的每个分数的含义。引起对已有知识的回忆,感受被平均分的对象是非常广泛的,为建立单位“1”的概念积累具体的感性材料。第二步告诉学生,被平均分的一个物体、一个计量单位或一个整体都可以用自然数1来表示,通常把它叫做单位“1”。这里把“自然数1”作为建立单位“1”的台阶,出于两个原因: 首先是被平均分的对象都是“一个”,即一个物体、一个计量单位、一个集合,“一个”用自然数“1”表示,学生容易接受。先理解可以用自然数1表示,再提升成单位“1”,降低了认知的坡度。其次是体现了分数与自然数是有联系的,有利于后面教学假分数。第三步回答“大象”卡通提出的问题,再认各个分数的单位“1”是什么,使抽象的概念回归到具体实例中去。第四步揭示分数的意义和分数单位的含义,由于在前三步的教学中建立了单位“1”的概念,这一步的教学就顺理成章了。

“练一练”和练习六通过写分数和解释分数,进一步体会单位“1”和分数的意义。如“练一练”写分数时,要看懂每幅图里把什么看成单位“1”,平均分成几份,几份涂了颜色。思考和交流都是围绕分数意义展开的。又如练习六第2题在三个图里涂色表示23,从中体会看作单位“1”的对象不同,各次涂色的桃的个数也不同。第3题说分数的意义,是以后分析分数乘、除法实际问题数量关系的基本思路。由第(1)小题作了示范,要求说清楚把什么看作单位“1”,平均分成几份,另一个数量有这样的几份。第5题写成的两个分数有相同的单位“1”,由于平均分的份数不同,所以表示1份的分数也不同。通过这些练习,学生对分数意义的三个内涵会有整体的感受。

2 以分数单位为新知识的生长点,教学真分数和假分数。

在例2之前,学生接触的分数都是分子比分母小的分数。例2和例3陆续引出分子和分母相等以及分子比分母大的分数,然后把以前认识的分数和例题里新认识的分数进行比较、分类,得出真分数和假分数。

例2以分数单位为知识生长点,通过推理表示出假分数。先在三个同样的圆里涂颜色分别表示14、34和44,从已经认识的分数带出44,并通过说说每个分数各有几个14,理解44的意义,初步体会几个14是四分之几;再在图形中涂颜色表示5个14,利用“5个14是几分之几”这个问题,引导学生结合看图写出54,再次体会几个14是四分之几。理解1个圆只能表示4个14,表示5个14需要2个圆非常重要,不仅直观感受54的意义,而且有利于以后认识带分数以及假分数化成带分数的方法。

例3继续教学分子比分母大的分数,先出现三个分母都是5的分数,说说这些分数各有几个15,并在图形里涂颜色表示。这样的安排充分利用例2的基础,紧紧抓住分数的意义,让学生在说和画的活动中主动理解这些分数的意义。而且,学生经历四分之几到五分之几的扩展,对其他分母的分数意义也能理解了。

例2和例3先后出现七个分数,有分子比分母小的、分子比分母大的以及分子和分母相等的各种情况,这就具备了教学真分数、假分数的条件。教材的安排是先比较各个分数分子和分母的大小,再把七个分数分成两类,分别定义真分数和假分数。学生按分子、分母的大小,往往把七个分数分成三类,这是正常的现象。教学时只要把分子比分母大和分子与分母相等这两类分数合并起来,指出它们都是假分数。

练习七第1~4题是配合真分数、假分数的教学编排的。第1题在直线上指出表示各分数的点,是再次体会分数的意义。三小题里的分数分别表示几个12、几个13和几个15。依次读读各组的分数,找出其中的真分数和假分数,能巩固真分数与假分数的概念。看看表示真分数和假分数的点各在直线的哪一段上,初步体会真分数比1小,分子和分母相等的假分数等于1,分子比分母大的假分数大于1,进一步充实对真分数和假分数的认识。在解答第4题时,需要运用这些认识,才能比较每组两个数的大小。

3 用分数表示同类两个数量的关系,扩展对分数意义的理解。

分数的意义表达的是部分与整体的关系。如地球表面有71100被海洋覆盖,地球的表面是整体,把它看作单位“1”;被海洋覆盖的是其中的一部分,占整体的71100。事实上,分数的应用不局限于部分与整体关系的范畴,还经常用来表示两个同类数量之间的关系。让学生体会分数能表示两个同类数量的关系,扩展对分数意义的理解,有利于应用分数知识解决实际问题。这些正是例4、例5的编排意图。

例4利用直观的图画,引导学生把已有的分数概念迁移到新的情境中来。图画里一条红彩带平均分成4份,另一条黄彩带和红彩带中的一份同样长,很容易看出黄彩带的长是红彩带的14。教材要求学生表达得出14的思考,仔细体会其中的推理: 红彩带平均分成4份,其中的1份是它的14;因为黄彩带与红彩带的1份同样长,所以黄彩带的长是红彩带的14。学会思考是这道例题的教学要求,但不要机械套用某种语言模式。要抓住分数的意义,体会黄彩带与红彩带的长度关系。“试一试”是例题的延伸,红彩带仍旧平均分成4份,蓝彩带的长与红彩带里的3份同样长,是红彩带的34。从黄彩带的长是红彩带的14到蓝彩带的长是红彩带的34,学生初步体会到分数可以表示两个长度的关系。

例5在红彩带的下面画绿彩带,体会“绿彩带的长是红彩带的54”这个关系的含义。以画促思是例题的编写特点,如果让学生先猜一猜画出的绿彩带比红彩带长还是短,并说出理由,既能激起兴趣,又能引发思考。“试一试”把花彩带的长与红彩带的长相互比较,提出了两个问题。体会两个问题不同,辨清各是什么彩带与什么彩带相比,才能正确地用分数表示两个长度的关系。要联系图画,理解前一个问题是花彩带与红彩带比,把红彩带平均分成4份,花彩带的长有这样的7份。后一个问题是红彩带与花彩带比,把花彩带平均分成7份,红彩带的长是这样的4份。

练习七第5~8题配合例5的教学。这些题分别通过线段图、平行四边形、实物图、统计图呈现数量,能让学生感受生活中经常用分数表示数量关系。更重要的是深刻体会,解决一个数是另一个数的几分之几的问题,必须分析谁和谁比,找到作为单位“1”的数量。

4 通过操作活动感受分数与除法的关系。

例6教学分数与除法的关系,在“试一试”“练一练”里应用这种关系,用分数表示除法算式的商和计量单位换算的结果。

分数与除法的关系历来是教学难点。为了有效地突破难点,例题里安排两次分饼活动,让学生充分体验每人分得的块数是饼的块数分饼的人数,从丰富的感性材料中发现规律。第一次分饼活动,把3块饼平均分给4个小朋友。在表现场景的图画里,能清楚看到饼的块数比分的人数少,每人分得的饼不满1块;在列出的算式里,被除数小于除数,商比1小。这些矛盾激起学生动手分一分的愿望。交流两种分法,不仅得出每人分得34块的结论,还要在第一种分法中理解3个14块是34块,在第二种分法中理解3块的14是34块。这些是分饼活动里的数学问题,是两种分法的本质区别。理解数学问题,能使分饼活动在头脑中留下清楚的印象。第二次分饼,把3块饼平均分给5个小朋友。这次活动的特点是“想”出每人分得的块数,要在前一次分饼经验的基础上,通过每人分得3个15块或3块的15得出结果。

让学生观察3÷4=34和3÷5=35,从数学现象里发现规律,用两种形式表达分数与除法的关系。先用语言讲述和用数量关系式表示,在充分的交流中理解新知识。再写成字母组成的等式,并从除数不能是0,推断分数的分母不能是0,建立新知识的数学模型。两种表达形式,前一种具体详细,后一种概括简明,可以看成理解分数与除法关系的两个层次。

“练一练”第1题既用分数表示除法运算的商,又把分数改写成除法算式,使学生对分数与除法关系的理解更完整,掌握得更扎实。“试一试”和“练一练”第2题都是把较小计量单位的数改写成较大计量单位的数,在五年级(上册)教学小数知识时,曾经解决过这些实际问题。现在再次出现这些问题,有两点变化: 一是用分数与除法的关系,把较大单位的数写成分数;二是改写的范围不局限于进率是10、100或1000的长度单位和质量单位,还扩展到时间单位的改写。

