解决问题策略的教学设计
“罗罗诺亚”通过精心收集,向本站投稿了18篇解决问题策略的教学设计,以下是小编帮大家整理后的解决问题策略的教学设计,欢迎大家分享。
篇1:“解决问题的策略”教学设计
“解决问题的策略”教学设计
教学内容:
苏教版小学六年级数学上册第四单元解决问题的策略第1课时,教材第68页—69页例2和练一练。
教学目标:
1、引导学生经历解决问题的过程,能有序、有效地思考、分析数量关系,初步学会用假设的策略解决含有两个未知数的实际问题。
2、能对解决问题的过程进行反思,初步感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。
3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
能有序、有效地思考、分析实际问题中的数量关系。
教学难点:
感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。
教学准备:
课件、导学单、教具
教学过程:
一、复习铺垫
1、出示下面的问题,让学生列式解答。
把720毫升果汁倒人9个同样的小杯子里,正好倒满。平均每个杯子的容量是多少毫升?
数量关系:个小杯的容量=720毫升
口头列式解答
2、出示例1:把720毫升果汁倒入6个小杯和1个大杯,正好倒满。已知小杯的容量是大杯的,小杯和大杯的容量各是多少毫升?
提问:和第1题相比,这道题难在哪里?(第1题是把720毫升果汁倒入一种杯子里,可以直接用除法计,这一道题是把720毫升果汁倒入两种杯子里,题中有两个未知数量。)
3、揭示课题:这道题可以怎样解答呢?今天我们就来研究解决这样的实际问题的策略。(板书课题:解决问题的策略)
【设计说明:创设倒果汁的问题情境,呈现对比强烈的可以直接平均分和不能直接平均分的问题,引导学生通过比较体会新的问题的结构特点,形成认知冲突,进而产生把复杂问题转化成简单问题的心理需求,激发进一步探索解决问题策略的欲望】
二、探索策略
1、教学例1。
(1)理解题意。
谈话:请同学们先观察题中的条件和问题,想一想,根据题意,你
能找到怎样的数量关系,和小组里的同学说说你是怎样理解这些数量关系的。
揭示:6个小杯的容量+1个大杯的容证=720毫升
大杯的容量x =小杯的容量小杯的容量x3=大杯的容量
(2)确定思路。
谈话:我们知道,在遇到比较复杂的问题时,要想办法把复杂的问题转化成简单的问题。你有办法把这个问题变得简单吗?请先联系刚才理解数量关系式想一想,再和同学说说你准备怎样解决这个问题。
反馈:请把你的解题思路分享给大家。
学生想到的思路可能有以下几种,结合学生的'交流,分别作如下引导:
思路一:假设把720毫升果汁全部倒入小杯。
问:把720毫升果计全部倒入小杯,1个大杯要换成几个小杯?把大杯换成小杯后,正好倒满多少个小杯?先画线段图分析。
思路二:假设把720毫升果汁全部倒入大杯,6个小杯换成几个大杯?把小杯换成大杯后,正好倒满多少个大杯?先画线段图分析。
思路三:列方程解。
提问:设小杯的容量是x毫升,1个大杯的容量可以怎样表示?可以根据哪个数量关系式列方程解答?
小结:根据题中的数量关系,同学们想到了解决问题的不同思路。上面的几种思路都是抓住哪一个数量关系展开思考的?像这样通过假设把复杂问题转化为简单问题的方法,也是常用的解决问题的策略。(板书:假设)。
(3)列式解答并检验。
谈话:选择一种方法完成解答,并检验解题的过程和结果。
完成解答后,让学生说说列式、检验的方法和结果。
【设计说明:引导学生通过对题中条件和问题的梳理,找到数量关系,并画图对数量关系进行理解,可以帮助学生正确地理解题意,感知题中条件和问题之间的联系,打开寻求解题方法的思路。针对解决问题的困难,启发学生思考使复杂问题变得简单的方法,既可以激活学生已有的解决问题经验,又使学生的探索活动有了明确方向,进而产生假设的需要,找到解决问题的方法。展示并交流学生中出现的不同的解决问题思路并通过师生对话帮助学生理解,有利于学生体会用假设的策略解决问题的思考过程,感受假设的策略在解决问题过程中的作用。在列式解答的同时,提出检验的要求,有利于学生加深对题中数量大系的理解,进一步养成检验的良好习惯】
(4)回顾反思。
问题:解答例1时,我们遇到了怎样的因难?是怎样解决这一困难的解决问题时运用了什么策略?说说你对假设这一策略的认识和体验。【设计说明:及时反思提炼,引导学生进一步体会“为什么假设”“怎样假设”等问题,以强化对“假设”策略的体验。】
(5)教学第二种思路。
谈话:刚才我们假设把720毫开果计全部倒入小怀,顺利解决了问题。这道题还可以怎样假设?假设把720毫开果计全部倒入大杯,可以倒满几个大杯?你能根据这样的假设算出结果吗?
