欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 说课稿>八年级数学《等腰三角形的性质》说课稿

八年级数学《等腰三角形的性质》说课稿

2024-11-02 07:34:22 收藏本文 下载本文

“heqijay”通过精心收集,向本站投稿了15篇八年级数学《等腰三角形的性质》说课稿,以下是小编精心整理后的八年级数学《等腰三角形的性质》说课稿,供大家阅读参考。

八年级数学《等腰三角形的性质》说课稿

篇1:等腰三角形的性质八年级数学说课稿

等腰三角形的性质八年级数学说课稿

大家好,我说课的课题是八年级上册第13章第三节第1课时《等腰三角形的性质》。我主要从以下五个方面进行说课:

一说教材

《等腰三角形的性质》是人教版教科书八年级上册第13章第三节第1课时的教学内容。在此之前,学生们已经学习了等腰三角形的定义以及轴对称,学生已经具备了一定的动手操作能力。这些知识为本节课的学习等腰三角形的性质起到了铺垫的作用。而本节课的知识为以后将为以后学习的四边形及多边形的相关知识奠定了基础。

二说教学目标

根据教学大纲和新课程标准的要求,我认真钻研教材,特制定以下三个教学目标:

1掌握等腰三角形的性质

2知道等腰三角形的性质的推理过程

3会灵活运用等腰三角形的性质解决相关的数学问题

三 说教学重、难点

结合八年级学生的年龄特点、心理特征和现有的知识结构。我认为本节课的重点是等腰三角形的两个性质即“等边对等角”;“三线合一”。

由于八年级学生的逻辑推理能力和理解运用能力还较弱,因此等腰三角形的性质的推理过程及会灵活运用等腰三角形的性质解决相关的数学问题是本节课的难点。

四 说教法和学法

本节课我采用的教法是启发式教学法、动手操作法。

学生的学法是:自主探究法、合作讨论法。

五说教学过程

本节课我主要是根据“四步五环节”教学法从以下五个环节进行教学的。

1 复习导入

通过教师在黑板上画一个三角形(任意取一个点为圆心,适当的长为半径画弧,在所画的弧上任意取两个点顺次连接这三个点所得的三角形是什么三角形?)的方法能确定是所画的`三角形是等腰三角形。这样导入可以让学生知道如何用尺规作图做一个等腰三角形,并引导他们回忆等腰三角形的概念及腰、底边、顶角、底角的概念。

2探究新知

在同学们已经学习了轴对称的基础上通过对折剪纸观察猜想得出等腰三角形的性质,这样设计既能提高学生的动手操作能了,又能更直观的发现等腰三角形的三条性质即:对称性、等边对等角、三线合一。在此基础上教师在引导学生写出推理过程,同时也提高了学生的逻辑思维能力.

3理解与运用

为了让学生熟练的掌握等腰三角形的三个性质,我设计了一道相关证明题,让学生先自主探究不会的同学请教会做的给其讲解进行兵练兵,再找一名学生将解题过程板术黑板上,教师进行点评,以提高学生书写完整、简洁的解题过程的能力。

4强化巩固

在这一教学环节中我设计了2道求角度的问题,让学生通过由易到难的探究过程将所学的知识进一步升华,培养学生的探究精神。

5小结

设计三个问题让学生通过思考讨论回答出来,从而把本节课的知识系统化。以提高学生的总结概括能力。

本节课我采用观察法和动手操作法导入新课充分的调动了学生学习的主动性和积极性顺利完成的预定的教学任务,取得了良好的教学效果。

篇2:初中数学等腰三角形性质说课稿

一、教材分析?

1、学习目标:根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:?

知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。?能力目标:能结合具体情境发现并提出问题,逐步具有观察、猜想、推理、归纳和合作学习能力。?

情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。?

2、教学重、难点:?

重点:等腰三角形性质的探索及其应用。?

难点:等腰三角形性质的探索及证明。?

3、突破难点策略:通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。?

二、学情分析?

刚进入初二的学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。?

三、教法分析?

《数学课程标准》要求教师应激发学生学习的积极性,向学生提供充分从事数学活动的机会,帮助他们进行自主探索和合作交流。为了顺利达到这一目标,引导学生探索性学习,唤起学生的创新意识,我根据教材特点和学生实际,采用了以观察法、发现法、实验操作法、探究法为主的教学方法进行教学。?

四、学法建构?

《数学新课程标准》指出自主探索与合作交流是学生的主要学习方式,因此,通过本节教学,我将对学生进行以下学法指导:?

1、指导学生动眼观察、动手操作、动脑思考、动口表达,注重多感官参与,多种心智能力投入,使学生始终处于主动探索状态。?

2、向学生渗透探究、发现的学习方法,培养他们在合作中共同探索新知识、解决新问题的能力。?

五、教学模式?

本节课设计的指导思想是全日制义务教育《数学课程标准》及新课程改革的教学理念。?

《数学课程标准》提出了“问题情境——建立模型——解释、运用与拓展”的基本模式,在此模式指导下,本节课我将采用“创设情境——自主探索——合作交流——引导评价——实践应用——反思归纳”的教学模式,力求着眼于学生探究能力和创造性思维能力的培养,

提高学生的自主意识和合作精神。?

六、教学程序和设想?

《数学课程标准》强调,教师应发扬教学民主,成为学生数学学习活动的组织者、引导者、合作者。据此本节课我分以下环节组织教学。? (一)创设情境,观察联想。? 1、多媒体展示电视转播台、房屋人字架,让学生观察找出其中的几何图形?(等腰三角形、四边形、梯形)? 2、两幅图中都有哪种几何图形?(等腰三角形)?

从学生身边的生活和已有知识出发,创设情境,引导学生观察、联想,使学生感受到生活中处处有数学,并学会从数学的角度去观察事物,思考问题,激发学生对学习数学的兴趣和愿望。? (二)动手操作,揭示课题。? 3、什么是等腰三角形?等边三角形?它们有何关系 4、请学生动手作等腰三角形ABC,使AB=AC。裁下这个三角形,再动手折叠,当两腰重合时,找出发现哪些结论。?

5、小组交流发现的结论。(两底重合,折痕是顶角角平分线,底边上的高,底边上的中线。 )?

6、小组代表用语言表达得出的结论。?

7、多媒体演示折叠过程,再现归纳得出的结论。?

8、揭示、板书课题:等腰三角形性质。?让学生温习、重现已学相关知识,为学习新知识做铺垫。?

波利亚曾说过:“学习任何知识的最佳途径都是由自己去发现。”《新课程标准》要求通过实践、思考探索、交流获得知识,所以我在这里力图通过学生动手操作、动眼观察、动口交流表达,使学生充分感知等腰三角形性质。?

(三)独立思考,探究新知。?

9、对于观察得出的结论是否能进行论证,请学生动手试一试。?

放手让学生决定自己的探索方向,鼓励学生选用不同的方法,把期望带给学生,让学生最大限度地发现自己的潜能,使学生形成自己对数学知识的理解和有效的学习策略。?

(四)合作探究,交流创新。?

10、当部分同学找到了问题的突破口,而少数找不到思路的同学也充分感知了困难,尝试了困难后,及时组织学生进行合作探究和交流,并作为合作者参与到学生的交流中。?

组织学生探索、交流,有利于开阔学生的视野,形成一个既有独立思考,又有互相合作,广泛交流的学习氛围,培养学生合作精神。?

(五)引导评价,形成规律。?

11、小组合作交流后,请各小组一名代表上台讲解(给学困生提供上台机会,让他们尝试成功的喜悦)共有三种辅助方法:作∠A的角平分线AD、作 AD⊥BC、作BC边上的中线AD。通过师生、生生的相互补充评价,将探究活动引向深入,强化学生的创新思维训练。

12、等边三角形是特殊等腰三角形,它又具有哪些性质呢

学生探索能得出:①每个角都相等,且都是60°,②每边上的高、中线、角平分线互相重合。?

运用知识迁移在新知识的基础上探索新的未知,把学生的探究兴趣进一步推向高潮,激励学生要敢于迎接挑战,不断追求,锻炼意志。?

13、阅读课本:等腰三角形性质(一)(注意:等边对等角、三线合一的几何语言表达)。培养学生的阅读能力和准确的几何语言表达能力。?

(六)实践应用,巩固提高。?

例:已知房屋的顶角∠ABC=100°,过屋顶的立柱AD⊥BC,屋椽AB=AC,根据图中条件,你能求出哪些角的度数。?

把例题改编成开放题,为学生再一次创设探究情境,进一步培养学生的探究能力和思维的广阔性、灵活性。?达标练习(抢答)? ①填空。设计基础练习,体现素质教育的全员性,通过抢答训练,更好地激发学生的学习兴趣和求知欲望。?

②△ABC中,AB=AC,D为BC上一点,DE⊥AB,FD⊥BC交AC于F点,∠A=56°,求∠ EDF的度数?通过能力训练题,提高学生分析问题和解决问题的实践能力。?

③应用:某厂车间的人字屋架为等腰三角形,跨度AB=12米,为使屋架更加牢固,需安装中柱CD,你能帮工人师傅确定中柱的位置吗?说明选用的工具和原理。?进一步体现数学来源于实践,又应用于实践,培养学生的应用意识和应用能力。?

(七)反思归纳,形成结构。?

1、引导学生对学习过程进行小结:?

①本节课你有哪些收获?(知识、方法、技能),你认为重点是什么

②所学知识能解决哪些实际问题

③本节课所运用的学习方法对你今后学习有什么启示

2、布置作业:(分层布置)?

这样进行课堂小结,关注学生个体差异,使每一个学生都有成功的学习体验,得到相应的提高和发展,进一步培养学生的主体意识,锻炼学生的归纳总结能力。

篇3:初中数学等腰三角形性质说课稿

初中数学等腰三角形性质说课稿

一、教材分析

1、教材的地位和作用:《等腰三角形的性质》是初中几何第二册第三章《三角形(二)》的第一课时,是全等三角形的续篇。等腰三角形是最常见的图形,由于它具有一些特殊性质,因而在生活中被广泛应用。等腰三角形的性质,特别是它的两个底角相等的性质,可以实现一个三角形中边相等与角相等之间的转化,也是今后论证两角相等的重要依据之一。等腰三角形沿底边上的高对折完全重合是今后论证两条线段相等及线段垂直的重要依据。同时通过这节课的学习还可培养学生的动手、动脑、动口、合作交流等能力,加强学生对直觉、猜想、演绎、类比、归纳、转化等数学思想、方法的领会掌握,培养学生的探究能力和创新精神。2、教材重组:《数学新课程标准》要求教师要创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材,所以我制作了学生非常熟悉和感兴趣的电视转播塔、房屋人字架等课件,让学生观察寻找出其熟悉的几何图形,然后动手作出这个图形,并裁下来,动手折叠,发现规律。如此把教材内容还原成生动活泼的思维创造活动,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。

3、学习目标:根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:

知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。ツ芰δ勘辏耗芙岷暇咛迩榫撤⑾植⑻岢鑫侍猓逐步具有观察、猜想、推理、归纳和合作学习能力。

情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。

4、教学重、难点:

重点:等腰三角形性质的探索及其应用。

难点:等腰三角形性质的'探索及证明。

5、突破难点策略:通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。

二、学情分析

刚进入初二的学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。

三、教法分析

《数学课程标准》要求教师应激发学生学习的积极性,向学生提供充分从事数学活动的机会,帮助他们进行自主探索和合作交流。为了顺利达到这一目标,引导学生探索性学习,唤起学生的创新意识,我根据教材特点和学生实际,采用了以观察法、发现法、实验操作法、探究法为主的教学方法进行教学。

四、学法建构

《数学新课程标准》指出自主探索与合作交流是学生的主要学习方式,因此,通过本节教学,我将对学生进行以下学法指导:

1、指导学生动眼观察、动手操作、动脑思考、动口表达,注重多感官参与,多种心智能力投入,使学生始终处于主动探索状态。

2、向学生渗透探究、发现的学习方法,培养他们在合作中共同探索新知识、解决新问题的能力。

五、教学模式

本节课设计的指导思想是全日制义务教育《数学课程标准》及新课程改革的教学理念。

《数学课程标准》提出了“问题情境——建立模型——解释、运用与拓展”的基本模式,在此模式指导下,本节课我将采用“创设情境——自主探索——合作交流——引导评价——实践应用——反思归纳”的教学模式,力求着眼于学生探究能力和创造性思维能力的培养,

提高学生的自主意识和合作精神。

六、教学程序和设想

《数学课程标准》强调,教师应发扬教学民主,成为学生数学学习活动的组织者、引导者、合作者。据此本节课我分以下环节组织教学。(一)创设情境,观察联想。1、多媒体展示电视转播台、房屋人字架,让学生观察找出其中的几何图形?(等腰三角形、四边形、梯形)2、两幅图中都有哪种几何图形?(等腰三角形)

从学生身边的生活和已有知识出发,创设情境,引导学生观察、联想,使学生感受到生活中处处有数学,并学会从数学的角度去观察事物,思考问题,激发学生对学习数学的兴趣和愿望。(二)动手操作,揭示课题。3、什么是等腰三角形?等边三角形?它们有何关系?4、请学生动手作等腰三角形ABC,使AB=AC。裁下这个三角形,再动手折叠,当两腰重合时,找出发现哪些结论。

5、小组交流发现的结论。(两底重合,折痕是顶角角平分线,底边上的高,底边上的中线。)

6、小组代表用语言表达得出的结论。

7、多媒体演示折叠过程,再现归纳得出的结论。

8、揭示、板书课题:等腰三角形性质。ト醚生温习、重现已学相关知识,为学习新知识做铺垫。

波利亚曾说过:“学习任何知识的最佳途径都是由自己去发现。”《新课程标准》要求通过实践、思考探索、交流获得知识,所以我在这里力图通过学生动手操作、动眼观察、动口交流表达,使学生充分感知等腰三角形性质。

(三)独立思考,探究新知。

9、对于观察得出的结论是否能进行论证,请学生动手试一试。

放手让学生决定自己的探索方向,鼓励学生选用不同的方法,把期望带给学生,让学生最大限度地发现自己的潜能,使学生形成自己对数学知识的理解和有效的学习策略。

(四)合作探究,交流创新。

10、当部分同学找到了问题的突破口,而少数找不到思路的同学也充分感知了困难,尝试了困难后,及时组织学生进行合作探究和交流,并作为合作者参与到学生的交流中。

组织学生探索、交流,有利于开阔学生的视野,形成一个既有独立思考,又有互相合作,广泛交流的学习氛围,培养学生合作精神。

(五)引导评价,形成规律。

11、小组合作交流后,请各小组一名代表上台讲解(给学困生提供上台机会,让他们尝试成功的喜悦)共有三种辅助方法:作∠A的角平分线AD、作AD⊥BC、作BC边上的中线AD。通过师生、生生的相互补充评价,将探究活动引向深入,强化学生的创新思维训练。

12、等边三角形是特殊等腰三角形,它又具有哪些性质呢?

学生探索能得出:①每个角都相等,且都是60°,②每边上的高、中线、角平分线互相重合。

运用知识迁移在新知识的基础上探索新的未知,把学生的探究兴趣进一步推向高潮,激励学生要敢于迎接挑战,不断追求,锻炼意志。

13、阅读课本:等腰三角形性质(一)(注意:等边对等角、三线合一的几何语言表达)。培养学生的阅读能力和准确的几何语言表达能力。

(六)实践应用,巩固提高。

例:已知房屋的顶角∠ABC=100°,过屋顶的立柱AD⊥BC,屋椽AB=AC,根据图中条件,你能求出哪些角的度数。

把例题改编成开放题,为学生再一次创设探究情境,进一步培养学生的探究能力和思维的广阔性、灵活性。ゴ锉炅废(抢答)①填空。设计基础练习,体现素质教育的全员性,通过抢答训练,更好地激发学生的学习兴趣和求知欲望。

②△ABC中,AB=AC,D为BC上一点,DE⊥AB,FD⊥BC交AC于F点,∠A=56°,求∠EDF的度数ネü能力训练题,提高学生分析问题和解决问题的实践能力。

③应用:某厂车间的人字屋架为等腰三角形,跨度AB=12米,为使屋架更加牢固,需安装中柱CD,你能帮工人师傅确定中柱的位置吗?说明选用的工具和原理。ソ一步体现数学来源于实践,又应用于实践,培养学生的应用意识和应用能力。

(七)反思归纳,形成结构。

1、引导学生对学习过程进行小结:

①本节课你有哪些收获?(知识、方法、技能),你认为重点是什么?

②所学知识能解决哪些实际问题?

③本节课所运用的学习方法对你今后学习有什么启示?

2、布置作业:(分层布置)

这样进行课堂小结,关注学生个体差异,使每一个学生都有成功的学习体验,得到相应的提高和发展,进一步培养学生的主体意识,锻炼学生的归纳总结能力。

篇4:数学八年级上册等腰三角形说课稿

人教版数学八年级上册等腰三角形说课稿

老师们:大家好

非常高兴能有机会在这个说课活动中与大家交流

今天我说课的内容是人教版数学八年级上册第十四章第3节《等腰三角形》的第一课时,下面我将从教材分析、教学方法与教材处理及教学过程等几个方面对本课的设计进行说明。

一、教材分析

等腰三角形是一种特殊的三角形,它除了具备有一般三角形的所有性质外,还有许多特殊的性质,由于它的这些特殊的性质,使它比一般的三角形应用更广泛,而等腰三角形的许多特殊性质,又都和它是轴对称图形有关,它也是证明两个角相等,两条线段相等,两条直线互相垂直的方法,学好它可以为将来初三解决代数、几何综合题打下良好的基础。它在理论上有这样重要的地位,并在实际生活中也有广泛的应用,因此这节课的教学显得相当重要。根据本班学生的特点我确定如下:

(一)教学目标:

1、知识与技能:能够探究,归纳,验证等腰三角形的性质,并学会应用等腰三角形的性质

2、过程与方法:经历剪纸,折纸等探究活动,进一步认识等腰三角形的定义和性质,了解等腰三角形是轴对称图形。

3、情感态度与价值观:培养学生的观察能力,激发学生的好奇心和求知欲,培养学习的自信心

(二)教学重点与难点

等腰三角形性质的探索和应用是本节课的重点。由于初二学生的几何知识有限,而本节课性质的证明又添加了辅助线,所以等腰三角形性质的验探究是本节课的难点。

二、教学方法

本节课中我遵循教师为主导,学生为主体的原则,针对当前学生的厌学情绪,我运用课件,实物演示等多种教学手段激发学生的学习兴趣,让学生感到容易学,采用创设情景、实验法来分散难点让学生感到愿意学,并设置适当的追问、探究,让学生来主宰课堂,成为学习的主人。

三、学法指导及能力培养

好的学习方法才能培养能力,在学生探索知识的过程中培养他们掌握好的学习和解题方法,并且通过自己动手操作、动脑思考、动口表述,培养学生的观察、猜想、概括、表述论证的能力

四、教学过程

(一)情景设置

首先我用一个三角形测平架,测量黑板的下边是否水平,并让学生猜想其中的道理和奥妙,这样的引入既明确了本节课的主要内容,也激发了学生的'学习兴趣,又使学生了解到数学来源于生活又适用于生活。

教育学中有句谚语:“告诉我我会忘记,做给我看我会记得,让我去做我才会懂”,由此可见实验法在教学中具有重要的作用。因此我设计了一个动手操作的环节,让学生按要求剪出一个三角形,为下面折纸操作作好铺垫,结合剪出的等腰三角形学习相关的概念加深印象,并指明等腰三角形是轴对称图形。

(二)探索新知

在这个环节我安排了两个探究,通过折纸的方法猜想并归纳。首先通过折纸让学生猜想∠B和∠C有什么关系?鼓励学生用多种方法来验证他们的猜想,并归纳出等腰三角形的第一条性质。这个地方我设计一个疑问,来强调等边对等角有一个前提条件就必须是在同一个三角形中,为了保证学生思维的连贯性,在这里我是这样引入探究二的,“从刚才辅助线的作法中,你发现了什么?”让学生感觉到这三条辅助线好像是一条线段,然后在通过折纸归纳出性质二。

学生在长时间的学习和探究中大脑已感到疲劳,随即引出课前设置的疑问,再次激发学生的学习热情。由于“三线合一”的性质在描述上经常出错,所以我设置了一个辨析,然后用填空的形式规范“三线合一”的符号表示形式,让学生理解性质的内涵。

(三)巩固练习

我用两个练习巩固等腰三角形的性质并让学生体验分类讨论的思想在解题中的应用。由于本节课的例题较难,因此我对它进行了改编,先让学生解决“等腰三角形一个底角的外角是108°时,三个内角分别是多少度?”然后再延长CD,得到一个新的等腰三角形,运用性质一就可以解决这两个问题,然后今天的例题就可以迎刃而解了,同时也要强调此题图形的特殊性,只有顶角是36°的等腰三角形才能满足这样的性质。

(四)课堂小结

课堂教学,一是注重引入激发兴趣,二是注重教学过程、重视方法,三就是注重概括总结。首先我让学生回想一下本节课的内容,“通过本节课的学习,你对等腰三角形有什么新的认识吗?”然后教师肯定学生的积极性。

(五)作业布置(略)

(六)板书设计(略)

总之,在整个教学过程中,我遵循着“教师为主导,学生为主体,训练为主线”的原则,在课上的每个环节中通过各种媒体,各种手段,始终注重兴趣的激发,培养学生的学习热情,让他们在轻松愉快中学习知识。

以上是我对这节课的教学设计,望各位老师批评指正,谢谢!

篇5:数学八年级上册等腰三角形说课稿

一、说教材分析

1、本节课的地位与作用

等腰三角形的判定是初中数学的一个重要定理,也是本章的重点内容。本节内容是在学生已有的平行线性质、命题以及等腰三角形的性质等知识基础上进一步研究的问题。特点之一是它揭示了同一个三角形的边、角关系;特点之二是它与等腰三角形的性质定理互为逆定理;特点之三是它为我们提供了证明两条线段相等的新方法,为以后的学习提供了证明和计算依据,有助于培养学生思维的灵活性和广阔性。所以本段教材承上启下、至关重要。

2、教学目标:

根据新课程标准的基本理念,结合八年级数学教材结构和学生的认知结构心理特征。我将本节的教学目标设计为三个方面:

知识与技能:会阐述、证明等腰三角形的判定定理。

过程与方法:学会比较等腰三角形性质定理和判定定理的联系与区别。

情感态度与价值观:经历综合应用等腰三角形性质定理和判定定理的过程,体验数学的应用价值。

3、教学重点:等腰三角形的判定定理的探索和应用。

4、教学难点:等腰三角形的判定与性质的区别。

5、教具准备:作图工具和多媒体课件。

二、说教法分析

新课程理念强调我们的课程不仅是文本课程,更是体验课程,它不再是知识的载体,而是教师和学生共同探究新知的过程;使教学成为一种对话、交往,一种沟通,合作与共建。教师不仅要传授知识,更要与学生一起分享对课程的理解。因此,本节课我主要采用两种教法:

1、引导探索法:在数学教学中,作为教师应善于引导学生去观察、去分析、去归纳、去总结,从而培养学生主动求知的探索精神。

2、情景教学法:数学课程的特点之一是内容抽象,而多媒体在数学教学中的应用可以较好的解决这个难题。我在教学中充分运用远教资源中的媒体资源设计出可视的图形运动轨迹,帮助学生理解教材意图。

三、说学法分析

本节课按照质疑、猜想、验证的学习过程,遵循学生的认知规律,让学生感受由实践到理论再到实践的学习过程,也体现了数学源于生活,而又服务于生活的基本理念。本节课将着力培养学生的实践探究能力、合作交流和抽象概括能力。

四、说教学过程

我现将本节课的教学目标展示给学生,让学生做到心中有数,再展示出自学指导,让学生带着问题看书,加强自主探索的能力。

本节课的教学过程分为创设情境――激发兴趣、提出问题――大胆猜想、讨论交流――探索分析、科学引导――得出结论、反馈教学――加深理解、拓展延伸――综合运用六大教学版块。

1、创设情境――激发兴趣

我结合课本中的'实际问题引入课题,并出示大屏,展示这一实际问题,再结合形象的图形展示给学生。“如图,位于在海上A、B两处的两艘救生船接到O处的遇险报警,当时测得∠A=∠B。如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素)?” 通过学生观察、思考,产生悬念,使学生从生活走进数学,自然地渗透数学来源于生活的思想。

2、提出问题――大胆猜想

我首先引导学生将实际问题转化为数学问题,即:在一个三角形中,如果有两个角相等,那么他们所对的边有什么关系? 通过问题的提出,引导学生写出已知、求证,并根据已知条件画出图形。

3、讨论交流――探索分析

然后我设计了一个学生活动,让学生画一个有两个角相等的三角形。在教学中,我引导学生自己选择不同的方法来观察,通过他们实际动手折叠与测量,学生不难结合前面所学的知识发现两边的关系,看它的两条边有什么关系?再引导他们分组讨论、交流和分析,应该采用什么方法来判断它?说一说你的想法?