练习八配合分数与除法关系的教学而安排,除了分数与除法相互改写的练习外,还结合分数的意义应用分数与除法的关系。第3题从1米平均分成3份到2米平均分成3份,结合图示用填空的形式引导学生理解2米平均分成3份,每份有2个13米,是23米。这样的思路,经常用来解决实际问题。第4题里的两个问题既不相同,又有联系。求每人分得这袋糖的几分之几,要把这袋糖看成单位“1”,平均分成5份,如果写成算式是1÷5=15。求每人分得几分之几千克,可以通过2÷5=25(千克)计算,也可以通过每人分得2个15千克,是25千克的推理得到答案。在分别解答两个问题后,要进行比较,看到它们都是平均分的问题,都用除法计算;由于问题不同,两个除法算式的被除数不同。在解答第5题时,联系已有的经验学生能直接写出得数。题目要求先填出得数,再根据分数与除法的关系列出算式,是让学生体会求一个数是另一个数的几分之几的问题都能用除法计算。在此基础上,第53页第10题就提出了列式求出答案的要求。

5 先特殊后一般,通过改写假分数,教学带分数。

例7和例8主要教学带分数的知识,包括带分数的概念以及假分数化成带分数的方法。假分数等于1或者大于1,分子是分母倍数的假分数都能化成整数,分子不是分母倍数的假分数能写成带分数。例7和例8按这样的思路编排。

例7把44、105和287化成整数,其中的44和105分别在第38页例2和例3认识假分数时出现过。在教学分数与除法的关系后,又可以通过除法4÷4=1和10÷5=2算得它们分别等于1和2。因此,把44和105化成整数学生能够独立进行,而且思路与方法应该是多样的。交流的时候,把貌似不同的方法在本质上沟通起来,如画图形表示105,在里能够看到,5个15是1,10个15是2,从而体会分子除以分母是比较简便的方法。287在教材里首次出现,把它化成整数是在44和105化成整数的基础上进行的,分子除以分母很容易得出等于4。通过三个假分数化成整数的实例,教材引导学生研究这些分数的分子与分母的关系,理解能化成整数的假分数都是特殊的假分数,它们的分子都是分母的倍数。

特殊的假分数都能化成整数,其他假分数呢?这是许多学生的质疑,教材适时教学带分数的知识。先告诉学生,分子不是分母倍数的假分数虽然不能写成整数,但可以写成整数和真分数合成的形式,即写成带分数。然后以43为例,讲了把它写成带分数的思路以及带分数的写法和读法。43写成带分数的思路是把它分成33和13两部分,33是1,1和13合成的数是113。结合数轴有利于学生理解改写的思路,体会43写成113是合理的,它们可以用数轴上同一个点表示。还为例8的教学作了铺垫。

例8教学假分数化成带分数的方法。教学过程分两步进行: 第一步让学生联系带分数的含义,借鉴43化成113的经验进行改写。无论是画图的方法还是推理的方法,都是把114分成84和34两部分,再把2和34合起来写成234。画图的方法比较形象,推理比较抽象,两种方法相结合最适宜多数学生,这一点可以在交流时实现。第二步通过除法计算改写,要在理解的基础上应用这种方法。联系第一步的推算经验,能帮助学生理解算理,11÷4商2表示从11个14里分出2个44(即84),并把它看成整数2;余数3表示还剩3个14。所以114是2和34合成的数,可以写作234。教材里没有讲带分数的整数部分和分数部分,假分数化成带分数的方法只在实例中体会和应用,不需要形成严密的文字形式的法则。

两道例题分别教学假分数化成整数和化成带分数,第47页“怎样把假分数化成整数或带分数”引导学生整理新的认知结构。再通过“练一练”,把123、85等四个假分数分别化成整数或带分数,体会两种情况都要用分子除以分母的计算,最终化成不同形式的数是假分数的分子与分母之间是否存在倍数关系而决定的。

练习九第1~6题配合例7和例8的教学,其中第2题写出假分数和改写成带分数都要根据图意,一方面体会假分数可以写成整数和真分数合起来的形式,有利于理解带分数的含义。另一方面体会分子除以分母是假分数改写成带分数的方法,从而巩固例8教学的知识。第4题直线上面方框里的假分数,要根据分数单位以及几个13是三分之几的思路填写;直线下面方框里的带分数要根据带分数的概念填写,如1和23合成123、2和13合成213。如果再把各个假分数的分子除以分母,就能使假分数化成相应的带分数或整数。编排这道题是让学生更好地体会假分数和带分数的意义以及相互联系。另外,直线上下的33和1、63和2、93和3、123和4这四组数,要从每组的两个数都用直线上同一个点表示,每组的两个数可以互相改写等方面理解同组的数大小相等。尤其要思考1、2、3、4分别化成3的方法,为独立解答第5题作准备。第6题在比较数的大小时,学生可以联系多种分数知识进行思考。要鼓励策略多样,如56和76可以想分母相同,分子小的分数小;可以想5个16比7个16少;可以想56小于1,76大于1……交流各种思路和方法,有利于知识的融会贯通,发展思维的灵活性。

还有一点需要指出,本单元只教学假分数化成带分数,不教学带分数化成假分数。因为小学教学里不进行带分数的四则计算,不需要带分数化成假分数。更主要的原因是,教学带分数是为了更好地理解假分数,因为假分数化成整数或带分数,容易感受假分数的分数值。体会数值的大小,是建立数概念不可缺少的。

6 优化小数与分数相互改写的教学。

例9教学把分数化成小数,从两个女孩比谁的彩带长的实际问题里提出比较05和34的大小的数学问题。相比较的两个数,一个是小数、一个是分数,联系已有的小数米相比,间接得到05和34的大小关系。这种比较策略在以前是少见的,现在特地选编在例题里。另一种是把34化成小数,先比较两个小数的大小,再得出34与05谁大、谁小。把不同形式的数变成相同形式,也是一种策略。分数化小数的方法是例9教学的数学知识,只要应用分数与除法的关系,把分子除以分母,商写成小数就可以了。这些对学生来说是不困难的。有些分数的分子除以分母的商是循环小数,如“试一试”里的56,教材中有“除不尽的保留三位小数”的指示。“试一试”选择925和56两个分数化成小数,让学生清楚地知道,有些分数能化成有限小数,有些分数只能化成无限小数。至于什么样的分数能化成有限小数,什么样的分数不能,暂时不要深入研究。

例10教学小数化成分数,要应用小数的意义。只要回忆起一位小数表示十分之几、两位小数表示百分之几、三位小数表示千分之几等知识,把小数写成分数是很容易的。教材考虑到小数意义是以前的教材里教学的,靠例10的问题情境激活旧知识有困难。所以,安排了“象”帮助学生回忆。先对学生说“一位小数表示十分之几”,并把相应的0.3改写成310。然后让学生继续想两位小数、三位各表示几分之几,把0.13和0.213也改写成分数。

练习九第7~11题配合例9、例10的教学。第7题加强小数的意义,有利于把小数化成分数。第10、11两题都要比较一个小数与一个分数的大小,再解决问题的策略上讲,先把分数化成小数,再比两个小数的大小,或者先把小数化成分数,再比两个分数的大小,都是可以的。要让学生体会哪种方法简便些。一般情况下,把分数化成小数这种方法好些,因为接着比两个小数的大小很容易。如果把小数化成分数,接着比两个分数的大小,经常还要通分。再说,教材里还没有教学通分,采用化成分数的方法,暂时更不可取。与分数的知识,学生会有不同的思考。教材选择了两种典型的方法和学生交流,在教学基础知识的同时,发展解决问题的策略。一种方法是思考0.5米和3.4米的意义,凭数感进行比较。而且分别把0.5米、34米与1米相比,间接得到0.5和3.4的大小关系。这种比较策略在以前是少见的,现在特地选编在例题里。另一种是把3.4化成小数,先比较两个小数的大小,再得出3.4与0.5谁大.、谁小。把不同形式的数变成相同形式,也是一种策略。分数化小数的方法是例9教学的数学知识,只要应用分数与除法的关系,把分子除以分母,商写成小数就可以了。这些对学生来说并不困难。有些分数的分子除以分母的商是循环小数,如“试一试”里的56,教材中有“除不尽的保留三位小数”的要求。“试一试”选择925和56两个分数化成小数,让学生清楚地知道,有些分数能化成有限小数,有些分数只能化成无限小数。至于什么样的分数能化成有限小数,什么样的分数不能,暂时不要深入研究。

