欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 试题>高中数学考试答题技巧及方法

高中数学考试答题技巧及方法

2024-04-14 08:12:32 收藏本文 下载本文

“秋天可乐”通过精心收集,向本站投稿了10篇高中数学考试答题技巧及方法,下面是小编整理后的高中数学考试答题技巧及方法,欢迎大家阅读分享借鉴,希望对大家有所帮助。

高中数学考试答题技巧及方法

篇1:高中数学考试答题技巧及方法

具体方法1:调理大脑思绪,提前进入数学情境

考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

方法2:沉着应战,确保旗开得胜,以利振奋精神

良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

方法3:“内紧外松”,集中注意,消除焦虑怯场

集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

方法4:一“慢”一“快”,相得益彰

有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。

方法5:“六先六后”,因人因卷制宜

在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的'战术原则。

1.先易后难

。就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

2.先熟后生。

通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。

3.先同后异。

先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力,

4.先小后大。

小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗

5.先点后面。

近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。

方法6:确保运算准确,立足一次成功

数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。

篇2:高中数学考试的答题技巧

数学解题方法

1、剔除法

利用题目给出的已知条件和选项提供的信息,从四个选项中挑选出三个错误答案,从而达到正确答案的目的。在答案为定值的时候,这方法是比较常用的,或者利用数值范围,取特殊点代入验证答案。

2、特殊值检验法

对于具有一般性的选择题,在答题过程中,可以将问题具体特殊化,利用问题在特殊情况下不真,则利用一般情况下不真这一原理,从而达到去伪存真的目的。

3、顺推破解法

利用数学公式、法则、题意、定理和定义,通过直接演算推理得出答案的方法。

4、极端性原则

将所要解答的问题向极端状态进行分析,使因果关系变得更加明朗,以达到迅速解决问题的目的。极端性多数应用在取值范围、解析几何和求极值上面,很多计算量大、计算步骤繁琐的题,采用极端性去分析,可以瞬间解决问题。

5、直接法

直接法就是从题设条件出发,通过正确推理、判断或运算,直接得出结论,从而作出选择的一种方法。用这种方法的学生往往数学基础比较扎实。

6、估算法

就是把复杂的问题转化为简单的问题,估算出答案的近似值,或者把有关数值缩小或扩大,从而对运算结果作出一个估计或确定出一个范围,达到作出判断的效果。

高考数学答题方法整理

1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;

3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;

4、选择与填空中出现不等式的题目,优选特殊值法;

5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;

数学解题方法

1、解决绝对值问题

主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。②零点分段讨论法:适用于含一个字母的多个绝对值的情况。③两边平方法:适用于两边非负的方程或不等式。④几何意义法:适用于有明显几何意义的情况。

2、因式分解

根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法

3、配方法

利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。

4、换元法

解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:设元→换元→解元→还元

5、待定系数法

待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设②列③解④写

6、复杂代数等式

复杂代数等式型条件的使用技巧:左边化零,右边变形。①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型

7、数学中两个最伟大的解题思路

(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组

8、化简二次根式

基本思路是:把√m化成完全平方式。

9、观察法

10、代数式求值

方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

篇3:高考数学考试答题方法技巧

高考数学答题方法整理

1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;

3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;

4、选择与填空中出现不等式的题目,优选特殊值法;

5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;

数学解题方法

1、解决绝对值问题

主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。②零点分段讨论法:适用于含一个字母的多个绝对值的情况。③两边平方法:适用于两边非负的方程或不等式。④几何意义法:适用于有明显几何意义的情况。

2、因式分解

根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法

3、配方法

利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。

4、换元法

解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:设元→换元→解元→还元

5、待定系数法

待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设②列③解④写

6、复杂代数等式

复杂代数等式型条件的使用技巧:左边化零,右边变形。①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型

7、数学中两个最伟大的解题思路

(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组

8、化简二次根式

基本思路是:把√m化成完全平方式。

9、观察法

10、代数式求值

方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

数学解题技巧

1、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;

2、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;

3、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);