4、科学引导――得出结论

在教学中,我针对学生的讨论情况,结合教材实际,引用了远教资源中的媒体展示,让学生更加直观形象的感知这一过程,再引导学生通过两种方法来解决问题,方法一:过点A作AD平分∠A得到∠1=∠2 ,从而推出△ABD≌ △ACD,证明AB=AC。方法二:过点A作AD⊥BC得到∠ADC=∠ADB,从而推出△ABD≌ △ACD,证明AB=AC。通过两种不同方法的推证,我再引导学生用数学语言来总结这一规律,针对学生的发言进行点评,给出提示,达成共识后得到结论。

5、反馈教学――加深理解

在学生得出这一结论之后,我再给出课前提出的救生船问题,让学生运用所学知识反馈于教学,用数学知识来解决生活中的实际问题,此时,学生就不难发现两行船将同时到达O点,同时我用了一道典型例题,本题也是课本中的例2,旨在考查学生对平行线性质定理和等腰三角形判定定理的综合运用,以进一步加深学生对等腰三角形判定定理的理解和运用。

6、拓展延伸――综合运用

这一题型的设计将等腰三角形的性质定理与判定定理有机的结合起来,重在培养学生对两个知识点的综合运用,鼓励学生积极思考,勇于探索。

7、课堂小结

在小结部分,我提出两个问题:一是学到了什么知识?二是这个知识有什么作用。通过问题的设计引导学生归纳出学习内容。

五、说板书设计

本节课的板书设计,主要围绕等腰三角形的判定定理的探索和归纳来展开教学。

说课综述:本节课的教学设计,力求为学生创造一种宽松、和谐、适合发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围。本节教学充分发挥远教资源的便利,在例题的设计上、在思考题、拓展练习的编排上,在教学重难点的突破上,合理而有效的使用了远教资源,使数学教学与远教资源的运用形成新的整合模式。整个教学环节层层推进、步步深入,融基础性、灵活性、实践性、开放性于一体,注重调动学生思维的积极性,把知识的形成过程转化为学生质疑、猜想和验证的过程。使学生在获得知识的同时提高兴趣、增强信心、提高能力。

篇6:数学八年级上册等腰三角形说课稿

一、说教材分析:

1. 教材内容:

本课是九年义务教育课程标准实验教科书七年级(下)等腰三角形,本课内容在初中数学教学中起着比较重要的作用。通过等腰三角形的特征反映在一个三角形中等边对等角关系,并且对轴对称图形特征的直观反映(三线合一),对以后直角三角形和相似三角形学习起到相当重要的作用。

2、教学目标:

(1)认知目标:

要求学生掌握等腰三角形的特征和三线合一的特征,使学生会用等腰三角形的特征进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法;

(2)能力目标:培养观察能力、分析能力、联想能力、表达能力;使学生初步学会分析几何证明题的思路,从而提高学生的逻辑思维能力及分析问题、解决问题的能力;

(3)情感目标:通过亲自动手,发现“等腰三角形两底角相等”和“三线合一”特征,对学生进行数学美育教育。

3、教学重难点:

(1)教学重点:

等腰三角形两底角相等的特征是本课的重点。

(2)教学难点:

等腰三角形“三线合一”特征的运用是本课的难点。

4、教具准备:

为了使学生了解这堂课,本节课要求学生自制若干个不同等腰三角形和一般性三角形纸片模型。

二、说教学方法:

由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习轴对称图形,对轴对称图形的分析相对比较好,再加上七年级学生思维的感官性,所以本课由学生通过翻折等腰三角形纸片去发现等腰三角形的两个特征,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,我通过实验观察,采用教具直观教学法,启发式教学法和师生互动式教学模式进行教学。

教学过程中注意师生之间的情感交流,培养学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习模式,培养学生的数形结合的思想。对于等腰三角形的“两底角相等”和“三线合一”这两个特征,通过让学生动手操作,让学生翻折不同的等腰三角形,如顶角是锐角、钝角或直角的等腰三角形,以及一般三角形的模版,从而让学生逐步通过等腰三角形的轴对称变换探索出相关的特征。针对“三线合一”这一特征,学生不容易引起重视,而它又是本课的难点和今后的广泛应用,故在教学中适当补充例题进行教学,重在引起学生对这一特征的巩固和掌握。

为充分发挥学生的主体性和教师的主导辅助作用,教学过程中设计了七个教学环节:

(一)、温故知新,激发情趣

(二)、构设悬念,创设情境

(三)、目标导向,自然引入

(四)、设问质疑,探究尝试

(五)、启发诱导,初步运用

(六)、归纳小结,强化思想

(七)、布置作业,引导预习

三、说学生学法:

⑴知识掌握上,七年级学生在小学阶段已经接触了三角形和等腰三角形的相关知识以及刚刚学习轴对称图形和三角形内容,再加上七年级学生对于图形的直观性容易接受,所以本课安排学生通过翻折等腰三角形去发现等腰三角形的两个特征不存在太大的问题。

⑵学生学习本节课的知识障碍:学习等腰三角形的两底角相等和三线合一的应用有难度,学生不易灵活应用,容易造成应用中的掉三落四的现象,所以教学中灵活结合学生练习中可能存在的问题,进行简单明了、深入浅出的分析讲解。

⑶七年级学生的理解能力和思维特征以及生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中灵活抓住学生这一生理心理特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。

⑷在心理上,老师抓住学生对数学课兴趣这有利因素,引导学生认识到数学的科学性和应用性,学好数学有利于其他学科的学习以及学科知识的渗透性。

四、说教学程序设计:

(一)、温故知新,激发情趣:

1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?

2、指出等腰三角形的腰、底边、顶角、底角。

(首先教师提问了解前置知识掌握情况,学生动脑思考、口答。)

(二) 、构设悬念,创设情境:

3、一般三角形有哪些特征? (三条边、三个内角、高、中线、角平分线)

4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?

(把问题3作为教学的出发点,激发学生的学习兴趣。问题4给学生留下悬念。)

篇7:八年级数学上册《等腰三角形的性质》教学反思

人教版八年级数学上册《等腰三角形的性质》教学反思

安排一课时学习等腰三角形的性质,内容很多,课堂容量很大,本课教学后,有很多方面需要总结。

在证明性质时,用三种方法研究性质的'证明,要用到小组交流,比较发现有三种方法:取中点,用“SSS”证明全等;作垂线,用“HL”证明全等;作角平分线,用“SAS”证明全等。通过这样的教学设计,一方面,体会了辅助线不同的作法,就有不同的证法;另一方面,为性质2“三线合一”的教学提供了方便。不足的是,课堂交流的不是很充分。

性质2的应用比较多,学生往往不能灵活应用这条性质,因此要由图形训练和规范符号语言。

在△ABC中,AB=AC,下列论断①∠BAD=∠CAD,②BD=CD,③AD⊥BC中,有一条成立,另外两条就成立,设计一组填空题,有利于性质2的应用。

要培养学生讨论和自觉纠错的学习习惯。性质在证明中的应用,先由学生独立思考,多数同学用全等证明,提出问题进行思考“结合新知识,可以不用全等证明吗”最后留出时间进行课堂小结。

篇8:八年级数学分式基本性质说课稿

八年级数学分式基本性质说课稿

一、教材分析

1、教材的地位及作用

“分式的基本性质”是人教版八年级上册第十一章第一节“分式”的重点内容之一,它是后面分式变形、通分、约分及四则运算的理论基础,掌握本节内容对于学好本章及以后学习方程、函数等问题具有关键作用。

2、教学重点、难点分析:

教学重点:理解并掌握分式的基本性质

教学难点:灵活运用分式的基本性质进行分式化简、变形

3、教材的处理

学习是学生主动构建知识的过程。学生不是简单被动的接受信息,而是对外部信息进行主动的选择、加工和处理,从而获得知识的意义。学习的过程是自我生成的过程,是由内向外的生长,其基础是学生原有知识与经验。本节课中,学生原有的知识是分数的基本性质,因此我首先引导学生通过分数的基本性质,这就激活了学生原有的知识,然后引导学生通过分数的基本性质用类比的方法得出分式的基本性质。让学生自我构建新知识。通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用. 最后引导学生对本节课进行小结,使学生的知识结构更合理、更完善。

二、目标分析:

数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。教学的目的就是应从实际出发,创设有助于学生自主学习的问题情境,引导学生通过思考、探索、交流获得知识,形成技能,发展思维,学会学习,使学生生动活泼地、主动地、富有个性的学习,促进学生全面、持续、和谐地发展。为此,我从知识技能、数学思考解决问题、情感态度四个方面确定了教学目标:

1、知识技能:1)了解分式的基本性质

2)能灵活运用分式的基本性质进行分式变形

2、数学思考:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。

3、解决问题:通过探索分数的基本性质,积累数学活动的'经验。

4、情感态度:通过研究解决问题的过程,培养学生合作交流意识与探索精神。

三、教法分析

1、教学方法

数学是一门培养人的思维,发展人的思维的重要学科。在新课程理念下,获得数学知识的过程比获得知识更为重要。基于本节课的特点,课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

2、学法指导

现代新教育理念认为,学习数学不应只是单调刻板,简单模仿,机械背诵与操练,而应该采用设置现实问题情境,有意义富有挑战性的学习内容来引发学习者的兴趣。,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究,主动总结,主动提高,突出学生是学习主体,他们在感知识知识的过程中无疑提高了探索、发现、实践、总结的能力。

3、教学手段

我所采用的教学手段是多媒体辅助教学法。

四、程序分析

活动1 创设情境,引入课题

教师提出问题,下列分数是否相等?可以进行变形的依据是什么?需要注意的是什么?类比分数的基本性质,你能猜想出分工有什么性质吗?学生思考、交流,回答问题。在活动中教师要关注:(1)学生对学过的知识是否掌握得较好;(2)学生对新知识的探索是否有深厚的兴趣。

设计意图:通过具体例子,引导学生回忆分数的基本性质,再用类比的方法得出分式的基本性质。这样安排,首先激活了学生原有的知识,为学习分式的基本性质做好铺垫。体现了学生的学习是在原有知识上自我生成的过程。

活动2 类比联想,探究交流

教师提出问题:如何用语言和式子表示分式的基本性质?学生独立思考、分组讨论、全班交流。

设计意图:教师引导学生用语言和式子表示分式的基本性质,体现了学生的学习是在原有知识上自我生成的过程。这样安排,学生的知识不是从老师那里直接复制或灌输到头脑中来的,而是让学生自己去类比发现、过程让学生自己去感受、结论让学生自己去总结,实现了学生主动参与、探究新知的目的。