例10教学小数化成分数,要应用小数的意义。只要回忆起一位小数表示十分之几、两位小数表示百分之几、三位小数表示千分之几等知识,把小数写成分数是很容易的。教材考虑到小数意义是以前教学的,靠例10的问题情境激活旧知有困难。所以,通过“大象”卡通的话帮助学生回忆。先对学生说“一位小数表示十分之几”,并把相应的03改写成310。然后让学生继续想两位小数、三位各表示几分之几,把013和0213也改写成分数。

练习九第7~11题配合例9、例10的教学。第7题加强小数的意义,有利于把小数化成分数。第10、11题都要比较一个小数与一个分数的大小,从解决问题的策略上讲,先把分数化成小数,再比较两个小数的大小,或者先把小数化成分数,再比较两个分数的大小,都是可以的。要让学生体会哪种方法简便些。一般情况下,把分数化成小数这种方法好一些,因为接着比两个小数的大小很容易。如果把小数化成分数,接着比两个分数的大小,经常还要通分。再说,教材里还没有教学通分,采用化成分数的方法,暂时不可取。

篇3:第六单元《分数的基本性质》教材分析 备课资料(北师大版五年级下册)

本单元教学分数的基本性质,约分、通分,比较分数的大小等知识,让学生进一步理解分数的意义,并为分数四则计算作必要的准备。分数的基本性质是约分和通分的依据,比较几个异分母分数的大小往往先通分。根据知识间的联系,全单元内容分三部分编排。

第60~64页分数的基本性质,约分。

第65~68页通分,比较分数的大小。

第69~73页全单元内容的整理与练习,实践与综合应用。

1 精心安排探索分数基本性质的教学活动。

例1和例2教学分数的基本性质,按“呈现现象--发现规律--联系相关知识”的线索组织教学活动。

例1的图形是四个大小相等的圆,各个圆平均分的份数不同。用分数表示每个圆里的涂色部分,分别写出13、12、26、39四个分子、分母都不相同的分数。比较各个圆里的涂色部分,能够看到从左往右第1、3、4个圆的涂色部分大小相等,由此得到写出的分数大小相等,即13=26=39。这道例题让学生初步感受分子、分母都不相同的分数中,有些分数的大小相等,有些分数的大小不等。并对分子、分母不等,但分数大小相等的现象产生兴趣。

例2承接例1,在对折正方形纸的活动中又得出一些与12大小相等的分数,分别写成等式12=24、12=48、12=816,再次让学生感受分子、分母不同的分数,大小可以相等。写出的三个等式,是研究分数基本性质的素材。

教材分三步引导学生发现分数的基本性质。第一步研究例2每个等式中的两个分数,它们的分子、分母是怎样变化的,感受变化是有规律的。在记录变化的方式时,教材写出了乘号或除号,启示学生从分子、分母乘或除以一个数的角度去观察。让学生在括号里填数,体验分子、分母乘或除以的是相同的数,有助于发现规律。对每个等式的研究,既从左往右观察,也从右往左观察,充分利用了素材,从中获得尽量多的感性知识。填写连等式12=()()=()()=()(),把12、24、48、816有序地排列起来,能从中得到许多感受。如,12的分子、分母都乘2得到24,24的分子、分母都乘2得到48,48的分子、分母乘2得到816,照这样还能写出1632、3264……这些分数的大小都相等。又如,与12大小相等的分数有无数多个,每个分数的分子、分母除以相同的数都能得到12。

第二步利用例2的经验观察例1等式中的三个分数的分子、分母是怎样变化的,体会这些分数相等的原因和例2一样。而且分子、分母乘或除以的数,除了2、4、8,还可以是3和其他的数。这样,对分数基本性质的感受就更丰富了。

第三步概括两道例题中分子、分母变化但分数大小不变的规律。在充分交流之后,阅读教材里的叙述,理解“同时”乘或除以“相同”的数这些规范的语言,知道这个规律叫做分数的基本性质。联系除数不能是0,明白分数的分子、分母同时乘或除以的数不能是0,使得到的规律更严密。

在得出分数的基本性质后,教材还安排了两项活动: 一是根据分数的基本性质写出一组分数,要先任意写一个分数,再把它的分子、分母同时乘或除以相同的数,得到大小不变的分数。写出的一组分数,可以是两个分数,也可以是几个分数。这项活动起巩固分数基本性质的作用,还渗透了通分、约分所需要的思想。二是用整数除法中商不变的规律说明分数的基本性质,由于除法里的被除数和除数分别相当于分数的分子和分母,所以除法中商不变的规律和分数的基本性质是一致的。沟通这两个知识,有助于学生建立新的认知结构,进一步理解分数的基本性质。

练习十一第1~3题配合分数基本性质的教学。第1题继续体验分数基本性质的内容,在方格纸上涂色表示1224,再说出涂色部分还表示612、48、36、24、12等分数,还要从不同角度说明这些分数的大小相等。如,因为这些分数是用同一个涂色部分表示的,所以大小相等;又如,这些分数可以把1224的分子、分母同时除以2、3、4、6或12得出,所以大小相等。第2题应用分数的基本性质判断同组的两个分数是不是相等,其中两组分数的分子、分母没有除以相同的数,是学生初学分数的基本性质时容易出现的错误。这些反例能加强对分数基本性质的理解。第3题运用分数的基本性质对分数进行等值变化,是通分、约分需要的基本功。

2 让学生把分数等值改写,理解约分和通分。

例3教学约分,分三步安排。首先看图写出和1218相等,而分子、分母都比较小的分数,为理解约分的含义搭建认知平台。教学分数基本性质的时候,曾经用几个分子、分母不同,但大小相等的分数表示同一个图形里的涂色部分。现在联系这个经验教学约分,写出的分数分子、分母都应该比1218的分子、分母小,体会大小相等的分数中,分子、分母小的分数比较简单。这种体会在说说写分数时的思考能够获得,如长方形里的涂色部分,可以看作长方形的1218,也可以看作长方形的69、46或23。显然,这个涂色部分用23表示最简便。然后教学什么是约分和怎样约分,是例题的主要内容。关于约分的含义,联系1218与69、46、23的关系,突出了两点: 与原来的分数大小相等,分子、分母都比原来的分数小。关于约分的方法,示范了分步约分,也示范了一次约分,让学生从自己的实际出发,选择适宜自己的约分方法。教学约分的意义和方法,都是学生有意义地接受新知识。要充分体验约分是应用分数的基本性质化简分数,不改变分数的大小。还要注意约分的书写格式,分子和分母分别除以它们的公因数,得到的商(即新的分子和分母)应该写在适当的位置上。最后以23为例教学最简分数,指出约分通常要约成最简分数。

练习十一第4~7题配合例3的教学。正确约分需要两个能力: 一是看出分子与分母的公因数,第4题为此而安排。把分数的分子、分母同时除以2、5或3,是最常用的约分方法,学生对2、5、3的倍数的特征比较熟悉,因此先观察分子、分母有没有公因数2、5、3。至于分子与分母同时除以7、11、13等数的约分,稍后再作安排。二是识别一个分数是不是最简分数。如果不是最简分数则需要约分,如果是最简分数则不能约分,第5题进行这方面的判断。这两个能力是相互依存、相互影响的。判断一个分数不是最简分数,一定发现了分子、分母除1以外的公因数。反之,分子与分母除1以外,找不到其他公因数,就判断这个分数是最简分数。约分的时候,必须把分子、分母除以相同的数,学生往往在这一点上发生错误,第6题能给学生这方面的体会。

第8~15题是分数的意义、基本性质的综合练习。第8、9题在分数与除法相互改写时,还要应用分数的基本性质。第10题把最简分数与真分数两个概念联系起来,才能理解最简真分数。第11题先约分,再比较大小就非常容易。第12~15题的分数加、减计算,计量单位改写,小数化成分数,解决求一个数是另一个数的几分之几的实际问题,都提出把结果约成最简分数的要求。增加习题的知识容量,把新旧知识结合应用,能帮助学生温故知新,不断提高能力。

例4教学通分,重点放在通分的含义和方法上。把34和56改写成分母相同而大小不变的分数,是一个具有挑战性的问题。学生对分数改写成大小不变的另一个分数并不陌生,在学习分数的基本性质的时候,曾经多次进行过这样的改写。把两个分母不同的分数改写成分母相同的分数,是首次遇到的新问题。思考的焦点是改写成分母是几的分数,只要确定新的分母,分别改写两个分数就容易了。教材让学生凭数感,主动联系公倍数的知识和分数的基本性质,独立进行改写分数的活动。把两个分数改写成分母相同、大小不变的分数就是通分。可见,这道例题未教通分之前就让学生尝试通分,先积累把34和56都化成分母是12或分母是24的分数的切身体验,为理解通分的含义,有意义地接受教材关于通分的讲述作了充分的准备。