4、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;

5、三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;

篇4:数学考试答题技巧与方法

一、“六先六后”,因人因卷制宜。

考生可依自己的解题习惯和基本功,选择执行“六先六后”的战术原则。

1.先易后难。

2.先熟后生。

3.先同后异。先做同科同类型的题目。

4.先小后大。先做信息量少、运算量小的题目,为解决大题赢得时间。

5.先点后面。高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,步步为营,由点到面。

6.先高后低。即在考试的后半段时间,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”。

二、一慢一快,相得益彰,规范书写,确保准确,力争对全。

审题要慢,解答要快。在以快为上的前提下,要稳扎稳打,步步准确。假如速度与准确不可兼得的话,就只好舍快求对了。

三、面对难题,以退求进,立足特殊,发散一般,讲究策略,争取得分。

对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊,化抽象为具体。对不能全面完成的题目有两种常用方法:

1.缺步解答。将疑难的问题划分为一个个子问题或一系列的步骤,每进行一步就可得到一步的分数。

2.跳步解答。若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问。

四、执果索因,逆向思考,正难则反,回避结论的肯定与否定。

对一个问题正面思考受阻时,就逆推,直接证有困难就反证。对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。

篇5:数学考试答题技巧与方法

1.对于会做的题目,要解决“会而不对,对而不全”这个老大难问题.有的考生拿到题目,明明会做,但最终答案却是错的--会而不对.有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤--对而不全.因此,会做的题目要特别注意高考数学解答题答题技巧及题型特点,防止被“分段扣点分”.经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”.

2.对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分.我们说,有什么样的解题策略,就有什么样的得分策略.把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。

(1)缺步解答.如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败.特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分.

(2)跳步答题.解题过程卡在某一过渡环节上是常见的.这时,我们可以先承认中间结论,往后推,看能否得到结论.如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”.由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底.也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面.若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答.

(3)退步解答.“以退求进”是一个重要的解题策略.如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论.总之,退到一个你能够解决的问题.为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”.这样,还会为寻找正确的、一般性的解法提供有意义的启发.

(4)辅助解答.一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤.实质性的步骤未找到之前,找辅助性的步骤是明智之举.如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等.答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率.试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷。

考生一定要时刻注意完善自己,努力让解答题的满分,那就一定要仔细阅读高考数学解答题满分答题技巧,预祝考生取得优异的成绩。

篇6:高考数学考试答题技巧方法

1、调整好状态,控制好自我

(1)保持清醒

数学的考试时间在下午,建议同学们中午最好休息半个小时或1个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。

(2)按时到位

发卷时间应在开考前5-10分钟内,建议同学们提前15-20分钟到达考场。

2、通览试卷,树立自信

刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。

答题时,见到简单题,要细心,莫忘乎所以。面对偏难的题,要耐心,不能急。

3、提高解选择题的速度、填空题的准确度

数学选择题要求知识灵活运用,解题要求是只要结果、不要过程。因此,逆代法、估算法、特殊值法、排除法、数形结合法……尽显威力。12个选择题,若能把握得好, 容易的一分钟一题,难题也不超过五分钟。

由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。填空题也是只要结果、不要过程,因此要力求“完整、严密”。

4、审题要慢,做题要快,下手要准

题目本身就是——这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。

找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。

5、保质保量,拿稳中下等题目

中下难度题目通常占全卷分数的80%以上,是试题的主要部分,也是考生得分的主要来源。谁能保质保量地拿下这些题目,就已算是打了大半个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。

6、要牢记表达准确,规范答题

会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,今年仍是网上阅卷,望同学们规范答题,减少隐形失分。

7、遇到难题要学会:

(1)缺步解答:聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,能解决多少就解决多少,能演算几步就写几步。

特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半。

(2) 跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以假定某些结论是正确的,然后往后推,看能否得到结论;或从结论出发,看使结论成立需要什么条件。如果方向正确,就回过头来,集中力量攻克这一“卡壳处”。