活动3 例题分析 运用新知

教师提出问题进行分式变形。学生先独立思考问题,然后分小组讨论。教师参与并指导学生的数学活动,鼓励学生勇于探索、实践,灵活运用分式基本性质进行分式的恒等变形。在活动中教师要关注:(1)学生能否紧扣“性质”进行分析思考;(2)学生能否逐步领会分式的恒等变形依据。(3)学生是否能认真听取他人的意见。

活动4 练习巩固 拓展训练

教师出示问题训练单。学生先独立思考完成,并安排三名同学板演。教师巡视,注意对学习有困难的学生进行个别辅导。在活动中教师要关注:(1)大部分学生能否准确、熟练完成任务;(2)学生能否用数学语言表述发现的规律;(3)学生在运算中表现出来的情感与态度是否积极。

设计意图:通过思考问题,鼓励学生在独立思考的基础上,积极地参与到对数学问题的讨论中来,勇于发表自己的观点,善于理解他人的见解,在交流中获益。第二个问题指明了分式的变号法则。

篇9:八年级数学分式的基本性质说课稿

对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教学背景、教法学法、教学过程、教学设计说明四个方面具体阐述我对这节课的理解和设计。

1、教材的地位和作用

本节内容分两课时完成。我设计的是第一课时的教学,主要内容是分式概念、掌握分式有意义,值为0的条件。因为它是在学生学习了分数、整式及因式分解的基础上,又一代数学习的基本内容,是小学所学分数的延伸和扩展,而学好本节课,为今后继续学习分式、函数、方程等知识作好铺垫,特别是对“分式有无意义的讨论”为以后学习反比例函数作了铺垫。因此它起着承上启下的作用。

2、教学目标

一节课的教学目标准确与否,直接关系到这节课的整体设计,关系到学生发展的水平和教学效果的好坏,因此预设教学目标时,我力求准确。依据新课程的要求,我将本节课的教学目标确定为以下3个方面:

(1)知识与技能目标:让学生经历用分式表示现实情境中数量关系的过程,从而了解分式概念,学会判别分式何时有意义,进一步培养学生代数表达能力和分析问题、解决问题的能力、以及创新能力。

(2)过程与方法目标:经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。

(3)情感与态度目标:通过丰富的数学活动,使学生获得成功的经验,体验数学活动充满探索和创造,体会分式的模型思想,培养学生的辩证唯物主义观点。

3、教学重难点及关键:

分式概念是《分式》这一章学习的起点和基础,因此我把理解分式的概念确定为本节课的教学重点。又由于初中学生的认知结构中存在着这样的障碍:不善于概括数学材料、缺乏对字母及其他数学符号用于运算的能力,所以判定分式有意义、分式的值为0时的条件,自然就成了本节课的教学难点。而部分学生容易忽视分式的分母值不能为0这个条件,因此我认为突破这个难点的关键是通过类比分数的意义,加强对分式分母值不能为0的理解。

一、教法学法分析

1、学情分析

由于我校八年级学生,基础比较扎实,学习能力较强。通过小学分数的学习,学生头脑中已经形成了分数的相关知识。学生可能会用学习分数的思维去认识、理解分式。但是分式的分母不再是具体的数,而是抽象的含字母的整式,会随着字母的取值的变化而变化。为了帮助学生确实掌握所学内容,我在教学过程中特别设置了巩固性练习,对于教材中的例题和习题将作适当的延伸和拓展及变式处理.

2.教学方法:

针对本班学生情况,为了适合学生已有的认识水平和认知规律,更好地突出重点、化解难点,在教学过程中,我采用“引导——发现式教学法”,引导学生运用类比的思维方法进行自主探究.在实施教学的过程中注意学生分析问题、解决问题等能力的培养。让学生全面地掌握分式的意义,体会到数学不是一门枯燥的学科,对学习数学充满信心。为了提高课堂效果,适当的辅以多媒体技术,激发学生的学习兴趣,同时也增大教学容量,提高教学效率。

3.学法指导

观察、概括、总结、归纳、类比、联想是学法指导的重点。

在课堂教学中,不是老师单纯的传授知识,而是在老师指引下让学生自己学。要把教法融于学法中,在学法中体现教法。在活动过程中,我将引导学生体会用类比的方法,扩展知识的.过程,培养他们学习的主动性和积极性。让学生通过对问题的讨论归纳,在与老师的交流中学习知识,从而达到“学会”和“会学”的目的。

二、教学过程(多媒体教学)

《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”在教学过程中,我充分考虑到如何更多地向学生提供从事数学活动的机会,坚持以知识为载体,思维为主线,能力为目标的设计原则,所以我将本节课的教学过程设为以下六个环节:

第一环节是“创设情景、提出问题”:为了引导学生从自己熟悉的生活背景中发现、掌握和运用数学,在现实情境中进一步理解用字母表示数的意义,在这一环节里我设计一道有关四川汶川特大地震捐款的事例,并设置了6个问题。从学生熟悉的整式及其运算入手,引导学生从旧知中去发现分式,找到新知的“生长点”和学生思维的“最近发展区”,从而更好地进行分式概念的建构活动。落实教学目标。

针对学生的发现,在第二个环节“类比联想形成概念”

我将采用“议一议”的方式引导学生继续观察新式子的特征,类比分数,合理联想。从而使学生水到渠成地概括出分式的概念及一般表示形式。

第三环节“指导运用巩固概念”

通过小组内互举例子,互说判定过程,鼓励学生积极参与活动,在活动过程中强化分式概念,并及时纠正学生可能因分数负迁移所造成的认知障碍,注意辨析与的本质区别和不是分式的问题,指出判断一个代数式是不是分式,不是决定于这个式子里是否含分数线,关键要看分母中是否含有字母。最后指出“整式和分式统称为有理式”。同时还让学生明白:分数线具有(1)表示括号;(2)表示除号双重意义。

到此学生对分式的概念有了初步的认识,但并不完整。接下来如何识别分式有意义,是本节课的难点,也是探究学习的好素材。课本中分式有意义的条件是直接给出的,而我在以往的教学中发现学生往往忽视这个条件或是对分母整体不为零认识模糊,为了更好地突破难点,

我在第四环节“循序渐进再探新知”

创设了以下活动供学生自主探究分式有意义的条件:

首先是组织学生独立填写表格:

表格的设计,是为了让学生通过对分式中的字母赋值,将“代数化”了的分式还原为他们熟悉的分数。通过填表,不同层次学生的发现将会有差异,此时正是倾听与交流的好时机,通过互相说服和推广,他们最终会达成共识:分式的值与字母取值有关,分式并不都有意义。继而引导学生通过再次类比分数,将陌生问题向熟悉问题转化,自主得出“分式有意义”的条件,建立完整的分式概念,同时渗透从特殊到一般的数学思想。

我抓住这一契机,给出:

(2)、概括分式在什么条件下有意义(对一般表达式里的分母B作出取值限定:B不能等于零)为了能让学生对刚获得的新知识进行最基本的应用,在这一环节我安排了例题1是一个有关分式求值及判别分式何时有意义的问题,比较简单,可以由学生在自主完成的基础上同桌交流,然后师生评述,使全体学生特别是学有困难的学生都能达到基本的学习目标,获得成功感。

我又顺水推舟,再给出以下分式,让学生讨论,(实践练习1):当x取什么值时,下列分式有意义?你知道吗?(采用组内合作然后组间抢答的形式。)(1)、(2)、(3)、接下来,我又乘胜追击,问学生:(变式练习):那么以上各分式,当取什么值时,分式无意义?

几个问题由浅入深、由易到难,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,消化知识。

(五)、变式延伸,进行重构

在掌握了如何求当未知数取什么值时,分式是有意义还是无意义以后,我将带领学生进入本节课的另一个难点,对学生来讲思维又将象每个跳动的音符一样活跃起来了。我问学生:例2:同样的,以上各分式,当取什么值时,分式的值为零?

由于学生对新概念的理解在本质方面还是肤浅的,很多学生可能只考虑满足分子为零即可,所以我给学生几分钟的讨论时间,这时就有考虑问题较周到的学生通过(2)(3)两个题发现问题并不是那么简单,找出了症结。这样我就能及时的对症下药,指出“分式的值为零必须在分式有意义的前提下进行的。因此,分式的值为零必须满足两个条件:

(1)、分子的值为零;(2)、同时分母的值不等于零。从而进一步改善学生原有的认知结构

为了使这堂课所学到的知识与技能,顺利地纳入他们已有的知识结构中,

所以在接下来的第(六)环节“巩固深化分层作业”里,我将引导学生反思:我们是如何得到分式概念的?分式和我们以前学过的什么知识有联系?我们用了哪些方法进一步揭示了分式意义的本质?在以上的学习过程中你的收获有哪些?最后教师整理学生的发言,归纳小结:

A、分式是两个整式相除的商,分数线可以理解为除号,并含有括号的作用.

B、分式的分子可以含有字母,也可以不含有字母,但分母必须含有字母.

C、分式分母的值不能为0,否则分式无意义.

D、分式的值要为0,需满足的条件是:分子的值等于0且分母值不为0

E、有理数的分类(有理数包括整式和分式)。

(2)、作业布置

(设计意图)考虑到学生的个体差异,以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。其中有一题自编涉及用分式表示数量关系的实际问题的题型。这样设计对学生是个挑战,可以激发他们的思维和兴趣,通过这样的逆向思维,可以更好地发展学生的数感、符号感,同时培养学生的创新意识。

以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。

三、教学设计说明

回顾整节课的设计,我主要着力于以下三个方面:

(一)、关于教材处理:认真处理教材,目的只有一个——为我的学生尽可能多地提供参与活动的机会,在本节课中主要体现在以下几点:

1、通过创设情景、引导学生观察、类比;联想已有知识经验;分析新的问题等活动,让学生充分感受知识的产生和发展过程,让学生始终处于积极思维状态之中。

2、通过分式概念、分式有意义的条件等探究活动,让学生亲历发现事物特征、规律的过程,激发学生的学习兴趣,增强自信心,引发自行学习的内在动机。

3、在学生学习了分式的概念后,通过一组由浅入深、由易到难的题组(例题及变式训练),逐题递进,落实本节课的教学难点。在教学形式上采用学生“互举例子、组内合作、组间抢答等多种方式,激活学生的思维,营造良好的课堂氛围。

4、问题设计注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展

5、小结部分通过师生共同反思,目的是为了更好地促进新旧知识之间的联系,使新知识与学生头脑中原有的旧知识建立逻辑性的稳固联系,从而形成新的认知结构。

6、通过创设开放性问题发展学生的创造性思维能力。根据学生的个性差异,遵循因材施教的原则,设计分层作业,使不同层次的学生都能通过作业有所收获。

(二)、关于教与学方法的选择:我在设计中始终关注:如何精心组织,让学生在丰富的活动中探索、交流与创新,因此我选择了“引导—发现教学法”,具体做法如下:

(1)、应用数、式通性的思想,类比分数,引导学生独立思考、小组协作,完成对分式概念及意义的自主建构,突出数学合情推理能力的养成;

(2)、加强应用性,通过再探新知、变式延伸两个环节,发展数学应用意识,突出分式的模型思想。

(三)、关于评价:学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情.我在活动中注重运用态势、语言对学生进行即兴评价,肯定成绩,使其具有成就感,提高他们学习的兴趣和学习的积极性。

总之,在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展的。

篇10:等腰三角形性质说课稿

一、教材分析

1.教材的地位与作用:

等腰三角形的性质是新人教版八年级数学第十三章第三节的内容,它是在认识了轴对称性质以及了解了全等三角形的判定的基础上进行的。主要学习等腰三角形的“等边对等角”和“等腰三角形的三线合一”本节内容既是前面知识的深化和应用,又是今后学习等边三角形的预备知识,还是今后证明角相等、线段相等及两直线互相垂直的依据,因此本节课具有承上启下的重要作用。