学生独立思考,列式计算,教师巡视。
指名交流解题时的思考过程,以及列式计算的过程和结果。
(6)比较和回顾。
比较:请同学们比较假设全部倒入大杯和全部倒入小杯这两种假设方法,想想,它们有什么相同的地方?
提回:通过解答上面的问题,你有哪些收获和体会?
谈话:假设是解决问题的常用策略,运用假设的策略,可以把复杂的问题变成简单的问题。请同学们回忆一下,在过去的学习中,我们曾经运用假设的策略解决过哪些问题?
让学生先在小组里说一说,再组织全班交流。
【设计说明:假设“把720毫升果计全部例入大杯”的思路,由学生自己提出,并通过独立思考解决问题,促使学生再次经历和体验运用假设的策略解决问题的过程,获得对假设策略更深刻的感悟。比较两种假设思路的联系。并交流自己的收获和体会,目的是帮助学生梳理运用假设策略解决问题的方法。以及在解决问题过程中积累起来的经验,进一步提升对策略的认识和感悟;回顾曾经运用假设的策略解决过哪些问题,意在引导学生从策略的高度重新审视过去的学习中解决一些问题的过程和方法,以促进策略的内化,形成策略意识】
2、完成“练一练”。
(1)出示题目,提问:要求桌子和椅子的单价、可以怎样进行假设?让学生按自己的思路完成解答,教师巡视。
(2)让不同思路的学生展示自己解题的过程。
【设计说明:先让学生说一说可以怎样假设,再独立完成解答,并交流不同的假设思路,突出了本课的教学重点,有利于强化学生对假设策略的体验】
三、巩固练习
完成练习十一第1—3题。
四、课堂总结
今天这节课我们学了什么?你有哪些收获和体会?还有什么疑问?
篇2:解决问题的策略教学设计
教学目标
1、进一步掌握在具体情境中能用列举法解决实际问题。
2、进一步感受使用列举法时的有序性。
3、进一步发展运用数学方法解决生活问题的意识,提高解决问题的能力。
教学准备:教学光盘
教学过程:
一、复习导入
谈话:前两节课我们学习了什么内容?你有什么收获?
二、指导练习
1、完成练习十一第6题。
先让学生说说是怎么想的,然后小结:我们用列举法解决问题时,应当注意些什么?
2、完成练习十一第7题。
指名读题,问:观察表格,你有什么发现?
48个1平方厘米的正方形拼成的长方形周长是多少?你是这样想的?
3、完成练习十一第八题。
指名读题,问:“只是向东、向北走”是什么意思?
指导学生完成:我们可以将直线相交的点用字母代替,列举出所有的路线,并按一定的顺序列举。
4、完成路线十一第9题。
出示题目,要求仔细读题。
三、完成思考题。
出示思考题,让学生独立完成。(可在书上画一画)并进行集体订正。
篇3:解决问题的策略教学设计
教学内容
义务教育课程标准实验教科书青岛版小学数学五年级下册第139页的内容。
教学目标
1、让学生经历回顾与探索运用转化策略解决问题的过程,初步感受转化策略的价值。
2、使学生初步学会运用转化的策略分析问题,并能根据问题的特点确定具体的转化方法,从而有效地解决问题。
3、使学生进一步积累运用转化策略解决问题的经验,增强解决问题的策略意识,获得成功的体验。
教学重点
感受“转化”策略的价值,会用“转化”的策略解决问题。
教学难点
会用“转化”的策略解决问题。
教学过程
课前交流,孕伏转化策略:
教师:同学们,你听说过曹冲称象的故事吗?(听说过)
教师:好的故事总能给人以启迪,从这个故事中,你受到了哪些启发呢?学生自由交流感受,教师适时小结:曹冲能将复杂的事情与简单的事情相转化,从而巧妙的解决了问题,真是有志不在年高,了不起,相信同学们也会有不俗的表现。
一、直观演示,发现转化策略
课件出示:
师:请你仔细观察,认真思考,哪个图形面积大呢?拿出彩色题纸,可以用笔画一画、算一算,想办法比较出哪个图形的面积大?
师:有答案了吗?哪个图形的面积大?谁来说说。
生1:两个图形的面积相等。生2:两个图形的面积相等。
师:你是如何比较出来的?
生:(边演示边说)我们把这块切开放到这块,都变成了长5个格、宽4个格的长方形。
教师注意引导学生说出方法,如何平移、旋转的?
师:听明白了吗?想的巧妙,讲的也非常清楚。谁再来说一说?
师:原来的图形不规则,不容易比较大小。同学们都是利用了图形凹凸的特点想到了这个好办法,非常善于观察、思考。下面我们再来清晰的演示一下这个变化过程。请看,(课件演示)平移,旋转,瞧,哪个图形面积大?(相等)真是一目了然,原来的两个不规则图形通过平移、旋转都变成了规则的的图形。 (板书:不规则图形 规则图形)你们知道吗,这是一种解决问题的策略,这种策略就叫转化(板书课题)
师:这样转化,什么变了?什么没变?