公分母是通分的关键。例题有层次地教学公分母的知识: 首先联系34和56的改写,让学生知道12、24是公分母,是34和56的分母的公倍数;然后比较34和56以12为公分母和以24为公分母的改写,体会什么数作公分母比较简便,得出一般用两个分母的最小公倍数作公分母。

例4只教学通分的含义和关于公分母的知识,不再另行教学怎样通分。这是因为34和56改写成分母是12与24的分数就是通分,不需要再重复。学生经过“试一试”,应用通分的知识,能够掌握通分的步骤与方法。同时又考虑到“试一试”毕竟是学生第一次进行通分,所以在怎样表达两个分数的公分母、怎样应用分数的基本性质以及书写通分的过程和结果的一般格式等方面,都给予较具体的指导。

练习十二第1~4题配合例4的教学。第1题两个长方形里的涂色部分分别用12和23表示,这两个分数通分后分别化成36和46。在两个长方形里表示出通分的结果,让学生联系直观图形体会通分的意义,感受异分母分数化成同分母分数,便于比较和计算。第2题是寻找公分母的基础练习,进一步明白两个异分母分数的公分母,是它们分母的最小公倍数。把求最小公倍数的经验应用到求公分母上来。第3题让学生深刻体会两点: 一是通分不能改变分数的大小,通分后的分数必须与原来分数的大小相等,否则会发生类似第(1)小题的错误;二是通分时的公分母要用两个分数分母的最小公倍数,像第(2)小题那样的通分不够简单。

3 比较分数的大小,体验策略与方法的多样性。

在三年级的教材里,已经教学借助图形比较同分母分数的大小和分子是1的异分母分数的大小。在本册教材“认识分数”时,比较了一个分数与一个小数的大小。所以说,学生已经有一些比较分数大小的经验。在此基础上,例5教学比较两个分数的大小,有两个显著的特点: 一是在现实情境中收集数学信息,把实际问题抽象成数学问题。看同一本故事书,小芳看了这本书的35,小明看了这本书的49。这两个分数都把一本故事书看作单位“1”,分别平均分成5份和9份,看了其中的3份和4份。因此,比谁看的页数多,只要比较35和49这两个分数的大小。例题非常重视这些思考活动,提示学生想到“比较这两个分数的大小”,用数学的方法解决实际问题。在这样的过程中,能回忆起有联系的知识,激活相关的技能。二是先让学生独立解决问题,再交流方法,鼓励策略、方法多样化。35与49是分子、分母都不相同的分数,比较它们的大小对学生来说是新的问题。联系分数的意义、通分和分数化成小数等知识,能够找到许多解决问题的方法。让学生独立解决新颖的问题,有利于创新精神和实践能力的发展。各种方法都很有特色,第一种方法数形结合,在相同的长方形里分别表示两个分数,直观看出哪个分数比较大。第二种方法及时应用学到的通分知识,把异分母分数化成同分母分数进行比较,运用了转化的策略。第三种方法以12为中介,把两个分数分别与12比较大小,间接得到35和49的大小关系,思维灵活、快捷,策略巧妙。学生中还会有其他的方法,组织充分的交流,相互理解和借鉴,能体验解决问题策略的多样性。

比较分数大小的练习,安排很有层次。在巩固基础知识、掌握基本技能的基础上灵活运用知识,发展数感。“练一练”紧接例题,要求先通分,再比较分数的大小。这样安排有两个原因: 一是能巩固通分的知识,形成通分技能,把分数加、减计算需要的基础练扎实。二是这种策略、方法适用于比较分数大小的通常情况,用得比较多。练习十二第5~11题都配合例5的教学,第5题写出的三组分数比较大小各有特点,35和58通分或化成小数都很方便;16和49通分比较方便;114和1310如果写成带分数,分别是2和真分数、1和真分数的合并。第6题根据分数的意义比较分子相同、分母不同的分数的大小,能进一步体验分数的分子、分母及分数单位的含义,还能从中概括出分子相同,分母大的分数比较小的结论。第8题在使用常规比较方法的同时,留出了创新的空间。如比较23和78的大小,从13>18得到23<78;比较134与103的大小,如果把它们都化成带分数,就只要比较14与13的大小。教师对这些有创意的方法要给予鼓励,但不作为基本方法要求全体学生都掌握。第9题通过8个分数与12比较大小,能够发现一些规律: 如分子乘2的积仍小于分母的分数比12小,分母除以2的商小于分子的分数比12大……这对发展数感很有好处。

篇4:第十单元《圆》教材分析 备课资料(北师大版五年级下册)

圆是小学数学里最后教学的一个平面图形,也是教学的惟一一个曲线图形。本单元在教学圆的基础知识的同时,还通过化曲为直、等积变形这些方法与手段,进一步发展转化的策略和推理能力。全单元的教学内容分成四部分编排。

第93~97页教学圆的形状特点以及圆心、半径和直径。

第98~102页教学圆的周长及计算公式。

第103~108页教学圆的面积及计算公式。

第109~113页全单元内容的整理练习,实践与综合应用。

编写的三篇“你知道吗”能培养学生的审美情趣,激发民族自豪感。

1  由表及里,体验圆的特征。

生活中的许多物体都有圆形的面,圆的形状已经留在学生的头脑中。教材通过三道例题教学圆的形状特点。

例1说说生活中看到的圆,把教学的话题集中到圆上来。让学生自找工具想办法画一个圆,在画圆的过程中感受圆的边是曲线,这是与以前学过的平面图形的不同之处。教材里没有直接指出圆是曲线图形,把机会留给学生体验和交流。这样,学生在直观认识圆的基础上深入了一步。

例2通过使用圆规画圆以及了解关于圆的几个重要名称,进一步认识圆。用圆规画圆,不仅是规范地使用工具作图,而且在画圆的时候能体会到,圆是铅笔绕固定的一个点旋转一周画成的图形。教材让学生试着用圆规画一个圆,既满足学生“玩中学”的愿望,又让学生在操作中学会画圆的方法。在学生试着画圆时,教材用四张连续的图片,展示了使用圆规画圆的要领: 用尺确定圆规两脚尖的间距;把圆规针尖固定在纸的一个点上;手握旋柄,绕固定的点把圆规旋转一周,画出一条封闭的曲线。这里的展示,对不能独立使用圆规的学生起示范与说明的作用,对能用圆规画圆的学生有提醒操作要领和注意事项的作用。联系圆规画成的圆,教学圆心、半径、直径,对它们的形状、位置和常用的字母分别作了清楚的阐述。如圆心是一个点,是圆规针尖固定的那个点,用字母O表示;半径是线段,一端是圆心、另一端是圆上任意一点,用字母r表示;直径也是线段,通过圆心且两端都在圆上,用字母d表示。教材还让学生在自己画的圆上标出圆心,画出一条半径和一条直径,并用字母表示,体会并内化知识。再经过“练一练”第1题的辨析和度量长度,能更准确地把握半径、直径的概念。

例3安排学生通过画、量、折等活动,深入体验圆的特征。为了帮助学生有效地体验,教材设计了四道讨论题。其中前两道是通过画与量获得体验: 在同一个圆里可以画出无数条半径(直径),且长度都相等。理解“无数条”,感受了线是无数个点的集合;发现“长度相等”,是圆的本质特征,也是车轮和生活中许多物体都做成圆形的原因。后两道题要通过对折圆获得答案,发现直径的长度是半径的2倍,以及圆有无数条对称轴,对圆的认识就更深入了一步。

练习十七在练习基础知识的同时,让学生进一步体会圆,开展数学思考,发展空间观念。如第3题,在画圆时体会大小不同的圆可以有共同的圆心。第4题能体会一个正方形内可以画出许多个大小不同的圆,圆的大小与它的半径有关,其中最大的那个圆的直径与正方形边长相等。第6题在方格纸上平移圆心,圆也随之平移,体会圆心的位置决定圆的位置。第7题体会直径是圆内最长的线段,从而理解测量直径长度的几种常用方法。