2.教学目标:

知识目标:了解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断、计算作用。

能力目标:从设置问题?模型演示?自己动手探究发现等腰三角形的性质,培养学生的观察力、实验推理能力。

情感目标:要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作动手中感受几何应用美。

3.教学重点与难点

重点:等腰三角形两底角相等,等腰三角形三线合一。因为等腰三角形的性质是今后学习线段垂直平分线的基础,也是今后论证角、边相等的重要依据,所以是本节教学的重点。

难点:等腰三角形三线合一的推理应用

二、教法与学法

教法:我采用探索发现法完成本节的教学,在教学中以学生参与为主,便于激发学生学习热情,体验成功的喜悦,通过直观的演示和学生自己动手使学生在获得感性知识的同时,为掌握理性知识创造条件,这样更有利于调动学生积极性,激发学生兴趣,使学生变被动学习为积极主动愉快学习,也符合数学教学的直观性和可接受性。

学法:在教学中,把重点放在学生如何学这一方面,我认为通过直观演示,得到感性认识,学生在学习中运用发现法,开拓自己的创造性思维,实现由学生自己发现感受“等腰三角形的性质”通过学生自己看、想、议、练等活动,让学生自己主动“发现”几何图形的性质,而不是老师灌输几何图形的性质,这样做有利于活跃学生的思维,帮助他们探本求源,让每位学生都学有价值的数学。

三、教学过程:

(一)出示教学目标

知识目标:了解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断、计算作用。

能力目标:从设置问题?模型演示?自己动手探究发现等腰三角形的性质,培养学生的观察力、实验推理能力。

情感目标:要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作动手中感受几何应用美。

让学生明白本节课的重要知识点和自己需要掌握的主要知识,做到有的放矢。

(二)直观演示,大胆猜想

观察含有等腰三角形图片,让学生从感性上认识等腰三角形,激发学生的兴趣。

由学生自己动手折纸游戏,演示等腰三角形轴对称变换,大胆猜测等腰三角形的性质,这种直观的低起点的方式引入新课更能提高学生兴趣,激发他们的求知欲,让每位学生都涌跃参与,领悟数学学习的价值。

(二)证明猜想,形成定理。

1△ABC中,AB=AC,求证:∠B=∠C

思考:1如何证明你的猜想?〔讲述一种证明方法:作顶角的平分线〕

2有其它的方法吗?试试看,用不同的方法证明这个结论。

让学生4人一组分组合作,在组与组之间合作,通过作辅助线,共同寻找全等三角形,相等的角,相等的边,体现学生组内合作,组与组之间的合作,让学生自己主动证明猜想,同时有也有利于学生对全等三角形的判定的巩固,既运用以旧引新的推理方式,又体现由特殊到一般的思维认识规律。采用这种探索发现的方式,让学生通过对直观图形的观察猜想,实验证明去揭示定理。同时也展示了猜想--证明这一数学认知基本方法。

2交流反馈,共同完成本节重要知识点的证明。

通过看幻灯片,让学生感性上认识等腰三角形性质〔等腰三角形三线合一〕,既锻炼学生的发散思维能力,又可提高学生的表述水平。

3小结:根据等腰三角形的性质填空。

(1)如果AB=ACAD是角的平分线那么......

(2)如果AB=ACAD⊥BC那么......

(3)如果AB=ACBD=CD那么......

总结,积累知识点,从理性上认识等腰三角形的性质,形成知识体系。

(三)应用举例,强化训练

为进一步深化巩固对新知识的理解,使新知识转化成技能,在教学中我遵循由线入深,循序渐进的原则安排以下练习,以求完成教学目标。

通过这一环节的题目训练,有利于激发学生探索精神,养成灵活运用新知识,敢干运用新知的跳跃精神。

四、归纳小结

为了使学生对所学知识有一个完整而深刻系统的认识,我让学生畅所欲言,谈体会、谈收获,让学生自己结合本节教学目标,发现在学习中学会了什么及还存在哪些问题。这样有利于学生学习后养成及时反思的习惯。

等腰三角形的性质教学反思

安排一课时学习等腰三角形的性质,内容很多,课堂容量很大,本课教学后,有很多方面需要总结。

在证明性质时,不再有同学直接用性质证明性质了,这是一个很大的进步,用三种方法研究性质的证明,要用到小组交流,比较发现有三种方法:取中点,用“SSS”证明全等;作垂线,用“HL”证明全等;作角平分线,用“SAS”证明全等。通过这样的教学设计,一方面,体会了辅助线不同的作法,就有不同的证法;另一方面,为性质2“三线合一”的教学提供了方便。不足的是,课堂交流的面可以更宽些。

性质2的应用比较多,初学者往往不能灵活应用这条性质优化证题途径,因此要解读这条性质,由图形训练和规范符号语言,把性质一句话改写成三句话或者六句话,一句话是“等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合”,三句话是“1等腰三角形的顶角平分线平分底边、垂直于底边,2等腰三角形的底边上的中线平分顶角、垂直于底边,3等腰三角形的底边上的高平分顶角、平分底边”,六句话是“1等腰三角形的顶角平分线平分底边,2等腰三角形的顶角平分线垂直于底边,3等腰三角形的底边上的中线平分顶角,4等腰三角形的底边上的中线垂直于底边,5等腰三角形的底边上的高平分顶角,6等腰三角形的底边上的高平分底边”,结合图形概括起来就是:在△ABC中,AB=AC,下列论断①∠BAD=∠CAD,②BD=CD,③AD⊥BC中,有一条成立,另外两条就成立,分六句话,写出推理语言。这里设计了一组填空题,有利于性质2的应用。学生能够整齐地叙述,但还需进一步巩固。

性质在计算中的应用,涉及到方程思想和分类讨论思想,课堂上的训练不是太充分的,没有安排同学在黑板上板演,主要培养了学生讨论和自觉纠错的学习习惯。

本节课的两个性质全部是由学生折纸,自主猜想出来,老师几乎没有提示,学生自主探究能力得到很大的提升。此外。本节课的PPT制作效果好,能准确引导学生的探究方向,在展示性质证明的过程中,起到了很好的作用。学生学习热情高,课堂氛围好。

篇11:等腰三角形性质说课稿

一、教材分析

1、教材分析之地位和作用

《等腰三角形的性质》是“华东师大版七年级数学(下)”第九章第三节的内容。本课安排在《轴对称的认识》后,明确了《等腰三角形的性质》与《轴对称的认识》的联系,起到知识的链接与开拓的作用。本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

2、教材分析之教学目标

①知识与技能目标:

掌握等腰三角形的有关概念和相关性质。熟练运用等腰三角形的性质解决等腰三角形内角以及边的计算问题。

②过程与方法目标:

通过对性质的探究活动和例题的分析,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力。

③情感与态度目标:

通过对等腰三角形的观察、试验、归纳,体验数学活动充满着探索性和创造性,突出数学就在我们身边。在操作活动中,培养学生之间的合作精神,在独立思考的同时能够认同他人。

3、教材分析之教学重难点

重点:探索等腰三角形“等边对等角”和“三线合一”的性质。

(这两个性质对于平面几何中的计算,以及今后的证明尤为重要,故确定为重点)

难点:等腰三角形中关于底和腰,底角和顶角的计算问题。

(由于等腰三角形底和腰,底角和顶角性质特点很容易混淆,而且它们在用法和讨论上很有考究,只能练习实践中获取经验,故确定为难点。)

4、教材分析之教法

数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,“教必有法而教无定法”,只有方法得当,才会有效。根据本课内容特点和初一学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。

5、教材分析之学法

最有价值的知识是关于方法的知识,首先对于我们教师应该创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域。本节课我将采用学生小组合作,实验操作,观察发现,师生互动,学生互动的学习方式。学生通过小组合作学会“主动探究----主动总结---主动提高”。突出学生是学习的主体,他们在感受知识的过程中,提高他们“探究---发现---联想---概括”的能力!

二、教学过程:

1、创设情景

①复习提问:向同学们出示几张精美的建筑物图片;

问题:轴对称图形的概念?这些图片中有轴对称图形吗?

②引入新课:再次通过精美的建筑物图片,找出里面的等腰三角形。

问题:等腰三角形是轴对称图形吗?

③相关概念:定义:两条边相等的三角形叫做等腰三角形。

边:等腰三角形中,相等的两条边叫做腰,另一条边叫做底边.

角:等腰三角形中,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.

2、探究问题

①动动手:让同学们做出一张等腰三角形的半透明的纸片,每个人的等腰三角形的大小和形状可以不一样,把纸片对折,让两腰重合在一起,你能发现什么现象?请你尽可能多的写出结论。

②得出结论:可让学生有充分的时间观察、思考、交流、可能得到的结论:

(1)等腰三角形是轴对称图形

(2)∠B=∠C

(3)BD=CD,AD为底边上的中线

(4)∠ADB=∠ADC=90°,AD为底边上的高线

(5)∠BAD=∠CAD,AD为顶角平分线

3、重要性质

性质1:等腰三角形的两底角相等。(简写成“等边对等角”)

性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。

(简称“三线合一”)

如图,在△ABC中,AB=AC,点D在BC上

(1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD

(2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC

(3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD

(为了方便记忆可以说成“知一求二!”)

篇12:等腰三角形性质说课稿

一、说教材

本节课是在学生掌握了一般三角形基础知识和初步推论证明的基础上进行学习的,担负着训练学生学会分析证明思路的任务,在培养学生逻辑推理能力方面有着非常重要的作用。等腰三角形两底角相等的性质是今后论证两角相等的的依据之一,等腰三角形底边上的三条主要线段重合的性质是今后论证两条线段相等、两个角相等及两条直线垂直的重要依据,因此在教材中处于非常重要的地位。

二、说教学目标

知识与能力:探索并掌握等腰三角形性质定理,能运用它们进行有关的论证和计算。理解等腰三角形和等边三角形性质定理之间的联系。过程与方法:培养学生对命题的抽象概括能力,逐步渗透几何证题的基本思想方法:分析法和综合法。情感与态度:引导学生进行规律的再发现,培养学生勇于实践、大胆探索的精神。加强学生数学应用意识。

三、教学重点与难点

重点:等腰三角形的性质定理。难点:等腰三角形三线合一性质的运用四、说教法与学法课堂教学要体现以学生发展为本的精神,因此本堂课我采取了“开放型的探究式”教学模式,从问题提出到问题解决都竭力把参与认知过程的主动权交给学生,使学生全面参与、全员参与、全程参与,真正确立其主体地位。而教师只是作为数学学习的组织者、引导者、合作者,及时地给以引导、点拨、纠正。五、说教学过程:学生的学习过程是在其原有认知基础上的主动建构,因此我依据学生的认知规律将教学过程分为以下五个环节:

教学过程教学活动设计意图

一、回顾与思考电脑展示人字型屋顶的图像,提问:

1、屋顶设计成了何种几何图形?2、我们都知道它是一种特殊的三角形,那么它特殊在哪里呢?(两腰相等,是轴对称图形)3、它的对称轴是哪一条呢?由日常生活中的等腰三角形引出课题,目的在于培养学生从实际问题中抽象出数学问题的能力。同时创造丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,特别是问题3,其实就是等腰三角形三线合一性质的伏笔。除了这些特殊点,等腰三角形还有其它特殊性质吗?这节课我们就要一起来研究等腰三角形的性质(由此引出课题)现代教学论认为,在正式进行发现过程前要让学生对探索的目标、意义认识得十分明确,做好探索的物质准备和精神准备。

二、观察与表达1、观察猜想请同学们拿出准备好的等腰三角形,与教师一起按照要求,把两腰叠在一起,观察一下你有什么发现。教师用多媒体课件演示等腰三角形ABC叠合情况,请学生思考你能得出哪些结论。 2、得出定理学生回答发现后,教师给予指导,用规范的数学语言进行逐条归纳,得出两个性质定理:定理1:等腰三角形两底角相等。