生:周长变了,面积没变。
师:还有什么变了?(形状变了。)
师:你抓住了问题的关键,的确,这样转化,形状变了,面积却没变。(板书:形变积不变)
二、唤醒记忆,回顾转化策略
1.图形面积、体积方面的应用。
师:同学们,其实,在以前的学习中,我们就经常用到转化的策略解决问题,比如说一些图形的面积公式、体积公式的推导,就常常用到转化的策略,你们能想起来吗?自己先想一想,然后跟小组的伙伴交流交流。
师:有的同学迫不及待的想说了,谁来说?
生:在学习图形的面积时,三角形的面积。把两个完全一样的三角形拼成一个平行四边形。
师:这是把一个三角形的面积转化成了平行四边形面积的一半。没错,这就是转化。
师:还有谁想说?
生:把两个完全一样的梯形拼成一个平行四边形。
师:这是把什么转化成什么?
生:梯形转化成平行四边形
师:准确的说,这是把梯形转化成平行四边形面积的(一半)
这也是转化。还有吗?
生:把平行四边行转化成长方形。
生:圆也是把圆分成若干个小扇形,然后再拼成一个近似的长方形。
生:圆柱是把圆柱转化成长方体。
师:这也是用转化解决的新问题。
课件出示:
平行四边形的面积公式推导 三角形的面积公式推导
梯形的面积公式推导 圆的面积公式推导
圆柱的体积公式推导 圆锥的体积公式推导
师:大家来看,我们曾经用转化的策略解决了这么多新问题。选一个你最喜欢的、或者感觉有困难的,同位互相说一说。
2.数与计算方面的应用。
师:从某种意义上来说,学习数学就是不断学会转化的过程。不仅在图形的世界里常常应用转化的策略解决问题,而且,在看似简单的计算中也蕴含着转化,回忆一下,在学习数与计算时,哪些地方用到了转化的策略呢?
生:小数乘法是转化为整数乘法,分数除法是转化为分数乘法来进行计算的……
出示:2.5×0.4 1.25÷0.5
+ ÷
师:请看,这儿有一组题,可以动笔算一算,体会体会转化的作用,看看从中你又能发现什么,然后在小组内交流交流。
(学生活动是巡视关注:是否会表达。)
生:2.5×0.4是把小数乘法转化整数乘法。
生:1.25÷0.5是把小数除法转化除数是整数的除法。
师:说的真好,谁能像他这样,举个例子也说说自己的发现。
生:计算 + ,是把异分母分数转化成同分母分数。
师:说得真完整。
师:很高兴你和大家分享你的发现,重复的我们就不说了,谁还有不同的发现?
师:在计算这几个题的时候,我们都用到了转化的策略,转化前和转化后有什么关系?
生:得数相同。
师:你可真了不起,一下就抓住了转化的实质,转化前和转化后结果不变。(板书:得数相等)
三、实践应用,体验转化策略
1.巧用转化写分数。
2.巧用转化求周长。
鼓励学生独立做在作业纸上,然后,组织汇报、交流。
师:周长各是多少厘米?有答案了就举手。
师:左边图形的周长是多少?(16厘米)
师:右边图形的周长可有难度了。
生:也是16厘米。
师:你怎么想的?
学生边指边说想法。
师:你是想把这四条边平移是吗?
师:大家来看,他是把这个图形想象成了什么?(长方形)能行吗?
师:我们来看一下(课件演示)真像大家想的那样,这是把什么转化成什么?
生:把不规则图形转化成长方形。
师:这样转化什么变了,什么没变?
生:面积变了,周长没变。
师:还有要补充的吗?
生:形状也变了。
师:咱们同学不仅会观察,还很会想象。我们在用转化策略解决问题的时候观察很重要,想象也很重要。感受到用转化策略解决问题的乐趣了没有?我们再来解决一个问题。
3.巧用转化求面积与周长。(只列式,不计算。)
师:请同学们认真观察,大胆的想象,仔细的思考。要求这个图形的面积,如何转化呢?
师:这么快就会了,谁来说?
生:能转化成一个半圆。
师:怎么转化呀?
生:把那块割下来,补到缺少的那块。
课件演示
师:是这样吗?这样果真就转化成了一个半圆。看来咱们同学用转化解决问题已经得心应手了。不过这个问题要变一下
师:如果要求这个图形的周长,该怎样转化呢?
生1:把左边的半圆平移到右边,转化成一个小圆,用大圆周长的一半加上小圆的周长。
师:还有不同的想法吗?
生2:整个一个图形可以转化成一个大圆。
师:怎么就能转化成大圆的周长?
引导学生思考大小圆之间的关系。
生:大圆的周长是小圆周长的2倍。
师:你怎么知道大圆的周长就是小圆周长的2倍?
生:大圆半径是小圆的2倍,大圆周长也是小圆的2倍,小圆的周长是大圆的二分之一,合起来就是一个大圆的周长。
师:咱们同学们真了不起,想到了不同的转化方法,并且这种转化的方法使问题变得非常简单。
4、巧用转化计算。
出示: + + +
师:继续我们的探索之旅,你准备怎样解决这个问题?做在作业纸上。
生:通分,都变成分母是16的分数。
师:可以。通分也是一种转化,再仔细观察算式,你能发现其中蕴含的规律吗?