2 动手实践,理解圆周率的意义。

教学圆的周长共编排三道例题,采取“猜想--验证”和有意义地接受相结合的学习方式。

例4着重教学圆周长的含义,形成圆的周长与它的直径有关的猜想。呈现三个直径不同的自行车车轮的图片,先让学生想像三个车轮各滚动一周,哪一个行的路程比较长。在此基础上,教材指出车轮一周的长度是车轮的周长。从实际问题和生活经验中提炼出数学内容,使原有的周长概念迁移到新的图形上来。比较三个车轮的直径和周长,能直观地看到直径长的车轮周长长些,直径短的车轮周长也短。由此形成圆的周长与它的直径有关的猜想,开启了探索圆周长计算公式的大门。

例5组织学生从实验中体会圆的周长与直径是什么样的关系,为最终形成圆周长的计算公式铺平道路。在编写上有五个特点: 一是小组合作学习,集体进行探索活动,便于测量圆的周长;二是用硬纸板剪4个大小不同的圆,让小组里的每一个人都有动手实验的机会;三是要求学生想办法测量剪出的圆的周长,鼓励方法创新,主动体验化曲为直的转化策略;四是明确了探索的方向是计算每个圆的周长除以直径的商,研究周长与直径间的倍数关系;五是设计了一张记录实验数据的表格,每个学生都能把在小组里测量、计算的结果填在表格中,便于从四组数据,尤其是四个周长除以直径的商的比较中,发现规律。

学生的实验充其量只能发现一个圆的周长总是直径的3倍多一些,这是测量工具、方法和误差决定的。因此,教材在例5的后面继续教学圆周率的知识。讲了四点内容: 圆的周长除以直径的商是一个固定的数,叫做圆周率;圆周率用字母π表示;π是一个无限不循环小数;计算时一般取π的近似值314。学生以自己的实验为基础,能够有意义地接受圆周率。并根据周长(C)直径(d)=π,得出圆周长的计算公式C=πd或C=2πr。得出周长公式以后,计算圆周长的问题安排在“试一试”和“练一练”里面,让学生独立完成,通过应用记住公式。

例6是已知圆的周长,求直径的问题,选择列方程的方法解答有两个原因: 一是思路比较顺畅。由于已知圆的周长,所以很自然地会想到周长公式。于是,把周长公式作为等量关系,列方程解答的思路也就随之产生。二是有利于形成良好的认知结构。应用圆的周长公式,既能解决已知直径(半径)求周长的问题,又能解决已知周长求直径(半径)的问题。学生体会到这些 ,对周长公式的理解和掌握就更深刻、更全面。例题把教学重点放在这样的问题为什么列方程解答以及列方程依据什么样的等量关系上,把解方程留给学生完成。这道题涉及四位数除以三位数,所以使用计算器计算。按照《标准》的要求,三位数乘两位数、三位数除以两位数,一般笔算。数据更大的乘、除计算,一般使用计算器。

3 引导探索,指导应用圆的面积公式。

圆是曲线图形,推导它的面积公式比直线图形困难得多。在应用面积公式时,还涉及新的运算顺序。因此,编排四道例题,组织学生探索圆的面积公式,并对应用公式求面积的计算作细致的指导。

例7用数方格的方法求圆面积。在求图形的面积时,经常使用数方格的方法,虽然有时不能得到精确的结果,仍然是一种有效的方法。尤其对这里的图形,数方格不仅能知道面积大约是多少,而且对探索面积公式有启发作用,这些都是例题的编排意图。

分别以边长4厘米、3厘米、5厘米的正方形的边为半径画一个圆,数方格求圆的面积,这样设计有两个好处: 一是圆的14在正方形里面,34在正方形外面,只要数出14个圆的面积,再乘4就得到整个圆的面积。既省时省力,又能避免数错。二是正方形的边长与圆的半径相等,正方形的面积与半径的平方相等。因此,圆面积与正方形面积的倍数关系就是圆面积与它的半径平方的倍数关系。后者正是圆面积公式的内涵所在。

为了引起学生对圆面积与半径平方的关系的注意,教材设计的表格里,把半径这一栏放在正方形面积和圆面积的中间。通过填写半径的长度,体会它与正方形的边长相等,从而联想边长乘边长相当于半径的平方。在计算圆面积大约是正方形面积的几倍之后,由“大象”卡通提出“圆面积与它的半径有什么关系”的问题,体会圆面积与它半径的平方可能存在确定的倍数关系,并带着这个悬念教学下一道例题。

例8把圆等积变形成长方形,探索圆面积的计算公式,在编写上有三个特点: 一是让学生联系已有的空间经验和图形知识,通过形象思维体会圆平均分的份数越多,拼成的图形越接近长方形,隐含了极限思想;二是组织学生比较拼成的长方形和原来的圆有什么联系,在交流中充分理解长方形的面积与圆的面积相等,长方形的长是圆周长的一半,长方形的宽是圆的半径;三是展开了从长方形面积公式推导圆面积公式的思维全过程,突出了用πr替代长方形的长,r替代长方形的宽,以及把πr×r改写成πr2这三个关键点。

例9应用面积公式计算圆的面积,怎样写算式和怎样运算是教学重点。算式314×52是依据面积公式πr2列出的,读作三点一四乘五的平方。算式里的平方应该先算,这里没有把它作为一条运算顺序教学,仅指导学生先算3.14×52里的52是多少。“练一练”里已知圆的直径是8厘米,求圆的面积。可以分步列式,先用8÷2=4(厘米)求得半径,再用3.14×42求圆的面积。也可以列成综合算式3.14×822,要提醒学生为82添上括号,保证先算圆的半径,不可以列成3.14×822。

例10求环形的面积,是与圆有关的组合图形的面积,着重教学解决问题的思路。通过图示直观呈现环形,帮助学生理解铁片面积是两个圆面积的差,从而得出解题步骤是先分别算两个圆的面积,再把它们的面积相减。在理出解题步骤以后,让学生分步解答,进一步掌握圆的面积公式。如果列综合算式3.14×102-3.14×62求铁片面积,就能把算式改变成3.14×(102-62),使计算比较简便。

“试一试”和练习中的组合图形都是由两个基本图形组成的,组合图形的面积或者是两个基本图形的面积和,或者是面积的差。两个基本图形中至少有一个图形是半圆形,计算半圆的面积应该是圆的面积除以2。

篇5:第一单元《方程》教材分析 备课资料(北师大版五年级下册)

本单元教学方程的知识,是在四年级(下册)“用字母表示数”的基础上编排的。第一次教学方程,涉及的基础知识比较多,教学内容分成三部分编排。

第1~2页教学等式的含义与方程的意义,根据直观情境里的等量关系列方程。

第3~11页教学等式的性质,解方程,列方程解答一步计算的实际问题。

第12~14页全单元内容的整理与练习。

本单元编排的一篇“你知道吗”简要介绍了我国古代就有方程的思想,并有运用方程解决实际问题的历史记载。

1贝拥仁降椒匠蹋逐步构建新的数学知识。

方程是等式里的一类特殊对象,教材用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义。

(1) 借助天平体会等式的含义。

等式是方程的生长点,学生在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,本单元教材首先让学生体会等式的含义。

天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。例1在天平图下方呈现“=”,让学生用等式表达天平两边物体质量的相等关系,从中体会等式的含义。教材使用了“质量”这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。

例2继续教学等式,教材的安排有三个特点: 第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出的不是等式。学生在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于学生初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对学生的要求由扶到放。圆圈里的关系符号都要学生填写,学生在选择“=”“>”或“<”时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让学生填写,这是因为他们以前没有写过含有未知数的等式与不等式。

(2) 教学方程的意义,突出概念的内涵与外延。

“含有未知数”与“等式”是方程意义的两点最重要的内涵。“含有未知数”也是方程区别于其他等式的关键特征。在第1页的两道例题里,学生陆续写出了等式,也写出了不等式;写出了不含未知数的等式,也写出了含有未知数的等式。这些都为教学方程的意义提供了鲜明的感知材料。教材首先告诉学生: 像x+50=150、2x=200这样含有未知数的等式叫做方程,让他们理解x+50=150、2x=200的共同特点是“含有未知数”,也是“等式”。这时,如果让学生对两道例题里写出的50+50=100、x+50>100和x+50<200不能称为方程的原因作出合理的解释,那么学生对方程是等式的理解会更深刻。教材接着安排讨论“等式和方程有什么关系”,并通过“练一练”第1题让学生先找出等式,再找出方程,理解等式与方程这两个概念之间的包含与被包含关系。即方程都是等式,但等式不都是方程。这道题里有以x为未知数的等式,也有以y为未知数的等式,使学生对“未知数”有正确的理解,防止把未知数局限为x,把方程狭隘地理解为“含有x的等式”。“练一练”第2题要求学生自己写出一些方程并相互交流,让它们在写方程时关注方程的本质属性,从而巩固方程的概念。