定理2:等腰三角形的顶角平分线、底边上的中线和高线互相重合。

通过让学生动手操作,观察、猜想,体验知识的发生、发现过程,变灌注知识为学生主动获取知识。

学习内容不再以定论的形式呈现,而是以问题形式间接呈现;学习的心理机制不再是仅仅是同化,而是顺应。

三、了解与探究3、探索定理一、(A组口答,B组独立解答)A组:1、等腰直角三角形的两个锐角各等于几度?2、若等腰三角形顶角为40度,则它的顶角为几度?3、若等腰三角形底角为40度,则它的底角为几度?B组:1、若等腰三角形一个内角为40度,则它的其余各角为几度?2、若等腰三角形一个内角为120度,则它的其余各角为几度?3、一个内角为60度,则它的其余各角为几度?(A组口答,B组独立解答)由此引出推论:等边三角形各个角都相等,且各个角都等于60°。

二、根据性质2填空:

(1)∵AB=AC,AD⊥BC,∴,。

(2)∵AB=AC,BD=CD,∴,。 A

B D C (3)∵AB=AC,∠1=∠2,∴,。为了对定理进行进一步探索,设计了以下练习:练习一的整体设计遵循低起点、小分阶、大容量、高密度的原则,其目的是要学生掌握应用等腰三角形性质定理1与三角形内角和定理求角的度数的规律,但教师不是直接将规律灌输给学生,而是让学生在练习过程中自己发现规律,使学生获得从问题中探索共同属性的思维能力。从认知结构看,利用三线合一性质来证明角相等、线段相等或垂直与学生原有认知结构联系较少,需要建构新的认知结构,是一种“顺应”过程,对学生来说有一定困难,因此设计了下面一组填空题,帮助学生进行建构活动。同时,提醒学生注意性质应用应以等腰三角形为前提,为例2的教学作了辅垫,起到分散难点的作用。四、应用与提高应用举例:如图,某房屋的顶角

∠BAC=120°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上的∠B, ∠C, ∠CAD的度数。

例1:求证等腰三角形两底角平分线相等A

E D

B C

由于这是个用文字语言叙述的的几何命题,师生共同商讨,将解题过程分为以下几个步骤:①根据命题画出相应的图形,并标出字母②通过分析题设结论,将命题翻译为几何符号语言,写出已知与求证。 ③探索证法在寻求证法时启发学生从“已知”、“求证”两方面出发进行思考。从已知出发:a:由AB=AC联想到什么

b:BD、CE是△ABC的角平分线联想到什么

c:由a、b联想到什么

d:由a、b、c联想到什么

e:由d联想到什么

从求证出发:证明两条线段相等通常用什么方法?(全等三角形)。这两条线段分别在哪两个三角形中?这两个三角形全等吗?如何证明?本课从居民建筑人字梁结构中抽象出几何问题,通过探索实践活动得出结论,在这里,再将得到的结论应用到实践中,从而解决了人字梁结构中的实际问题。这样既有前后呼应,又体现了“数学来源于生活,应用于生活”的思想,有利于加强学生的数学应用意识。

“证明”的教学所关注的是,对证明基本方法和证明过程的体验,而不是追求所证命题的数量、证明的技巧。因此在例1教学中,有意让学生来确定学习任务与步骤,充分调动其学习积极性。

分析法和综合法是基本的数学思想方法,因此在这里要求学生从两方面都能够思考问题。但这对于刚接触论证几何不久的学生来说,有一定的难度。所以,由教师提出一系列问题,引导学生进行联想。

本题是通过三角形全等来证明两条角平分线相等,而这对全等三角形可是△ABD和△ACE也可是△BCE和△CBD分别用到了公共边和公共角这两对元素,因此在教学过程中将充分利用这一点,组织学生探索证明的不同思路,并进行适当的比较和讨论,有利于开阔学生的视野。四、应用与提高例2:已知:如图,△ A

O

B D C O’ ABC中,AB=AC,O是△ABC内一点,且OB=OC,AO的延长线交BC与D.

求证:BD=CD,AD⊥BC

思考:(1)本题的结论有何特

殊之处?——证明两个结论

(2)你准备如何得出这两个结论?——分别认证或同时证明

(3)哪一种简捷?利用什

么性质?

在此基础上请学生按照例1的思考方法自己寻找解题思路,可以在小组间进行讨论。

变式拓展:

(1)如图,在例2中若点O是△ABC外一点,AO连线交BC于D,如何求证?

(2)若点O在BC上呢?

经过例1的学习,学生已有一定推理基础,因此应放手让学生自己去发现证题思路,从而学到新的研究数学学习的方法,并逐渐内化为自己的经验。同时也体现了自主探索、合作交流的学习方式。

在这里有意通过变式让学生经历图形变换过程,并使他们感受到在一定条件下,图形变换不会改变图形的实质,最后将点O移到BC上,使学生体验了从一般到特殊的过程。想一想:记一块等腰直角三角尺的底边中点为,再从顶点悬挂一个铅锤,把这块三角尺放在房梁上,如果悬线通过点M就能确定房梁是水平的,为什么?通过想一想进一步突出重点与难点,也有利于引导学生运用数学的思维方式去观察、分析现实生活,增强应用数学的意识。五、心得与体会

通过今天这堂课的研究,我明确了,我的收获与感受有,我还有疑惑之处是。请学生按这一模式进行小结,培养学生学习-总结-学习-反思的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心。六、作业(1)作业本上相应的作业。(2)已知:D、E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE(1)进一步巩固和提高所学知识(2)及时反馈、查漏补缺(3)体现层次性与开放性六、说评价

篇13:等腰三角形性质说课稿

一、设计理念

《数学课程标准》指出:“数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括,形成方法和理论,并进行广泛应用的过程”,“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式”。因此,在本节课的教学设计中,将始终体现以下教育教学理念:

1、突出体现数学课程的基础性、普及性和发展性,使数学教育面向全体学生。

2、学生是学习的“主人”,教学活动要遵循数学学习的心理规律,从已有的生活经验出发,让学生亲身经历将已有的实际问题抽象成数学模型,并解释和应用数学知识的过程。

3、教师是学习活动的组织者、引导者,教师应组织和引导学生在自主探索、合作交流的过程中理解和掌握数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

4、联系现实生活进行教学,让学生初步具有“数学知识来源于生活,应用于生活”的思想,增强数学知识的应用意识。

二、教材分析

1、教学内容:

本节课是义务教育课程标准实验教材数学八年级上册第十四章第三节《等腰三角形》的第一课时的内容——等腰三角形的性质,等腰三角形是一种特殊的三角形,它除了具有一般三角形的性质以外,还具有一些特殊的性质。它是轴对称图形,具有对称性,本节课就是要利用对称的知识来研究等腰三角形的有关性质,并利用全等三角形的知识证明这些性质。

2、在教材中的地位与作用:

本节课是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的,担负着进一步训练学生学会分析、学会证明的任务,在培养学生的思维能力和推理能力等方面有重要的作用;而“等边对等角”和“三线合一”的性质是今后论证两个角相等、两条线段相等、两条直线垂直的重要依据,本节课是第三课时研究等边三角形的基础,是全章的重点之一。

3、教学目标:

知识技能:1、理解掌握等腰三角形的性质。

2、运用等腰三角形的性质进行证明和计算。

数学思考:1、观察等腰三角形的对称性,发展形象思维。

2、通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。

解决问题:1、通过观察等腰三角形的对称性,培养学生观察、分析、归纳问题的能力。

2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,发展应用意识。

情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

4、教学重点与难点:

重点:等腰三角形的性质的探索和应用。

难点:等腰三角形的性质的验证。

5、教学准备:CAI课件,长方形的纸片,剪刀,常用画图工具。

三、学情分析

八年级学生的抽象思维趋于成熟,形象直观思维能力较强,具有一定的独立思考、实践操作、合作交流、归纳概括等能力,能进行简单的推理论证,掌握了一般三角形和轴对称的知识。因此,在本节课的教学中,可让学生从已有的生活经验出发,参与知识的产生过程,在实践操作、自主探索、思考讨论、合作交流等数学活动中,理解和掌握数学知识和技能,形成数学思想和方法,让每个学生在数学上得到不同的发展,人人都获得必需的数学。

四、教法设想

——让学生参与教学过程,注重培养学生的建构习惯,提高学生的数学素质。

《新课程标准》要求课堂教学要充分体现以学生发展为本的精神,因此,在本节课的教学设计中,我采用了“问题情境——建立模型——解释、应用与拓展”的教学模式,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义,掌握必要的基础知识和基本技能,发展应用数学知识的意识与能力,增强学好数学的愿望和信心。

在教学中,遵循因材施教的原则,坚持以学生为主体,灵活运用教具直观教学、联想发现教学、设疑思考和逐步渗透等教学方法,充分发挥学生的主观能动性,注重学生探究能力的培养,让学生去亲身体验知识的产生过程,拓展学生的创造性思维,加强对学生的启发、引导和鼓励,培养学生大胆猜想、小心求证的科学研究思想,为学生创设情境,激发学生的求知欲和学习兴趣,促使他们不断克服学习中的被动心理,让学生在轻松愉快的学习中掌握知识、发展智力、受到教育。

采用多媒体辅助教学,呈现更直观的形象,激发学生的积极性、主动性,增大课堂容量,提高教学效率。

五、学法设计

《数学课程标准》指出:数学的抽象结论,应以观察、实验为前提,几何教学应该把实验方法与逻辑分析结合起来。教学中,让学生在教师的引导下,一边进行折叠重合的模型演示,一边进行阅读讨论,通过看、想、议、练等活动,自己“发现”等腰三角形的性质;从而避免了传统教学中的灌输式、注入式。这样做有利于活跃学生的思维,帮助他们探本求源,体现了“学习任何东西的最好途径是自己去发现”和“学问之道,问而得,不如求而得之深固也”的思想。把重点放在学生如何学这一方面,通过直观演示得到感性认识,在实践、观察、讨论、交流等活动中,让学生经历由验证归纳到推理论证的认知过程,掌握知识和技能,形成思想和方法,培养学生的造性思维。

六、教学过程设计

(一)回顾与思考(2′)

1、课件出示人字型屋顶的图象,提问:(1)、屋顶设计成了哪种几何图形?(2)、它有什么特征?它是轴对称图形吗?对称轴是哪一条?(由日常生活中的等腰三角形引出课题,目的在于让学生体会数学来源于生活,培养学生从实际问题中抽象出数学问题的能力,同时,为学习新知创造丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,特别是问题(2),其实就是等腰三角形三线合一性质的伏笔。)

2、学生思考回答后,教师再提问引入课题:等腰三角形还有其他的特殊性质吗?这节课我们就来研究等腰三角形的性质。(现代教学论认为:在正式进行探索和发现前,要让学生对探索的目标、意义有十分明确的认识,做好探索前的物质准备和精神准备。)

(二)观察与表达(4′)

剪一剪:教师引导学生将课前准备的长方形纸片按教材要求对折后剪下,再把它展开,看得到了一个什么图形?(通过让学生动手剪纸,获得图形的直观感受,并为下面的折纸操作做好铺垫,为学生提供参与数学活动的时间和空间,调动学生的主观能动性,激发其好奇心和求知欲。)

想一想:1、剪纸过程中得到的⊿ABC有什么特点?

学生思考并交流意见,教师归纳并板书:在⊿ABC中,AB=AC,像这样有两边相等的三角形叫等腰三角形。

再让学生找一找生活中的等腰三角形。

2、除了剪纸的方法外,你还可以其他的方法作(画)出等腰三角形吗?