生:每个分数的分子都是1,分母依次乘2。
师:你能试着再往下写两个分数吗?
生: + + + + +
提问:如果是这个算式,你还想用通分去做吗?那有没有更简便的方法呢?
课件出示正方形图
引导学生分析涂色部分的大小可以用1减去空白部分的大小,1-
师:明明是个加法算式,怎么变成减法算式了?
生:因为这里还空缺一个 。
师:听明白了吗?这位同学借助图形帮助进行算式的转化,非常善于观察和思考。
5.关注生活。
如何求1张纸的厚度? 如何求1个灯泡的体积?
四、畅谈收获,提升转化策略
师:通过今天的研究探索,你有哪些收获?
学生交流。
师:看来,大家的收获真不少,最后,有两句话想与同学们分享分享。
出示:
解题时,往往不对问题进行正面的攻击,而是将它不断变形,直至转化为已经能够解决的问题。
——数学家路莎彼得
篇4:解决问题的策略教学设计
教学内容:苏教版五年级数学(上册)第63-64页例1、例2和“练一练”。
教学目标:
1、使学生经历用“一一列举”的策略解决简单实际问题的过程,能有条理的分析数量关系,并获得问题的答案。
2、沟通“一一列举”和“列表”两种策略的联系,通过列表,帮助学生养成有序列举的习惯。
3、在学生感受这一策略的特点和价值的同时,进一步发展思维的条理性和严密性。
教学重点:
能对信息进行分析并用“一一列举”的策略解决实际问题。
教学难点:
能不重复、不遗漏地有条理地一一列举解决实际问题。
教学准备:
课件、小棒、表格
教学过程:
一、复习导入。(2分钟)
1、复习:同学们,我们已经学了长方形的周长和面积的计算方法,回忆一下,长方形的周长怎么求?长方形的面积怎么求?(生答师帖卡片)
请大家齐读一遍。同学们真了不起,学过的知识能记得那么牢!
2、导入:同学们,以前我们学了一些策略来解决怎样求长方形的周长和面积,今天王大叔遇到了新的难题,大家请看。
二、教学例1。(18分钟)
1、出示例1:王大叔用18根1米长的栅栏,围成一个长方形羊圈,有几种不同的围法?
2、(读题):同学们愿意帮王大叔这个忙吗?
王大叔遇到了什么难题?谁来说一说?
师:应该怎样围呢?老师已经为同学们每桌准备了18根小棒,每一根代表1米,请同桌2人合作用小棒在桌子上围一围。在摆之前老师有个说明:(1)每次都要把18根小棒用完。(2)围成一种后就数长和宽各是多少米,记录在老师发给的表一中。(3)尽可能少的移动一些小棒让它变成另一种不同的围法,再进行记录。
先想想怎样摆才摆得快,比比看哪一组合作得又快又好。开始动手操作吧!(师巡视,并与生个别交流:还可以怎么摆?不要动太多的小棒。)
(有的学生已经完成,要鼓励没完成的学生。)
注意收集有序和无序两张表格准备展示。(看中后可拿大笔给学生描大一些)
好了,同学们,请停止操作,用很短的时间把小棒收起来。
3、到底有多少种不同的围法呢?老师手上有两组同学的记录表。(投影)
大家更欣赏哪种记录方法?为什么?
(师相机板书:按顺序)
4、请这位同学说说看,刚才你是怎么想的?(生回答)
你怎么知道宽是1米的时候长就是8米呢?你是怎么算出来的?
(生答师展示18÷2=9米)
大家认为先从宽开始考虑好还是先从长开始考虑好?
(从最小的宽开始考虑比较好,顺序较明确。)
5、下面我们就从宽是1米开始摆一摆。
(学生说教师展示围法)
6、我还可以继续摆。(展示宽5长4)
这样行不行?为什么?大家观察一下这个长方形实际是前面4个长方形中的哪一个?重复了,因此我们要把它去掉。(单击鼠标擦掉)
同学们发现了没有?按顺序摆有什么好处?
(师相机板书:不重复不遗漏)
这位同学真了不起,掌声送给他好吗?
哪位同学刚才没有按顺序排列的请改成按顺序排列好吗?
7、同学们数数看,一共有多少种不同的围法?(展示答)
8、小结揭示课题:像刚才这样把事情发生的可能按照一定的顺序,有条理的列举出来,从而找到问题的答案。这就是我们帮王大叔解决问题的一种策略,这种策略叫做一一列举。(板书:解决问题的策略——一一列举)齐读课题。
我们在一一列举时应注意几点是什么?(按顺序、不重复、不遗漏)
9、下面我们把每种摆法的面积分别计算出来好吗?