(3) 用方程表示直观情境里的相等关系。

第2页的“试一试”和“练一练”第3题都是看图列方程,编排这些题的目的是培养学生发现和理解现实情境里的等量关系的能力,体会方程是表示等量关系的数学方法,从而进一步巩固方程的概念,并为以后列方程解决实际问题打下扎实的基础。这些内容在编排上有两个特点: 一是直观情境的呈现从天平图开始,发展到带括线的图画。带括线的图画在一年级(上册)就出现了,学生比较熟悉。但是,从列算式求答案的习惯思维转向列方程表示等量关系,仍然会有困难。因此,教材先让学生看天平图列方程。天平两臂平衡,表示它左右两边物体的质量相等,已经在两道例题里教学得很充分了,看天平图列方程能让学生初步知道什么是列方程和怎样列方程,对依据什么列方程和列出的方程表示什么有所体验。 在此基础上,过渡到列方程表示带括线的图画里的等量关系,会平稳得多。二是带括线的图画里的等量关系,突出两个或几个部分数相加是它们的总数。在几个部分数相同时,它们相加用乘法比较简便。这些关系是数量之间最基本的关系。而且这些关系建立在加法和乘法的意义上,学生容易理解。如文具盒的价钱加笔记本的价钱一共20元,买4本同样的故事书一共要16.8元,列出的方程分别是12+x=20和4x=16.8。如果少数学生列出的方程是20-x=12或16.8÷x=4也是可以的,但不宜提倡;绝不能列出20-12=x、16.8÷4=x这样的方程。因为后者仍然是过去列算式的思路,不利于学生体会数量间的相等关系,对以后的教学也是有弊无利的。

2崩用等式的性质解方程。

在过去的小学数学教材里,学生是应用四则计算的各部分关系解方程。这样的思路只适宜解比较简单的方程,而且和中学教材不一致。《标准》从学生的长远发展和中小学教学的衔接出发,要求小学阶段的学生也要利用等式的性质解方程。因此,本单元安排了关于等式性质的内容,分两段教学: 第一段是等式的两边同时加上或减去同一个数,结果仍然是等式;第二段是等式的两边同时乘或除以同一个不等于零的数,结果仍然是等式。在每一段教学等式的性质以后,都及时让学生运用等式的性质解方程。

(1) 在直观情境中,按“形象感受→抽象概括”的方式教学等式的性质。

教材仍然用天平的直观情境教学等式的性质。因为在两臂平衡的天平上,左右两边物体的质量发生相同的变化,天平的两臂仍然保持平衡。这种现象能形象地表示等式的性质,有利于学生的直观感受。

例3教学等式的一个性质。教材设计了四组天平图,每组左边的天平图表示变化前的等式,右边的天平图表示变化后的等式,从左边的等式到右边的等式,反映了等式的性质。上面的两组图揭示的是等式的两边都加上一个相同的数,仍然是等式;下面的两组图揭示的是等式的两边都减去相同的数,仍然是等式。四组图的内容综合起来就是等式的一个性质。教材精心设计每组天平上物体的质量,第一组图写出的是不含未知数的等式,在左边的天平表示20=20以后,右边天平的两边各加1个10克的砝码,看图填写20+○20+()。学生在两个括号里都写“10”,在圆圈里写“=”,联系天平两边各加10克都变成30克,而天平仍然平衡的现象,体会填写的等式是合理的。这样就首次感知了等式的两边都加上同一个数,结果仍是等式。第二组图写出的是含有未知数的等式,从x=50到x+20=50+20的变化和比较中,对等式两边都加上相同的数有进一步的感受。第三组图写出的等式两边都用字母a表示砝码的质量,圈出a克砝码并画上箭头,表示去掉它的意思。联系已有经验,这里的a代表许多个数,这组天平图与等式概括了众多等式两边减去相同数的情况。第四组图在方程x+20=70的两边都减去20,不但又一次表示了等式性质,而且与解方程的方法十分接近。

另外,这道例题的8个等式中,有7个让学生在圆圈里填写“=”组成等式,这是引导学生切实关注等式有没有变化。右边的四个等式分别让学生在括号里填出同时加上或减去的数,有利于发现等式的性质。

例5教学等式的另一个性质。教材注意利用学生前面学习等式性质的经验,在感知天平的直观情境表示出等式性质的一个实例后,再让学生写一个等式,通过比较、概括与交流,得出“等式的两边都乘或除以相同的数,结果仍然是等式”的结论。教学时有两点应注意: 一是让学生正确理解图意。上面一组天平图的左边原来是一个质量为x克的物体,又添上一个质量相同的物体;右边原来是一个20克的砝码,又添上一个同样的砝码。这表示天平左右两边物体的质量都乘2。下面一组天平图左边原来是3个质量都为x克的物体,现在只剩下1个这样的物体;右边原来是3个20克的砝码,现在只剩下1个20克的砝码。这表示天平左右两边物体的质量都除以3。二是等式两边同时除以的那个数不能是0,这一点学生能够接受。因为前面的教学中,已经多次提到除数不能是0。

(2) 应用等式的性质解方程。

例4和例6教学解方程,解方程的关键是方程的两边都加(减)几、乘(除以)几,教材对此有精心的设计。例4看图列出方程,学生先从图中能得到求x值的启示: 只要在天平的左右两边各去掉10克的砝码。联系等式的性质与方程x+10=50的特点,理解“方程两边都减去10”的道理: 等式的两边都减去10,左边就剩下x,x的值只要通过右边的计算就能得到。例6在列出方程以后,让学生联系已有的解方程经验和有关的等式性质,思考“方程两边都要除以几”这个问题,并解这个方程。这些设计都体现了从学生实际出发,让学生主动学习的教育理念。另外,例4的编写还注意了三点: 一是示范了解方程的书写格式,强调等式变换时,各个等式的等号要上下对齐,教学时必须严格遵循;二是求得x=40后,通过“是不是正确答案”的质疑,引导学生根据“左右两边是不是相等”进行检验;三是在回顾反思求x值的过程基础上,讲了什么是“解方程”。这些都是以后解方程时反复使用的知识。

帮助学生逐渐掌握解方程的方法并形成相应的技能,是教材编写时认真思考的问题。用好教材设计的两道题,能培养学生这方面的能力。一处是第4页“练一练”第1题,为了使方程的左边只剩下x,方程的左边已经加上25(或减去18),右边应该怎样?这是刚开始教学解方程时的设计。通过在方框里填数,在圆圈里填运算符号, 引导学生正确应用等式的性质,体会解方程的策略和思路,理出解方程的关键步骤。学生在方框里填数一般不会有问题,在圆圈里填运算符号可能会出现错误。要通过交流和评价,帮助他们正确掌握方程的两边同时加上或同时减去相同的数。另一处是第6页第7题,简化解方程过程的书写,浓缩思路,是在基本掌握解方程的方法以后安排的。如解方程x-20=30,在方程的两边都加20这一步,省写了虚线框里的内容: x-20+20=30+20,直接写出x=30+20。这样做能使解方程的思考流畅、书写简便,从而提升解方程的能力。教学时要让学生体会简化的过程,重点讨论圆圈里填什么符号、方框里填什么数以及为什么。第8页“练一练”第1题、第10页第2题的编排意图与上面相同。

3绷蟹匠探饩鍪导饰侍狻

本单元解决的都是一步计算的实际问题,其中大多数都是第一学段里没有出现的。这些实际问题如果列算式解答,学生体会其中的数量关系有一定难度;如果用方程的知识解答,利用的是问题中最本质的数量关系,思路就顺畅得多。

列方程解决实际问题的关键是找到问题里的等量关系。列方程时的数量关系与列算式时明显不同。列算式时的数量关系把已知和未知隔裂,已知条件作为一方,要求的问题为另一方,通过已知数量的运算得到未知数量。而列方程的数量关系,把已知和未知融合起来,共同参与运算。寻找等量关系是列方程解决实际问题的教学重点,也是教学的难点。为此,教材作了三步安排。