篇7:高考数学考试答题技巧方法

1、合理安排,保持清醒

(1)合理设置考试目标,创设宽松的应考氛围,以平常心对待高考;

(2)合理安排饮食,提高睡眠质量;

(3)保持良好的备考状态,不断进行积极的心理暗示;

(4)静能生慧,稳定情绪,净化心灵,满怀信心地迎接即将到来的考试。

2、通览全卷,摸透题情

刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。

(1)填写好全部考生信息,检查试卷有无问题;

(2)调节情绪,尽快进入考试状态,可解答那些一眼就能看得出结论的简单选择或填空题(一旦解出,信心倍增,情绪立即稳定);

(3)对于不能立即作答的题目,可一边通览,一边粗略地分为A、B两类:A类指题型比较熟悉、容易上手的题目;B类指题型比较陌生、自我感觉有困难的题目,做到心中有数。

3、解答题规范有序

一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考阅卷是“分段评分”。比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。

(1)常见失分因素:

①对题意缺乏正确的理解,应做到慢审题快做题;

②公式记忆不牢,考前一定要熟悉公式、定理、性质等;

③思维不严谨,不要忽视易错点;

④解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;

⑤计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;

⑥轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。

(2)何为“分段得分”:

对于同一道题目,有的人理解的深,有的人理解的浅;有的人解决的多,有的人解决的少。为了区分这种情况,高考的阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”——踩上知识点就得分,踩得多就多得分。与之对应的“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分。对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。有的考生拿到题目,明明会做,但最终答案却是错的———会而不对。有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤———对而不全。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣分”。经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。

对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。

①缺步解答:如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。

②跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作“已知”,先做第二问,这也是跳步解答。

③退步解答:“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。

④辅助解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷。

(3)能力不同,要求有变:

由于考生的层次不同,面对同一张数学卷,要尽可能发挥自己的水平,考试策略也有所不同。针对基础较差、以二类本科为最高目标的考生而言要“以稳取胜”——这类考生除了知识方面的缺陷外,“会而不对,对而不全”是这类考生的致命伤。丢分的主要原因在于审题失误和计算失误。考试时要克服急躁心态,如果发现做不下去,就尽早放弃,把时间用于检查已做的题,或回头再做前面没做的题。记住,只要把你会做的题都做对,你就是最成功的人!针对二本及部分一本的同学而言要“以准取胜”——他们基础比较扎实,但也会犯低级错误,所以,考试时要做到准确无误(指会做的题目),除了最后两题的第三问不一定能做出,其他题目大都在“火力范围”内。但前面可能遇到“拦路虎”,要敢于放弃,把会做的题做得准确无误,再回来“打虎”。针对第一志愿为名牌大学的考试而言要“以新取胜”——这些考生的主攻方向是能力型试题,在快速、正确做好常规试题的前提下,集中精力做好能力题。这些试题往往思考强度大,运算要求高,解题需要新的思想和方法,要灵活把握,见机行事。如果遇到不顺手的试题,也不必恐慌,可能是试题较难,大家都一样,此时,使会做的题不丢分就是上策。

篇8:数学考试高考经典答题技巧与方法

数学考试高考经典答题技巧与方法(实用)

高考数学答题技巧

一、巧解选择、填空题

数学解选择、填空题的基本原则是“小题不可大做”。思路:第一、直接从题干出发考虑,探求结果;第二、从题干和选择联合考虑;第三、从选择出发探求满足题干的条件。

解数学填空题基本方法有:直接求解法、图像法、构造法和特殊化法(如特殊值、特殊函数、特殊角、特殊数列、图形的特殊位置、特殊点、特殊方程、特殊模型等)。

二、细答解答题

1、数学规范答题很重要 ,找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,高考评分是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学符号,这比文字叙述要节省时间且严谨。即使过程比较简单,也要简要地写出基本步骤,否则会被扣分。

2、分步列式,尽量避免用综合或连等式。高考数学评分是分步给分,写出每一个过程对应的式子,只要表达正确都可以得到相应的分数。

有些考生喜欢写出一个综合或连等式,这种方式就不好,因为只要发现综合式中有一处错误,就可能丢过程分。对于没有得出最后结果的数学试题,分步列式也可以得到相应的过程分,由此增加得分机会。