学生思考、讨论、交流,教师在学生充分发表自己想法的基础上给出等腰三角形的画法,并画出图形,然后结合前面剪、画的图形介绍“腰”、“底边”、“顶角”、“底角”等概念。(结合自已剪出的等腰三角形和画出的图形学习相关概念,加深印象。)

(三)了解与探究(14′)

1、提问:刚才剪出的等腰三角形ABC是轴对称图形吗?它的对称轴是什么?

学生思考、回顾剪纸过程,动手把等腰三角形ABC沿折痕对折,容易回答出⊿ABC是轴对称图形,折痕AD所在的直线是它的对称轴。(让学生认识到动手操作也是一种验证方式。)

2、把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角,并填在书上的表格中,你发现了什么现象?能猜一猜等腰三角形ABC有哪些性质吗?

①∠B=∠C →两个底角相等

②BD=CD →AD为底边BC上的中线

③∠BAD=∠CAD →AD为顶角∠BAC的平分线

④∠ADB=∠ADC=90°→AD为底边BC上的高

教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2:

性质1等腰三角形的两个底角相等(简写成“等边对等角”);

性质2等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简写成“三线合一”)

(通过教师的引导,学生利用等腰三角形的对称性,讨论、归纳出等腰三角形的两条性质,在这个过程中训练学生文字语言与符号语言的互换,培养学生自主探究的学习品质和观察分析、归纳概括的能力,发展形象思维。)

3、用全等三角形的知识验证等腰三角形的性质

(1)性质1(等腰三角形的两个底角相等)的条件和结论分别是什么?用数学符号如何表达条件和结论?如何证明?

教师引导学生根据猜想的结论画出相应的图形,写出已知和求证,师生共同分析证明思路,强调以下两点:

①利用三角形的全等来证明两角相等,为证∠B=∠C,需证明以∠B、∠C为元素的两个三角形全等,需要添加辅助线构造符合证明要求的两个三角形。

②添加辅助线的方法有很多种,常见的有作顶角∠BAC的平分线,或作底边BC上的中线,或作底边BC上的高等,让学生选择一种辅助线并完成证明过程。

(2)回顾性质1的证明方法,你能用这种方法证明性质2(等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合)吗?

让学生模仿证明性质2,并鼓励学生用多种方法证明。

(等腰三角形的性质的探索与验证是本节课的重点和难点,本环节中,充分调动学生的主观能动性,让学生大胆猜想、小心求证,经历性质证明的过程,增强理性认识,体验性质的正确性和辅助线在几何论证中的作用,在学生的自主探索中,完成了重点知识的教学,突破了教学难点,培养了学生的合情推理能力和演绎推理的能力。)

(四)应用与提高(10′)

1、课件出示:某房屋的顶角∠BAC=120°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上的∠B、∠C、∠CAD的度数。

(本节课从居民建筑人字梁结构中抽象出几何问题,通过实践探究活动得出等腰三角形的性质这一结论,在此,再将得到的结论应用到实践中,解决人字梁结构中的实际问题,这样既有前后呼应,又体现了“数学来源于生活,应用于生活”的思想,有利于增强学生的数学应用意识。)

⑴∵AB=AC,AD⊥BC

∴∠_=∠_,_=_;

⑵∵AB=AC,BD=DC

∴∠_=∠_,_⊥_;

⑶∵AB=AC,AD平分∠BAC

∴_⊥_,_=_

(让学生再次理解和运用等腰三角形的“三线合一”性质,以填空的形式及时巩固所学知识,了解学生的学习效果,增强学生应用知识的能力。)

3、课件出示:如图(二),在⊿ABC中,AB=AC,点D在AC上,

且BD=AD,

⑴图中共有几个等腰三角形?分别写出它们的顶角与底角;

⑵你能求出各角的度数吗?

师生共同分析:⑴已知中没有给出角度,需利用三角形内角和为180°的条件来求具体度数,但由于未知数过多,需根据已知各边的关系寻找到⊿ABC的各角关系,由图中的三个等腰三角形的底角及外角性质,可设∠A=X°,列方程解决。⑵强调此题图形特殊,只有顶角为36°的等腰三角形才能满足。

(改编课本例题,使问题更富层次性与探究性,使学生认识到从复杂图形中分解出等腰三角形是利用性质解决问题的关键,培养学生数形结合的能力和方程的思想。)

等腰三角形的性质的应用,是这节课的又一重点,本环节就是通过运用这一性质解决有关问题,让学生在解答活动中提高运用知识和技能的能力,在掌握重点知识的同时,获得成功的体验,建立学习的自信心。

(五)拓展与延伸(5′)

⑴等腰三角形底边中点到两腰的距离相等吗?

教师指导学生动手画图,折纸,思考,讨论得出结论,并用适当的方法验证这一结论。

⑵利用类似的方法,还可以得到等腰三角形中哪些线段相等?

教师引导学生寻找等腰三角形中其他相等的线段,如:两腰上的高,两腰上的中线,两底角的平分线等。

(通过学生动手实践,增强学生动手能力,引导学生合作探究,更深入地认识等腰三角形和性质,启迪学生的发散思维。)

(六)心得与体会(4′)

这节课我们主要研究了什么内容?你有哪些收获?

请用“通过今天这堂课的研究,我明白了,我的收获与感受有(),我还有疑惑之处是()”的模式来总结、评价这堂课的学习。

(让学生按上述的模式进行小结,通过对本节课的回顾,增强学生对等腰三角形的理解和对轴对称图形的理解,培养学生“学习、总结、学习、反思”的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心。)

(七)练习与作业(1′)

1、略(详见课件);

2、教科书习题14.3第1、4、6题;

3、教科书第143页练习题1、2、3。

(让学生体会等腰三角形的性质在现实生活中的应用价值,学会用数学知识解决实际问题,进一步巩固所学知识,及时反馈,查漏补缺,分层次布置作业,满足不同学生的发展需求,体现层次性和开放性。)

设计思想:

现代数学教学观念要求学生从“学会”向“会学”转变。所以本节课在教学方法的设计上,把重点放在了逐步展示知识的形成过程上,先让学生通过剪纸来认识等腰三角形;再通过折纸、猜测、验证等腰三角形的性质;然后运用全等三角形的知识加以论证,在教学设计中遵循由个别形象到一般抽象、由感性到理性的认知规律,使学生的思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,真正实现学生为主体的教学宗旨。在教学设计中还突出了三个注重:1、注重让学生参与知识的形成过程,体现应用数学知识解决问题的乐趣;2、注重师生间、学生间的互动协作,共同提高;3、注重知能统一,让学生在获取知识的同时,掌握方法,灵活运用。

篇14:《等腰三角形的性质》说课稿

一、教材分析

1、教材的地位和作用

《等腰三角形的性质》是“华东师大版八年级数学(上)”第十三章第三节第一课时的内容。本节先课利用轴对称的知识来探索发现等腰三角形的有关性质,然后利用全等三角形的知识证明这些性质。学习过程中运用的“操作——观察——发现——猜想——论证——应用”的方法是探究数学知识的常用方法。同时“等边对等角”和“三线合一”的性质是又是接下来学习等边三角形知识以及等腰三角形的判定的基础知识,更是今后论证两个角相等、两条线段相等、两条线垂直的重要依据。起着承前启后的作用。

2、教材的教学目标:

①知识与技能目标:

掌握等腰三角形的有关概念和相关性质,能运用它们解决等腰三角形的边、角计算问题。

②过程与方法目标:

通过实践、观察、同组间学生以及小组与小组间的合作与交流,培养学生多角度思考问题和分析问题、解决问题的能力。③情感与态度目标:

通过合作交流培养学生团结协作、乐于助人的品质。

3、教学重点与难点:

重点:等腰三角形“等边对等角”和“三线合一”性质的探究和应用。难点:等腰三角形性质的推理证明。

二、学情分析

八年级上期学生学习几何知识有了初步的抽象思维感知,有一定的形象直观思维能力,能进行简单的推理论证。但其运用数学思维的广阔性、紧密性、灵活性比较欠缺,在学习过程中要加强引导和培养。

三、教法与手段

根据本课内容特点和初二学生思维活动的特点,在教学中我将采用“操作——观察——发现——猜想——论证——应用”的教学法,利用分组活动,组间合作与交流从而达到对“等边对等角”和“三线合一”的性质的探究的层层深入。另外,我还将采用多媒体辅助教学,呈现更直观的形象,激发学生的积极性、主动性,增大课堂容量,提高教学效率。

四、学法设计

《数学课程标准》指出:数学的抽象结论,应以观察、实验为前提,几何教学应该把实验方法与逻辑分析结合起来。结合这一理念在探究等腰三角形的性质时我将采用学生实验操作、小组合作、观察发现、师生互动、学生互动的学习方式。

五、教学过程设计

(一)创设情景、导入新课

①复习提问:向同学们出示几张精美的建筑物图片,引入等腰三角形。

(设计意图:感知数学知识和实际生活联系紧密,培养观察力,感受身边处处有数学。)

②等腰三角形的相关概念:

1定义:两条边相等的三角形叫做等腰三角形。

边:等腰三角形中,相等的两条边叫做腰,另一条边叫做底边。

角:等腰三角形中,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

③设问:等腰三角形具有哪些特殊的性质呢?(引入新课)

(二)实验探索、得出猜想:

①动动手:让同学们用剪刀在长方形纸片上剪下等腰三角形,每个人的等腰三角形的大小

和形状可以不一样,把纸片对折,让两腰重合在一起,你能发现什么现象?“比一比”看谁思考的结论最多。

(设计意图:以六人小组为单位学生亲自操作实验,填写导学案。通过组内合作与交流,集

思广益让学生用自己的语言在小组内表达自己的'发现。)

②得出猜想:可让学生有充分的时间观察、思考、交流、可能得到的结论:

(1)等腰三角形是轴对称图形

(2)∠B=∠C

(3)BD=CD,AD为底边上的中线

(4)∠ADB=∠ADC=90°,AD为底边上的高线(5)∠BAD=∠CAD,AD为顶角平分线

(设计意图:以小组为单位派代表发言即组间交流补充,引导归纳提炼,使不同层次的学生都能感受新知,建立新的知识体系,为进一步探索做准备。)

(三)证明猜想、形成定理:

1、结论(2)∠B=∠C你能用一个命题表达这一结论并论证它的正确性吗?

(1)语言总结:等腰三角形的两底角相等。(简写成“等边对等角”)

(2)怎样论证这个一命题的正确性呢?

①为证∠B=∠C,需要添加辅助线构造以∠B、∠C为元素的两个全等三角形。

②探讨添加辅助线的方法,让学生选择一种辅助线并完成证明过程。

设计说明:以上过程分小组讨论,在探索过程中鼓励学生寻求不同(作高、中线、角平分线)的方法来解决问题。

利用展台展示各小组不同的证明方法,让学生的个性得到充分的展示。

(3)得出等腰三角形的性质1:等腰三角形的两底角相等。(简写成“等边对等角”)

2、结论(3)(4)(5)你也能用一个命题表达这一结论并论证它的正确性吗?

(1)结合性质一的证明鼓励学生证明总结的命题

(2)得出等腰三角形的性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。

(3)“三线合一”的几何表达:

如图,在△ABC中,AB=AC,点D在BC上

①(1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD

②(2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC(为了方便记忆可以说成“知一求二!”)