同学们,在这4种不同的围法当中,你认为王大叔的羊圈用哪种围法比较合适?为什么?(第四种面积最大,养得羊最多。)
10、说得太好了!请继续观察这张表,你还有什么发现?(面积越来越大)这跟它的长和宽有什么关系?(在周长不变的前提下,长与宽的长度越接近,面积就越大。)
同学们真是太厉害了!没想到在围长方形的同时,还有一个意外的发现。
11、同学们,刚才我们学了一种新的策略——有序的一一列举,列举时应注意什么?下面我们就用这个策略来解决一个实际问题,大家有没有信心?
三、教学例2(10分钟)
1、出示例2:订阅下面的杂志:最少订阅1本,最多订阅3本。有多少种不同的订阅方法?(读题)
2、“最少订阅1本,最多订阅3本”是什么意思?
(生答师展示:可以订阅1本,可以订阅2本,也可以订阅3本)
3、那我们应该从订几本开始想起比较好?(从只订阅1本开始想起)
4、下面我们就一起来列举出来好吗?(我们可以怎么订?还可以怎么订?)
(生说师展示)同学们真是太聪明了,一下子就把所有的!法都列举出来了。!
5、其实我们还有更简单的办法,那就是列表,用“√”表示订法,订哪本就在相对应的格里打“√”,一列就表示一种订阅方法。同学们能不能利用这张表格,按一定的顺序列举出所有情况呢?请拿出表二试着填一填,不明白的同桌可以讨论讨论。
6、师展示学生作业,有序和无序两张表格比较。
7、集体评:第一张表列举出所有情况了没有?再看第二张表列举出所有情况了没有?两位同学都列举出了所有的情况,大家更欣赏哪张表呢?为什么?
请这位同学说说看,刚才你是怎么做的?(生说师课件展示)你真了不起,刚学的知识就能够运用自如!
刚才哪位同学没按顺序列举的请改成按顺序列举好吗?
8、同学们数数看,一共有多少种不同的订阅方法?我们一起来答出来吧?(齐答)
9、小结:看来同学们已经学会了运用一一列举的方法,来解决生活中的一些实际问题,想一想:要想得到全部答案,列举时要注意什么?
(按顺序、不重复、不遗漏)
一一列举在生活中随处可见,不经意我们就会遇见它,有时他还会出现在我们的投镖游戏中。
四、拓展运用知识,解决生活问题。(9分钟)
1、出示“练一练”,生齐读题。
2、同学们玩过投镖游戏吗?投中两次是什么意思?(两镖都投在靶上)
我们来投一次好吗?(让学生举起手来一起做投镖的动作)你想得到多少环?再投第二镖,投中多少环?会有几种情况出现?(可能两次都投中同一个环数,也可能两次投中不同的环数。那老师就根据这两种可能制成一张表。)
3、展示表格:画“√”表示投中,一个“√”表示一镖。一列就表示一种情况。请同学们拿出表3,按一定的顺序列举出所有情况。
4、师展示表,哪位同学愿意上来填这张表?
5、集体评:他这样填可以吗?为什么?按顺序有什么好处?(如果有时间,就让这位同学说说是怎么想的)
刚才哪位同学没按顺序列举的请改成按顺序列举好吗?
6、请同学们观察总环数,你有什么发现?(注意:有两个16环,答题时只写一次就行了,不要重复。)
齐答。
五、总结全课(1分钟)
同学们,这节课我们学了什么策略?列举时需要注意什么?
(生答师展示)
六、结束语
同学们,我们在解决问题的时候,采用一一列举可以使复杂的问题变得更简单,老师希望同学们在生活中利用这种方法去为我们的生活排忧解难,这正是我们数学的魅力之所在。
好了,这节课我们就上到这里,下课!
板书:长方形的周长=(长+宽)×2
长方形的面积=长×宽
解决问题的策略——一一列举
按顺序
不重复
不遗漏
篇5:解决问题的策略教学设计
第三单元解决问题的策略
课题:解决问题的策略——从问题想起第1课时总第课时
教学目标:
1.使学生初步学会根据题中的条件和问题,选择分析问题的思路,分析题目表示的数量关系,进而培养学生学会分析问题的能力。
2.使学生养成认真审题,自觉检验的良好习惯,发展学生连贯、有序、有层次的思维能力。
教学重点:如何从问题开始想,根据问题分析数量关系。
教学难点:根据问题分析数量关系。
教学准备:课件
教学过程:
一、情境引入
谈话:同学们,你们有去过商场购物吗?
出示商场购物情境图,提问:如果你有100元,这些商品你想买什么?还剩多少元?
让学生观察画面,提出问题。
学生自由发言,教师适时启发引导。
二、交流共享
1.教学例1。
(1)出示教材第27页例1情境图。
谈话:小明和爸爸今天也到商场购物,它们带300元去运动服饰商店购物。他们可能买什么?
利用课件把画面集中放大到运动服饰和运动鞋的场景中,让学生认真观察画面。
提问:小明和爸爸买一套运动服和一双运动鞋,可能花多少元?
学生计算,并说出多种可能,教师相应板书。
明确:买一套运动服和一双运动鞋因为选择不同,有多种选法。购买不同价格的运动服和运动鞋,剩下的钱是不同的。
(2)出示问题:小明和爸爸带300元,买一套运动服和一双运动鞋,最多剩下多少元?