(1) 教学方程意义的时候,列方程表示简单现象里的等量关系,有第2页“试一试”,“练一练”第3题,练习一第1~3题等。这些简单现象都是学生能够接受的,并以他们熟悉的方式呈现,如天平图、带括线的图画、线段图、图文结合的叙述等。让学生对什么是列方程、怎样列方程,尤其是依据什么列方程、列出的方程表示什么意思有所体会。在寻找等量关系和列方程的时候要注意两点: 一是联系生活经验,按照事情的发生与发展线索,理顺数量关系。如买1件上衣和1条裤子一共用去86元,原有的图书借出56本还剩60本,付出的钱数减电话机的价钱得找回的钱数,妈妈的岁数减小红的岁数得妈妈比小红大的岁数。有了这些等量关系,列方程就方便了。二是暂时不要鼓励对数量关系的发散性思考,也不要提倡列出的方程多样,确保把握和应用事件里的最基本的等量关系。这对以后的教学十分重要。

(2) 教学解方程的时候,渗透列方程解决实际问题的思想。例4求天平左边正方体的质量,例6求长方形试验田的宽,都是先列出方程再求解。这两道例题的教学重点是应用等式性质解方程,以实际问题为载体有两点好处: 一是初步体会列方程是解决实际问题的一种方法,从而发展解决问题的策略;二是继续体会列方程的依据是实际问题里的等量关系。例4的相等关系是天平两边物体的质量相等,学生已经比较熟悉。例6依据长方形面积公式列方程,是对等量关系的一次引导。教学的时候,既不要冲淡例题的教学重点,又要让学生获得这两点体会。

(3) 例7和相配合的“试一试”“练一练”教学列方程解决实际问题,主要解决相差关系和倍数关系的问题。这些实际问题里都有一个关于“相差多少”或“几倍”的已知条件,只要抓住这个条件分析相差数或倍数的具体含义,就能找到实际问题里的等量关系。

首次教学列方程解决实际问题,例7有三个内容: 一是怎样寻找数量间的相等关系,二是这个问题为什么列方程解答,三是列方程解决实际问题的步骤与格式。这三个内容中,第一个最重要,另两个内容都能在第一个内容中得到启示。

这道例题的相等关系“小军的成绩-小刚的成绩=0.06米”,是从“小刚比小军少跳0.06米”得出的。分析这个已知条件,首先想到小刚跳的米数、小军跳的米数与0.06米是三个有关系的数量;接着想到小军跳的米数多,小刚跳的米数少,0.06米是他们跳的米数的差,等量关系就出来了。把文字叙述的相差关系改变成数学式子表示的相等关系,就列出了方程。

“小军的跳高成绩不知道,可以设为x米,再列方程解答”这句话是指着等量关系说的。在等量关系中,两个数量已知,一个数量未知,如果把未知的数量设为x米,很容易列出方程。再通过解方程,就能算出未知的数量。这就是为什么列方程解题的原因,学生体会这一点,也就体会了列方程是解决问题的一种策略。于是,解题活动就在寻找等量关系的基础上,很自然地按照“写设句--列方程--解方程”的顺序进行,列方程解决实际问题的一般步骤由此而得出。

在交流中让学生思考还可以怎样列方程,是因为在分析小军跳的米数多,小刚跳的米数少,他们跳的米数相差0.06米时,学生有可能用“小刚跳的米数+0.06=小军跳的米数”表示等量关系。教材对此表示肯定,并不要求学生一题多解。

“试一试”辅助学生寻找相等关系,在分析“蓝鲸的体重是一头非洲象的33倍”这个条件的基础上,以填空的形式得出等量关系。其他解题活动由学生独立完成,逐渐熟悉列方程解决实际问题的一般步骤。练习中涉及的等量关系有了扩展,如平行四边形的面积公式、正方形的周长公式、单价×数量=总价等,要尽量让学生独立寻找和应用等量关系列方程。

篇6:第七单元《统计》教材分析 备课资料(北师大版五年级下册)

四年级(下册)教材教学了折线统计图,本单元继续教学复式折线统计图,进一步提高统计能力,发展统计意识。

复式统计图里一般同时表达两组数据,它们有共同的主题,各反映一个内容,分别画成两条折线,便于人们根据折线的形态以及两条折线的位置关系,对两组数据进行比较、分析,获得需要的信息。例题和习题选择宽广的题材,让学生充分感受复式折线统计图的特点,体会它的应用价值。

1 巧妙地引出复式折线统计图,凸现特点。

例题先用两幅折线统计图分别表示青岛、昆明两个城市各月的降水量,引起对折线统计图的回忆。提出的问题是这两个城市哪个月的降水量最接近、哪个月的降水量相差最多。这些问题仅在一幅统计图里找不到答案,需要把两幅统计图中相对应的数据进行比较,逐月计算两个城市降水量的相差数,才能找到答案。在学生感觉这种方法非常麻烦的时候,教材把两幅折线统计图合在一起,巧妙地引出复式折线统计图,让学生初步感受复式统计图与单式统计图的相同点和不同点。并通过三个问题,逐步教学复式统计图的知识。

第一个问题是识别复式统计图中表示两个城市各月降水量的折线,引导学生看懂复式统计图里的内容。在一幅统计图里,用两条折线表示两组数据,为了便于区分,例题把一条折线画成实线,另一条折线画成虚线,用图例说明两条折线各表示哪组数据。教材没有把这些知识直接告诉学生,让他们带着“表示青岛市、昆明市各月降水量的分别是哪一条折线”这个问题看统计图,体会复式折线统计图的这些知识,理解把两条折线画成不同形式的线的原因以及图例的作用。

第二个问题是比较两个城市的月降水量,找到降水量最接近的月份与相差最多的月份。在复式统计图上比较这些内容,不需要计算,只要观察表示同月份降水量的两个点之间的距离。距离最接近,降水量最接近;距离最远,降水量相差最大。显然,在复式统计图上进行比较比在两幅单式图上比较方便得多。这是复式统计图的优点,也是例题的教学重点。教材让学生在活动和思考中获得这些体验,明白人们为什么制作复式统计图的道理,从而产生学习兴趣和热情。

第三个问题是开放的,继续利用统计图里的信息,描述现象,提出并解决问题,进一步提高识图和用图的能力,感受复式折线统计图的特点。

2 重视发展统计观念。

练习十三配合例题,看重进行三个方面的练习。

(1) 绘制复式折线统计图。第1题和第6题都是画图练习,要根据统计表里的数据,在图上描点、连线。在教学单式折线统计图时,已经进行过这样的练习。制作复式统计图要注意两点: 一是两组数据要一组一组地在图上画出来。如第1题,先依次描出表示七天最高气温的点,并连成折线,再画出表示最低气温的折线。如果两组数据同时画,容易发生错误。二是表示两组数据的折线,要严格遵照图例的规定画,不能弄错,更不允许别出心裁。如果第1题把表示最高气温的折线画成虚线,最低气温的折线画成实线,对照图例,就闹出一天里的最高气温低于最低气温的笑话。如果随心所欲,把一条折线画成红色,另一条折线描成蓝色,那么别人对照图例,就无法分辨两条折线各表示的数据。

(2) 利用统计图里的信息进行比较和判断。统计活动不能停留在数据的获得和呈现上,其价值更体现在对数据的利用上。关于这一点,在前几册教材中已经相当重视。本单元一如既往,第2、3题都是看图回答问题,用问题引导学生在统计图里收集信息,比较数据,分析状态,作出判断。这两道题紧扣复式折线统计图的特点: 一是比较同一时间的两个数据的大小,如我国固定电话的用户比移动电话的用户多,20移动电话的用户比固定电话的用户多;二是从两条折线的形态分析两个事件在发展态势上的差异。如表示移动电话用户的折线明显比固定电话用户的折线陡,反映出19到年我国移动电话用户的增长速度比固定电话快。明园小学五年级一班学生家庭拥有电话机和计算机情况统计图里,表示电话机数量的折线从起保持水平状态,反映出从这一年起各个家庭里都有电话机;表示计算机数量的折线从20起逐渐变陡,反映从这一年起拥有计算机的家庭快速增多。