数学高考答题注意什么

恰当分解结论

有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。

确保运算准确,立足一次成功

数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。

高考数学各题型解题方法

1.解三角形

不管题目是什么,要明白,关于解三角形,只学了三个公式——正弦定理、余弦定理和面积公式。

所以,解三角形的题目,求面积的话肯定用面积公式。至于什么时候用正弦,什么时候用余弦,如果你不能迅速判断,都尝试一下也未尝不可。

2.圆锥曲线

高考对于圆锥曲线的考查也是有套路可循的。

一般套路是:前半部分是对基本性质的考查,后半部分考查与直线相交。

当你对高考题目积累量足够多的时候,会发现,后半部分的步骤基本是一致的。

即:设直线,然后将直线方程代入圆锥曲线,得到一个关于x的二次方程,分析判别式、韦达定理,利用韦达定理的结果求解待求量。

3.函数与导数

这一类题型以求导然后分析函数为主。导数这部分的步骤是比较固定的。

导数与函数的题型,大体分为三类:

1. 关于单调性,最值,极值的考查。

2. 证明不等式。

3. 函数中含有字母,分类讨论字母的取值范围。

篇9:高考数学考试答题技巧与方法

几乎在每次数学考试中,都有因马虎,算错数,丢三落四等原因而导致数学成绩丢掉本不该丢掉的分值,请分析一下这样的现象。

这样的问题确实让考生犯难、但是一般很难克服。有人认为这样的失误都可以归结为是计算能力的问题。其实,谁也不能保证考试中所有的计算都不出现失误,所以因为计算所致的失误在高考数学中也可谓是偶然中的必然,只是或多或少的事。但是也有人认为,这是一种是否严谨的习惯的问题,只能靠平时的训练中潜意识的克服,养成习惯。

一般认为,需要从以下几个方面及早的加以注意:

首先要培养学生独立思考的习惯,不能仅依赖于老师的讲授。因为对于各知识之间的内在联系和涉及到的思想方法等,需要独立思考才能达到。

二是要培养学生认真练习,主要是练速度、练方法、练准确、练规范,精力集中、字迹清秀、操作规范。

三是要培养学生认真归纳总结、反思,肯定自己的成功之处,帮助增强学习的信心。

四是培养学生高效听课、参与课堂教学。课堂是学生接受知识的主渠道,高效听课就是课堂上使自己的思维处于非常积极的状态,主动地对老师提出的问题进行思考、分析、综合和创造,善于自主探索与合作交流与老师共同完成一节课的学习,才能收获该收获的东西,才能在各种解题方法中选取其中简洁的思维路径,取得问题的最佳解法,使能力培养落到实处。

五是培养学生逐步养成一遍算对的良好运算习惯;养成纠错和小结的学习习惯;不断研究学情,调整教学方法和策略,以获得最佳的教学效果。

六是要对学生进行模拟限时的测试。每份模拟试卷要时易时难,以培养学生的心理调控、情绪调节和随机应变的能力。当然书面表达能力的规范性也要引起注意。

掌握高考数学第三轮复习的重点

1.完成从“学生”到“考生”的角色转换。第三轮复习应尽快完成从“学生”到“考生”的角色转换。

①从学生角度上讲,在高考前夕,能力适应各种层次的考试,掌握考试的一般技能,以达到在高考中展示自我学识水平、心理素质、心态调节能力。

②作为考试的技能,那是在不断的练习中积累而形成的一种能力。比如“速度”和“准确度”是考试中一对矛盾,如何调和使统一,要靠学生自我感悟,在不断的调试中找到平衡,这是谁也无法替代的。你可以在某次考试中进行速度练习,可以在某次考试中进行准确度练习,只有在多次尝试后,才能找到一种感觉:小学课本中 一句最经典的话--“看谁做得又对又快”。