先让学生同桌互相讨论:最多剩下多少元?再指名汇报。
师小结:购买的商品价格最低,剩下的钱就最多。
提问:你能根据问题说出数量之间的关系,确定先算什么吗?
学生独立思考后,把自己的想法在组内交流。
学生汇报交流:
①剩下的钱等于带来的钱减去用去的钱,可以先算用去多少元。
②求最多剩下多少元,可以先算购买价格最低的运动服和运动鞋一共要用多少元。
引导:先想想每一步可以怎样算,再列式解答。
学生列式,指名回答,教师板书。
①一共用去多少元?130+85=215(元)
②剩下多少元?300-215=85(元)
(3)想一想:如果买3顶帽子,付出100元,最少找回多少元?
提问:你能根据问题说出数量之间的关系,确定先算什么吗?
学生汇报交流。
引导:先想想每一步可以怎样算,再列式解答。
①最多用去多少元?24×3=72(元)
②最少找回多少元?100-72=28(元)
2.思考:回顾解决问题的过程,你有什么体会?
学生自由发言,师小结:我们要在读题后要弄清题目里已知条件和问题分别是什么,可以从问题开始想,根据问题分析数量关系,确定先算什么。要根据题中的条件和问题,选择分析问题的思路。
三、反馈完善
1.完成教材第28页“想想做做”第1题。
根据问题说出数量关系式,并说说缺少什么条件。
(1)出示问题(1),引导分析:从“桃树比梨树多多少棵”想到的数量关系是什么?
追问:有了这样的数量关系,要求这个问题,还缺少什么条件?
(2)学生独立分析问题(2),先根据问题写出数量关系,再说说缺少什么条件。
教师强调:在解答两步计算的实际问题时,关键是分析题中的数量关系,确定先算什么,再算什么。
2.完成教材第28页“想想做做”第2题。
让学生观察表格,并说明题意,明确计算的问题后,独立列式解答。然后请几名学生说一说解决问题的方法,给有困难的学生得到启发。
提示:要求足球组的人数,可以先算篮球组和田径组的人数之和,再将总人数减去篮球组和田径组的人数之和,即可求得足球组的人数。
3.完成教材第29页“想想做做”第3题。
让学生独立完成,完成后在小组内交流,并在交流中互相启发,加深理解。汇报解决问题的思路时,让学生说说每道题的数量关系。
师提示:这两题都要先算四个茶杯的总价。
四、反思总结
通过本课的学习,你有什么收获?还有哪些疑问?
第三单元解决问题的策略
课题:解决问题的策略——画线段图第2课时总第课时
教学目标:
1.经历探究和交流解决问题的过程,感受解决问题的策略,学会通过画线段图分析数量关系,掌握解决与倍有关的两步计算的实际问题及相应的变式问题。
2.感受数学与日常生活的密切联系,进一步增强学生对学习数学的兴趣和信心,初步形成独立思考的习惯和探究问题的意识。
教学重点:用线段图辅助解决两步计算的实际问题。
教学难点:分析数量关系。
教学准备:课件
教学过程:
一、谈话引入
谈话:同学们,咱们身上穿的上衣和裤子是谁买的?你有自己去买过吗?今天,我们就去商场看看。
二、交流共享
1.教学例2。
课件出示教材第29页例2的教学情境图,引导学生认真观察。
(1)理解题意。
让学生观察情境图,说说从中获得了哪些信息。
(2)画线段图。
提出问题:上衣的价钱是裤子的3倍,买一套衣服要用多少元?
追问:你能理解买一套衣服的意思吗?
引导:怎样解决这一问题呢?今天我们还请来了一位数学小助手,它的名字叫线段图。我们可以借助线段图来分析题目中的数量关系。
①先画一条线段表示出裤子的价钱。(在黑板上画出表示裤子价钱的线段)48元
篇6:解决问题的策略教学设计
教学内容:
教科书第88~89页的例1、例2和“练一练”,练习十六的相关习题
教学目标:
1、使学生在解决实际问题的过程中学会用“倒推”的策略寻求解决问题的思路,并能根据实际的问题确定合理的解题步骤,从而有效地解决问题。
2、使学生在对自己解决实际问题过程的不断反思中,感受“逆推”的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
学会用倒推的解题策略解决实际问题
教学难点:
根据具体问题确定合理的解题步骤
教学准备:
多媒体课件,练习纸。
教学过程:
一、激趣导入,初步建立倒推法的一般解题流程
1、路线倒推
师:前不久,学校组织大家去春游,还记得吗?
生:记得
师:游玩后一位同学写了这样的一篇数学日记。来,听一听。
(录音:我们8点从学校出发,一路经过长江大桥、老山风景区,最后到达雏鹰军校。下午沿原路返回,你知道我们的返回路线吗?出示:学校→长江大桥→老山风景区→雏鹰军校)
师:谁能回答?
生:返回路线是从雏鹰军校出发,经过老山风景区、长江大桥,最后到学校。
(出示:学校←长江大桥←老山风景区←雏鹰军校)
师:原来你是倒过来想的。
2、翻牌倒推
师:下面老师玩一个小魔术,想不想看?