(3) 联系课外活动应用统计知识,培养统计观念。

小学生的统计观念是初步的,表现为对统计活动有兴趣,能应用习得的统计知识开展统计活动,能通过收集、分析数据研究现实生活中的某些简单现象。第4、5题为此而设计。第4题用复式折线统计图记录水仙花球20天里根和芽的生长变化情况。不仅让学生看图回答问题,还鼓励学生做一做这样的实验。综合数学和自然两门学科里的知识与活动,感受数学是人类活动的工具,是人们进行表达与交流的一种语言。第5题是复式折线统计图记录的两架模型飞机在空中的飞行情况,其中有每架飞机的飞行高度从逐渐上升到保持平稳,再到逐渐下降的过程信息,可以对这两架模型飞机在空中的飞行时间、各个时刻的飞行高度进行比较,从而对它们的飞行情况进行评价。让学生又一次感受统计能描述客观世界里的一些现象。

篇7:第二单元《确定位置》教材分析 备课资料(北师大版五年级下册)

一年级(上册)教材用一个“第几”描述物体在直线上的位置,如从右往左第5个是小明。二年级(上册)教材用两个“第几”表示物体在平面上的位置,如小红坐在第6排第4个。通过这些描述,加强了方向感,获得了自然数能表示次序的体验。在这些经验的基础上,本单元教学用“数对”确定位置,使原来凭生活经验描述位置上升到用数学方法确定位置,从而发展数学思考,培养空间观念。两道例题把教学内容分成两段编排。

第15页例1和“练一练”,用数对确定教室里的座位。包括“列”“行”的含义,确定第几列、第几行的一般规则,以及用数对表示第几列第几行的方法。

第16页例2和“练一练”,用数对确定平面图(方格纸)上点的位置。

练习三配合两道例题的教学,解决学校、家庭、街区里的一些实际问题。编写的两篇“你知道吗”分别介绍地球仪上的经线和纬线,在计算机上制作表格的方法,拓展学生的知识面,让学生体验数学知识的广泛应用。

1、痹谙质档那榫持薪萄Ч娣兜厝范ㄎ恢玫姆椒ā

例1呈现一幅教室里座位的图画,让学生说说画面里的小军坐在哪里。他们凭自己的感受和经验,在交流中出现了不同的表述,如小军坐在第4组第3个、小军坐在第3排第4个……甚至会出现有争议的描述。由此产生共同的需要: 怎样正确、简明地说出位置?为教学新知识营造了良好的氛围。

接着教学“列”“行”的知识,因为数对是按列与行确定位置的。竖排叫做列,横排叫做行都是规定。确定第几列一般从左往右数,确定第几行一般从前往后数,都是人们的约定。正是这些规定与约定,人们在确定位置时才有一致的思考和结论,才能避免争议和混乱。因此,教学列、行的知识绝不能含糊。还要通过适当的练习,帮助学生巩固对列、行的认识。并用先说列数、再说行数的方法表示出小军的位置。

然后教学用数对确定位置的方法。“小军坐在第4列第3行,可以用数对表示为(4,3)”这句话表明了三点: 一是“数对”指两个数,即列数与行数。二是在数对中先表示第几列,再表示第几行。这个顺序不能颠倒,它和直角坐标系中确定点的位置,先写出x轴上的数量,再写出y轴上的数量的次序是一致的,不会和中学里的数学知识发生矛盾。三是用数对确定位置有规定的书写格式,要用括号把列数与行数括起来,并在列数和行数之间写个逗号,把两个数隔开。

“练一练”在例题的情境中进行。以数对知识为重点,设计了“列、行位置→数对表示→列、行位置”的线索,把例1教学的各个知识组成系统的结构。第1题先在图中找出第2列第4行的位置,巩固列与行的知识;再用数对表示第2列第4行,进一步明确在数对中先写什么、再写什么,巩固数对的知识。第2题通过在图中寻找(6,5)的位置,具体解释这个数对的含义,加强对数对的理解,体会它能清楚、简要地表示出物体的位置。例1的情境图中,每个学生的座位都可以用数对表示,确定各个人位置的数对都不相同。图中有6列、5行,任何一个列数不超过6、行数不超过5的数对都有一个学生的座位相对应。可以利用情境图的这些内涵,组织学生充分地“练一练”。

练习三第1~3题配合例1的教学,巩固列、行的知识,以及用数对确定物体位置的方法。第2题四块装饰瓷砖的位置有同列不同行,不同列同行,列、行都不同三种情况,隐含了许多可以比较的内容,让学生在这些比较中,深入地体会数对。第3题花色地砖的规律是开放的,如这些地砖的位置都在奇数列,第2到第6行之间;这些地砖的排列是对称的,第7列或第4行可看作对称轴;这些地砖组成一个平行四边形图案,中心在(7,4)……让学生畅谈自己的发现,能让学生的形象思维充分展开。

2、庇τ檬对,在方格图上确定点的位置。

例2在公园平面图上,用数对表示景点或建筑物的位置。在呈现形式上有三个特点: 一是公园的各个景点和建筑物都画成一个点,“点”只反映景点或建筑的位置,不反映其他内容;二是表示景点、建筑的那些点分散在方格纸上,而且每个点都在方格纸竖线和横线的交点上;三是方格纸的竖线表示列,从左到右依次标注了0、1、2……10;横线表示行,从下往上依次标注了0、1、2……8。其中的“0”既是列的起始,也是行的起始。这些特点,把用数对表示公园景点、建筑物位置的实际问题抽象成用数对表示平面上的点的位置的数学问题。

这道例题的教学策略是引导学生促进知识与经验的迁移,把例1中学习的列、行的概念,使用数对的方法应用到例2中来。教学分两步进行,先告诉学生“书报亭的位置是(2,3)”,引发对已有知识的回忆。让他们根据数对(2,3)的含义,观察书报亭在方格图上的实际位置,体会用这个数对表示书报亭的位置是合理的。在这样的过程中,学生独立领会了方格纸上列与行的设定,感受到方格纸上竖线与横线的任何一个交点都能用数对确定其位置。然后是用数对分别表示儿童乐园、水池等其他景点和建筑的位置,达到巩固知识、掌握方法、内化成能力的目的。教材在平面图上精心安排儿童乐园与书报亭的位置,在确定它们位置的数对里,前一个数相同,都是2;后一个数不同,分别是3和6。这是因为两个景点在平面图的同一列、不同行上。类似的安排还有儿童乐园与草坪的位置、盆景园与饭店的位置、饭店与水池的位置等。教学时用活、用足这些安排,及时引起学生注意并组织思考、讨论,能更好地理解数对,进一步掌握用数对确定位置的方法。

“练一练”紧扣新知识的应用,主要练习用数对确定方格纸上点的位置和根据数对在方格纸上寻找相应的点两方面的技能。在设计的时候,注意结合学生学过的平面图形的知识。如第1题确定位置的三个点是一个三角形的三个顶点,顺次连结D、E、F、G、D这几个点围成一个平行四边形。设计这些新颖的习题,既能引起学生的兴趣,又感受了图形特征,提高了准确识别图形的能力。

练习三第4~8题配合例2的教学,在练习数对的知识时,还设计了一些可以深入体会的问题。第4题里把(3,2)和(2,3)两个貌似相同的数对放在一起比较,体会数对的列数、行数不同,表示的位置也不同。第5题出现的数对(x,5)和(5,y)里,分别用字母表示列数与行数。让学生体会由于字母表示的数不确定,所以这样的数对不能确定某个班级在礼堂里的位置。第7题在方格纸上把三角形平移,并写出表示平移前后图形顶点位置的数对。从中体会图形水平平移,改变了顶点所在的列,没有变化顶点所在的行。第8题联系数对确定位置的知识,理解国际象棋在棋盘上表示棋子位置的规则。这些问题有助于学生体会生活中的一些现象,可以用数学的方法观察研究,并作出解释。

【第八单元《分数加法和减法》教材分析 备课资料(北师大版五年级下册)】相关文章:

1.数据的分析和表示 教学设计(北师大版五年级下册第八单元)

2.分数的加法和减法练习题

3.五年级上册第四单元《小数加法和减法》说课稿

4.五年级数学教案-《认识分数》教材分析

5.525《分数的加法和减法》单元教学设计(第一稿) (人教新课标五年级下册)

6.第五单元分数混合运算 教案教学设计(北师大版五年级下册)

7.北师大版五年级下册数学教案

8.第八单元:加法和减法10 教案教学设计(苏教国标版一年级上册)

9.六册第五单元《认识分数》教学计划 (北师大版三年级下册)

10.五年级语文下册第八单元作文

下载word文档
《第八单元《分数加法和减法》教材分析 备课资料(北师大版五年级下册).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部