2.构建知识、方法网络,注意提升解题能力。在第三轮复习时,遵循结构性原则,重视知识结构的归纳整理,做好每章的总结和编织科学系统的知识网络。

①通过总结,对所学的数学知识力求达到融会贯通、透彻理解,既便于记忆贮存,又便于应用时随时提取。

②通过强化训练月的大量练习,应站在更高的角度上激活记忆,同时又要完成适量的基础性练习,使知识网络骨架成为有血有肉有感觉的有机体,完成读书由“薄--厚”到“厚--薄”的过程转变。

3.认真研究《教学大纲》,明确考试要求。近几年的高考,以贯彻考试说明,积极探索为指导思想。命题思路是一致的,就是出活题。

①着重考查“三基、四能力”(基础知识、基本技能、基本方法,运算、逻辑、空间想象、分析问题和解决问题的能力),并重视对数学思想的考查。

②知识点排列、归类,单元综合训练,专题训练,一题多解,多解一题,类题教学,变题教学等,都离不开《大纲》和《说明》。所以,我们一定要仔细体会了解、理解、掌握、熟练掌握四个层次。

4.在重点、难点、交汇点和热点上下功夫。从近几年高考命题情况看,数学试题在整体结构、试题的设计、采分点分布、突出重点、难点等方面,都更趋于科学化和规范化。

①重点知识在采分点分布中相对稳定,而且,在体现数学思想及运用数学方法上,都是非常理想的。

②高考题年年在变,分量、重点、难度年年有所不同,我们应以不变应万变,这个根本就是课本。

5.划分板块,合理安排,提高复习效率。要根据自己的实际情况,区别对待重点内容与一般内容,区别对待特长知识和薄弱环节,让好钢用在刀刃上,防止平均使用力量。

①在第三轮复习中,可以对自己的薄弱学科或薄弱章节有针对性地多用一些时间,但切不可无计划、无安排。每天早上到教室时可以在自己备忘录上有安排,比如完成老师发的某套试卷或某个专题,弄清上次考试中的错误并找到原因。

②要有目的地将学科知识划分成板块,既明确其基本内容,又要掌握它们之间的内存联系,注意在知识的交汇点上花时间,通过练习把握知识的走向与联系点、涵盖面。做到对知识的整体理会和细节体会,这样就不会造成知识的盲点和漏洞,使复习的效率大大提高,对最终形成的解题能力也会得心应手。

6.搞好系统的试卷分析,杜绝犯类似错误。

①应查找每一次考试中的失分题,重新进行自我检测。要认真分析答错的原因,强化记忆答错题中所考查的知识点,甚至,有些内容应铭记在心,以达到查漏补缺, 不重犯错误的目的。比如学生在考试中有如下重大失误:ⅰ进入角色慢,解答题完成得很好,但前5个选择题会错2-3个;ⅱ题目条件的关键字、词看错,使得“ 差之毫厘,缪以千里“;ⅲ在计算过程中精力不集中,对代数式和数字的前后书写出错;ⅳ曾经的错误没及时彻底解决,出现多次还是无法完整完成;ⅴ对新颖的题目没有完全看清就退缩,其实那只不过是一个曾经的问题作了一定的变换;ⅵ没有激情,没有及时调整自我学习状态,对考试有一种厌倦的情绪。

②要克服盲目性和减轻不必要的负担。应对书上的习题,特别是总复习题要抽题测试,主要考查解题的思路和方法;应对考试的重点做一个整体的梳理。

③知识是能力的载体,在复习中领悟并逐步学会运用蕴涵在知识发生、发展和深化的过程中,贯穿在发现问题与解决问题的过程中的数学思想方法,是从根本上提高素质,提高数学能力的必由之路,形成自己的”题库“,不断总结,不断提高学习能力和学习水平。

篇10:高考数学考试答题技巧与方法

●调理个性品质,进入数学情境

高考对个性品质的要求是:”克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神“由此可知,个性品质不仅包含了”智商“,也强调”情商“。所以,应在最后阶段优化考试心理,提高自己应对挑战的能力。比如考前要摒弃杂念,排除干扰思绪,通过清点用具、暗示重要知识和方法、提醒常见解题误区等进行针对性自我安慰,从而以最佳竞技状态去克服慌乱急躁、紧张焦虑的情绪,增强信心。