生:想
师:看好了。
(出示三张牌:先第一张和第二张交换位置,再将第二张和第三张交换位置)
师:要想知道原来这三张牌是怎样摆放的,怎么办?
生:(上台操作)先交换第二张和第三张位置,再交换第一张和第二张位置。
师:你为什么这样操作?
生:我是倒过来想的,刚才最后交换的是第二和第三张,那我就先交换这两张,在交换第一张和第二张。
师:原来你也是倒过来想的。
3、运算倒推
师:我们再来玩一个小游戏,比比谁的反应快!
(出示:)
师:你能立刻报出表示多少吗?
生:18
师:你是怎么想的?
生:6×5=3030-20=1010+8=18
师:你也是倒过来想的
4、小结
师:刚才这3个问题,大家都是怎么想的?
生:倒过来想的
:师:在数学上,我们把倒过来想的方法称之为“倒推”(板书:倒推)
今天这节课,我们就一起来研究怎样用倒推解决生活中的实际问题。
二、教学例题,探究倒推法
1、(出示例题:小明原来有一些邮票,今年又收集了24张,送给小军30张后,还剩52张。小明原来有多少张邮票?)
师:你了解到哪些信息?
生:我知道了小明原有一些邮票,收集了24张,送给小军30张,剩52张。求小明原来有多少张邮票?
师:你能将这些信息进行整理吗?
同座位讨论,其中一人记录。
生:(同座位讨论整理过程)
师:谁来介绍一下你们是怎么整理的?
生:原有?张→又收集24张→送给小军30张→还剩52张
师:我们已经整理了信息,你准备怎样解决这个问题?试一试。
生:(尝试解题)
师:谁来介绍你的计算方法?
生1:52+30-24=58(张)
师:你能具体说说算式的意思吗?
生:从结果开始想,送出的要收回,而收集的要去掉。
师:你听懂了吗?
这个结果正确吗?你有办法验证吗?
生:58+24—30=52(张)
师:你是用顺推的方法,看剩下的是不是52张。
这一题你还有不同的计算方法吗?
生2:52+(30-24)=58(张)
师:你能解释算式意思吗?
生:在变化过程中,小明的邮票总共减少了6张,所以要用剩下的52张加上6张。
师:听懂了吗?
通过计算我们知道了小明原来有52张邮票。
2、小结:
师:第一种解法,是从结果出发,按顺序倒推出原来的情况。第二种解法,先比较小明的邮票是增加了还是减少了,再从结果出发倒推退出原来的情况。
师:这两种解法列式不同,但在思考过程中有什么相同点?
生:都采用了倒推的方法。
师:为什么你们都选择倒推解决这个问题呢?
生:比较简单,容易理解。
师:原来用倒推解决这种问题,是一种既简洁又方便的解题策略。(板书:解决问题的策略)
3、试一试
出示图:
师:你从图中你知道了什么?
生:甲乙两杯果汁原来共重400毫升,从甲杯倒入乙杯40毫升,两杯果汁就同样多了,求原来两杯果汁各有多少毫升?
师:你会解决这个问题吗?试一试。
师:谁来说说你是怎么解决的?
生1:400÷2=200(毫升)
甲:200+40=240(毫升)
乙:200-40=160(毫升)
师:你能具体说说这三步的意思吗?
生1:400÷2=200(毫升)求的是现在甲、乙两杯有多少毫升,再把到入乙杯的40毫升倒回去,200+40=240(毫升),求出甲原来有多少毫升,200-40=160(毫升),求出乙原来有多少毫升。
师:他是用倒推的方法解决的,还有不同的方法吗?
篇7:《解决问题的策略》教学设计
[教学内容]
运用加法和减法两步计算解决问题 (p4 例1)
[教学目标]
1、使学生能从具体的生活情境中发现问题,掌握解决问题的步骤和方法。
2、学会运用加法和减法两步计算解决实际问题。
3、在解决问题的过程中,让学生感受可以用不同的方法解决问题。
4、初步培养学生发现问题、提出问题、解决问题的能力。
[教学重点]
学会运用加法和减法两步计算解决实际问题。
[教学难点]
培养学生在实际生活中多角度观察问题、发现问题、提出问题、解决问题的能力。
[教学过程]
一、情景导入,激发兴趣
观察主题图问:图上有谁,他们在干什么,还有想去做什么的,数一数分别有多少人?这幅主题图将告诉我们什么数学知识呢?我们具体来看。
二、合作交流,探索新知
1、引导学生观察木偶戏的情景图。
(1)说一说,图上给我们提供了那些信息?(文字信息:原来有22人在看戏,又来了13人,图中信息:走了6人)
(2)要解决什么问题?(有多少人在看木偶戏)
2、小组交流讨论,提出解决问题的方案。
3、选派组内代表在班中交流解决问题的方法。
4、把学生解决问题的方法记录在黑板上,试着用文字说说每道算式的意思。
方法一、22+13=35(人)35-6=29(人)
(原来的人数+又来的人数=总人数 总人数—走了的人数=现在看戏的人数)
方法二、22-6=16(人)16+13=29(人)
(原来的人数—走了的`人数=还剩下的人数 还剩下的人数+又来的人数=现在看戏的人数)
方法三、13-6=7 (人) 7+22=29 (人)
(又来的人数—走了的人数=多来的人数 多来的人数+原来的人数=现在看戏的人数)
5、比较以上方法的异同。明确这三种方法的结果都是求现在看戏的有多少人,只是在解决问题的思路上略有不同。让学生体会对于一个实际的问题可以有多种不同的解答方法。
6、你能把每种计算方法的两个小算式写成一个算式吗?学生尝试列综合算式。
板书:(1)22+13-6 (2)22-6+13 (3)13-6+22
再次交流:你是怎么想的?