③(3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD

2设计意图:充分调动各组学生的积极性、主动性,采用各小组竞争的方式,参照性质1的探索完成本性质的探索与证明。通过本性质的探索让不同的学生有不同的收获,让每个学生的能力都得到提升。

(四)实例剖析、巩固新知:

1、例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度数

2、例2:在△ABC中,AB=AC,点D是BC的中点,∠B=30

(1)求∠ADC的度数(2)求∠BAD的度数

此题的目的在于等腰三角形“等边对等角”和“三线合一”性质的综合运用,以及怎么书写解答题,强调“三线合一”的表达过程。

解:(1)∵AB=AC,D是BC边上的中点(已知)

∴AD⊥BC,∠BAD=∠CAD(等腰三角形的“三线合一”)∴∠ADC=∠ADB=90°(垂直的定义)

(2)∵∠BAD+∠B+∠ADB=180°(三角形内角和等于180°)∴∠BAD=180°-∠B-∠ADB

=180°-30°-90°=60°

(设计意图:设计例题1巩固等腰三角形“等边对等角的性质”的理解,让学生学以致用,获得成就感,增强学习数学的自信心。而例题2主要是体会等腰三角形“三线合一”性质的运用。这两个例题作为课本上的例题是基础新知的巩固,要求能正确的写出解题过程。)(五)、课堂练习、总结所得:

1、先完成课后81页练习1、2、3、4题

(设计意图:作为课本上的练习题的完成达到检测学生对本节课知识的掌握情况,从而帮助学生查漏补缺,巩固基础知识。)

2、学以致用:

(设计意图:让书生体会数学知识和实际生活的紧密联系)

如图,是西安半坡博物馆屋顶的截面图,已经知道它的两边AB和AC是相等的.建筑工人师傅对这个建筑物做出了两个判断:

①工人师傅在测量了∠B为37°以后,并没有测量∠C,就说∠C的度数也是37°。②工人师傅要加固屋顶,他们通过测量找到了横梁BC的中点D,然后在AD两点之间钉上一根木桩,他们认为木桩是垂直横梁的。

请同学们想想,工人师傅的说法对吗?请说明理由。

设计意图:运用所学知识解决实际问题,引导学生将实际问题转化为数学问题,进一步加深学生对等腰三角形性质的理解和运用;从数学回到实际生活,自然地渗透数学作用于实际问题的思想。

3、课堂小结

今天我们学习了什么?你觉得在等腰三角形的学习中要注意哪些问题?设计意图:帮助学生回顾,归纳,巩固所学知识。A(六)作业布置、深化提高:

1、课本P84:习题13.31、2、3;(必做题)

2、(思维发散)选做题

已知:如图△ABC中,AB=AC,CE⊥AEE1于E,CE=BCB2

求证:∠ACE=∠BC

六、板书设计

篇15:等腰三角形的性质说课稿

一、教材分析

1、教材分析之地位和作用

《等腰三角形的性质》是“华东师大版七年级数学(下)”第九章第三节的内容。本课安排在《轴对称的认识》后,明确了《等腰三角形的性质》与《轴对称的认识》的联系,起到知识的链接与开拓的作用。本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

2、教材分析之教学目标

①知识与技能目标:

掌握等腰三角形的有关概念和相关性质。熟练运用等腰三角形的性质解决等腰三角形内角以及边的计算问题。

②过程与方法目标:

通过对性质的探究活动和例题的分析,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力。

③情感与态度目标:

通过对等腰三角形的观察、试验、归纳,体验数学活动充满着探索性和创造性,突出数学就在我们身边。在操作活动中,培养学生之间的合作精神,在独立思考的同时能够认同他人。

3、教材分析之教学重难点

重点:探索等腰三角形“等边对等角”和“三线合一”的性质。

(这两个性质对于平面几何中的计算,以及今后的证明尤为重要,故确定为重点)

难点:等腰三角形中关于底和腰,底角和顶角的计算问题。

(由于等腰三角形底和腰,底角和顶角性质特点很容易混淆,而且它们在用法和讨论上很有考究,只能练习实践中获取经验,故确定为难点。)

4、教材分析之教法

数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,“教必有法而教无定法”,只有方法得当,才会有效。根据本课内容特点和初一学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。

5、教材分析之学法

最有价值的知识是关于方法的知识,首先对于我们教师应该创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域。本节课我将采用学生小组合作,实验操作,观察发现,师生互动,学生互动的学习方式。学生通过小组合作学会“主动探究----主动总结---主动提高”。突出学生是学习的主体,他们在感受知识的过程中,提高他们“探究---发现---联想---概括”的能力!

二、教学过程:

1、创设情景

①复习提问:向同学们出示几张精美的建筑物图片;

问题:轴对称图形的概念?这些图片中有轴对称图形吗?

②引入新课:再次通过精美的建筑物图片,找出里面的等腰三角形。

问题:等腰三角形是轴对称图形吗?

③相关概念:定义:两条边相等的三角形叫做等腰三角形。

边:等腰三角形中,相等的两条边叫做腰,另一条边叫做底边.

角:等腰三角形中,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.

2、探究问题

①动动手:让同学们做出一张等腰三角形的半透明的纸片,每个人的等腰三角形的大小和形状可以不一样,把纸片对折,让两腰重合在一起,你能发现什么现象?请你尽可能多的写出结论。

②得出结论:可让学生有充分的时间观察、思考、交流、可能得到的结论:

(1)等腰三角形是轴对称图形

(2)∠B=∠C

(3)BD=CD,AD为底边上的中线

(4)∠ADB=∠ADC=90°,AD为底边上的高线

(5)∠BAD=∠CAD,AD为顶角平分线

3、重要性质

性质1:等腰三角形的两底角相等。(简写成“等边对等角”)

性质2:等腰三角形的顶角的`平分线,底边上的中线,底边上的高互相重合。

(简称“三线合一”)

如图,在△ABC中,AB=AC,点D在BC上

(1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD

(2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC

(3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD

(为了方便记忆可以说成“知一求二!”)

三、例题部分:

例一:1、在等腰△ABC中,AB=3,AC=4,则△ABC的周长=________

2、在等腰△ABC中,AB=3,AC=7,则△ABC的周长=________

此例题的重点是运用等腰三角形的定义,以及等腰三角形腰和底边的关系,仔细比较以上两个例题,并强调在没有明确腰和底边之前,应该分两种情况讨论。而且在讨论后还应该思考一个问题,就是这样的三条边能否够成三角形。

例二:1、在等腰△ABC中,AB=AC,∠A=50°,则∠B=_____,∠C=______

2、在等腰△ABC中,∠A=100°,则∠B=______,∠C=______

此例题的重点是运用等腰三角形“等边对等角”这一性质,突出顶角和底角的关系,强调等腰三角形中顶角和底角的取值范围:0°<顶角<180°,0°<底角<90°。仔细比较以上两个例题,得出结论一个经验:在等腰三角形中,已知一个角就可以求出另外两个角。

例三:在等腰△ABC中,∠A=40°,则∠B=______

此题是一道陷阱题,可以先让学生进行分析,和例二的2小题比较,估计会出一些状况,大多数学生会按照两种情况讨论,得到两个答案。然后跟学生画出图形进行分析,分两种情况讨论,但是答案是“三个”。强调需要自己画图解题时,一定要三思而后行!

例四:在△ABC中,AB=AC,点D是BC的中点,∠B=40°,求∠BAD的度数?

此题的目的在于等腰三角形“等边对等角”和“三线合一”性质的综合运用,以及怎么书写解答题,强调“三线合一”的表达过程。

解:在△ABC中,

∵AB=AC,∠B=40°,∴∠B=∠C=40°

又∵∠A+∠B+∠C=180°,∴∠A=100°

在△ABC中,AB=AC,点D是BC的中点,

∴AD是底边上的中线根据等腰三角形“三线合一”知:

AD是∠BAC的平分线,即∠BAD=∠CAD=50°

四、练习部分:

练功房Ⅰ(基础知识)填空题

1、在△ABC中,若AB=AC,若顶角为80°,则底角的外角为_________.

2、在△ABC中,若AB=AC,∠B=∠A,则∠C=____________.

3、在△ABC中,若AB=AC,∠B的余角为25°,则∠A=____________.

4、已知:如图,在△ABC中,D是AB边上的一点,AD=DC,∠B=35°,

∠ACD=43°,则∠BCD=____________

开展小组竞赛,比一比那个小组算的又快又准!

练功房Ⅱ(实践运用)实践题

如图,是西安半坡博物馆屋顶的截面图,已经知道它的两边AB和AC是相等的建筑工人师傅对这个建筑物做出了两个判断:

①工人师傅在测量了∠B为37°以后,并没有测量∠C,就说∠C的度数也是37°。

②工人师傅要加固屋顶,他们通过测量找到了横梁BC的中点D,然后在AD两点之间钉上一根木桩,他们认为木桩是垂直横梁的。

请同学们想想,工人师傅的说法对吗?请说明理由。

练功房Ⅲ(思维发散)选做题

已知:如图,在△ABC中,AB=AC,E在AC上,D在BA的延长线上,AD=AE,连结DE。请问:DE⊥BC成立吗?

五.小结部分

提问:今天我们学习了什么?你觉得在等腰三角形的学习中要注意哪些问题?

1、等腰三角形是轴对称图形,等腰三角形的定义,以及相关概念。

2、等腰三角形的两底角相等。(简写成“等边对等角”)

3、等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。

(简称“三线合一”)

4、注意等腰三角形关于底和腰的计算题,特别是需要的讨论的时候,最后还要进行

检验,看看这样的三条边是否可以构成三角形。

5、注意等腰三角形的顶角和底角的取值范围:0°<顶角<180°,0°<底角<90°

6、重视需要自己画图解题时一定要“三思而后行”!

六.作业部分

1、教科书P86习题9.31,2,3,4题

2、请问:在等腰三角形中,等腰三角形两腰上的中线(高线)是否相等?

为什么?

3、等腰三角形是特殊的三角形,思考一下,什么三角形又是特殊的等腰三角

形呢?带着问题预习教科书P83—84。

七、板书设计

八、教学说明

本节课的设计力求体现使学生“学会学习,为终身学习做准备”的理念,努力实现学生的主体地位,使数学教学成为一种过程教学,让学生在活动中获得知识、形成技能和能力;在教学中注意教师角色的转变,教师是组织者、参与者、合作者,教师的责任是为学生创造一种宽松、和谐、适合发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围。在教法上采用启发探索式教学模式,整堂课以问题为思维主线,引导学生通过观察,自主探索,使学生观察、主动思考,充分体验探索的快乐和成功的乐趣,并充分利用计算机辅助教学,以加强感性认识并培养学生用运动联系的观点观察现象、解决问题。整个教学环节层层推进、步步深入,融基础性、灵活性、实践性、开放性于一体,注重调动学生思维的积极性,把知识的形成过程转化为学生亲自观察、实验、发现、探索、运用的过程。使学生在获得知识的同时提高兴趣、增强信心、提高能力。本课就教学过程作以下几点说明:

1、知识结构安排:

本课以“问题情境--------获取新知--------应用与拓展”的模式展开,符合初一学生的认知规律。

2、教学反馈与评价:

本课从学生回答问题,练习情况等方面反馈学生对知识的理解、运用,教师根据反馈信息适时点拨;同时从新课标评价理念出发,抓住学生语言、思想、动手能力方面的亮点给予表扬,不足的方面给予帮助、指导和恰如其分的鼓励,形成发展性评价,提高学生学数学,用数学的信心。

3、对于本节的几点思考

①本节的学习任务比较重要,有等腰三角形性质的推导、性质的应用,所

以本人针对学生的特点,在课例的掌握好的情况下,让学生自己去发现、去联想,

能充分地发挥学生主观能动性。

②通过学生自己动手实验得到等腰三角形性质的内容,可以使他们比较好的掌握知识、提高学习数学的兴趣,达到了事半功倍之效。

③在整个教学过程中,本人利用多种教学方法,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯。

总之,在本节教学中,我始终坚持以学生为主体,教师为主导,师生互动,生生互动,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展。

【八年级数学《等腰三角形的性质》说课稿】相关文章:

1.八年级数学分式基本性质说课稿

2.八年级数学等腰三角形教学设计

3.《等腰三角形性质》教学反思

4.等腰三角形的性质教学设计

5.八年级数学说课稿

6.八年级数学说课稿精选

7.《正方形》数学八年级说课稿

8.七年级数学不等式基本性质说课稿

9.初二数学分式基本性质说课稿

10.八年级数学《平行四边形的性质》教学反思

下载word文档
《八年级数学《等腰三角形的性质》说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部