●沉着应对考试,确保旗开得胜

良好的开端是成功的一半,从考试心理角度来说,这确实是有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览全卷,摸透题情,然后选择好答题顺序,再稳操一两道易题熟题,让自己产生”旗开得胜“的快意,从而有一个良好的开端,以振奋精神,鼓舞士气,很快进入最佳思维状态,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

●采取”六先六后“,因人因卷制宜

旗开得胜后,情绪趋于稳定,大脑趋于亢奋,思维趋于积极,之后便是临场解题的黄金季节了。这时,考生可结合自己的解题习惯和基本功,结合整套试题的结构,采取”六先六后“的答题策略。即①先易后难。要力求有效,防浪费时间、伤害情绪;②先熟后生。使思维流畅,可超常发挥;③先同后异。避免跳跃过频,减轻大脑负担;④先小后大。赢得宝贵时间,创造心理基础;⑤先点后面。要步步为营,梯度分段得分明显;⑥先高后低。同类试题,高分优先。

●解题一”慢“一”快“,效果相得益彰

有些考生在考场上一味求快,结果题意未清,条件未全,便急于解答,岂不知”欲速则不达“,结果思路受阻或进入死胡同,导致失败。所以我建议”审题要慢,解答要快“,审题时整个解题过程的”基础工程“,题目本事是怎样解题的信息源,必须充分弄懂题意,综合所有条件,提炼解题线索,形成整体认识,思路一旦出现,则尽量快速完成,防止”超时失分“(因答题时间不足而未做完试题失分)

●力求运算准确,争取一次成功

数学高考题时间短,容量大,不允许做大量细致的解后检查,所以要力求运算准确,争取一次成功。解题速度是建立在解题准确度的基础上的,中间数据常常从数量、性质上影响后继各步的解答,因此在以快为上的前提下,还要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,或是丢掉重要的得分步骤。

●讲究规范书写,力争既对又全

考试的有一个特点就是以卷面为依据,这就要求不但要会而且要对、对而且要全、全而且要规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、书写不工整又是造成非智力性因素失分的主要原因之一,会影响阅卷老师的”感情分“。

●小题小做巧做,注重思想方法

小题切勿大做,时间的把握很关键,一般来说以二本生为准应控制在45分钟左右做完,为后面的解答题争取更充足的时间,也有利于稳定情绪。但是解小题(选择、填空)还有一项要求,就是既快又准,要达到这一点要求我们需结合试题特点,注重数学思想方法的运用,灵活机动的采用一些技巧解题,比如善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。不在一道题上纠缠,选择题即使是”蒙“,也有25%的胜率。

●遇到难题不弃,寻求策略得分

会做的题当然要做对、做全、得满分,而不会做的或是难题该怎样得分呢?首先遇到难题不要放弃,岂不知”易题得满分难,难题得小分易“,一般的难题第一、二问都是能得分的,即使一点思路都没有,我们不妨罗列一些相关的重要步骤和公式,也许不觉中已找到了解题的思路。再就是要学会”分段得分“,高考数学解答题评分的总原则是”分段给分",即会多少知识给多少分,所以你可能前面某个地方卡住了,可以先跳过去,假定它是正确的,向后求解;或是前后两问无联系,只做其中某一问等等

【高中数学考试答题技巧及方法】相关文章:

1.中考数学考试答题技巧简析

2.高中历史答题技巧方法

3.初二政治答题方法技巧

4.说明文答题技巧与方法

5.高考古诗词答题技巧方法

6.说明文阅读答题技巧方法及套路是什么

7.中考数学考试技巧

8.文言文阅读答题技巧和方法

9.高二地理大题答题技巧方法

10.叙事诗的答题方法和技巧

下载word文档
《高中数学考试答题技巧及方法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部