(1)学生尝试自己说。
(2)小组内互相说。
(3)全班交流说,老师适时纠正说的过程中出现的问题。引导学生如何去掉中间量,把分步计算变成综合算式。
三、指导学生脱式计算。
22+13-6 22-6+13 13-6+22
=35-6 (先算加) =16+13 (先算减) =7+22 (先算减)
=29 (再算减) =29 (再算加) =29 (再算加)
比较计算的方法,你发现了什么?
(在一个算式里,只有加减法,按照从左往右的顺序,依次计算)
四、练习巩固,应用实践
1、给得数相等的两个算式连线.
分析:须一算、二想、三连.即先将每个算式的得数算出来,再根据得数想哪两个算式可以连线;然后再动笔.
2、p6第1题,让学生说明图意,明确计算的问题后,让学生独立列式解答。然后请几名学生说一说解决问题的方法,给有困难的学生以启发。
3、p7第4题,让学生自己独立完成。汇报解决问题的思路时,教师结合题目的具体内容,适当渗透思想教育。
五、课堂总结
你能用我们今天学会的数学知识解决我们身边的实际问题吗?
篇8: 解决问题的策略教学设计
教学目标:
1、使学生经历用“一一列举”的策略解决简单实际问题的过程,能有条理的分析数量关系,并获得问题的答案。
2、沟通“一一列举”和“列表”两种策略的联系,通过列表,帮助学生养成有序列举的习惯。3、在学生感受这一策略的特点和价值的同时,进一步发展思维的条理性和严密性。
教学过程:
一、课堂导入
同学们,以前我们曾学过哪些解决问题的策略?好的策略可以帮助我们顺利地解决问题,今天这堂课,我们要学习一种新的策略,这种策略和以前学习的策略还有很大的关系呢!
二、教学例1
1、导语:我们来看看第一个问题。
出示:园艺工人用6根1米长的栅栏围成一个长方形花圃,他是怎样围的?
(1)师:你可以算一算,或者画一画。写好后和你的同桌说说你是怎样想的?
(2)学生汇报板书:长(m)2,宽(m)1
师:说说你是怎样想的?和他想得一样的同学请举手。
小结:看来这个花圃只有一种围法。
2、导语:我们再来看看另一个花圃:
出示:园艺工人准备用10根1米长的栅栏,围成一个大一些的长方形花圃,有几种不同的围法?
(1)师:长和宽都有哪些情况?请你思考之后写在作业纸上。
(2)学生汇报板书:长(m)43,宽(m)12
师:你有几种围法?你呢?
师:还有没有其他的围法?看来我们已经找全了答案。(板书:全)
小结:第一个花圃,我们找到了1种围法,第二个花圃,我们找到两种不同的围法,像这样把符合要求的答案一一的找出来,这种方法叫做一一列举,(板书:一一列举),“一一列举”这就是我们今天要学习的新策略。
3、导语:下面请同学们用这个策略来解决一个问题。
出示例1:王大叔用18根1米长的栅栏,围成一个长方形羊圈,有几种不同的围法?
(1)请你思考之后,把不同的围法一一列举到第一张表格上。
(2)学生汇报(投影展示三张作业纸:不全、全而无序、全而有序)
师:这位同学列举了三种围法,他找全了吗?你有几种围法?那他缺哪一种?(教师在三种围法的表格中,填写第四种围法)现在全了吗?这张表格中剩下的空格还要不要填了?
(3)我们来看看,和他列举的顺序不一样的请举手,把你的给大家看看,请你介绍一下你是怎样想的?
篇9: 解决问题的策略教学设计
教学目标:
1、知识与技能:
学生在解决简单实际问题的过程中,初步体会用列表的方法整理相关信息的的作用,学会用列表的方法整理简单实际问题所提供的信息,学会运用从已知条件想起或从所求问题想起的策略分析数量关系,寻找解决问题的有效方法。
2、过程与方法:
通过自主探索、动手实践、合作交流等学习活动,学生经历提取信息,发现问题,列表整理条件,解决问题的知识获取过程,从而搜集信息,整理信息,发现问题、分析问题、解决问题的能力得以提高,并发展他们的推理能力。
3、情感态度与价值观:
通过学习,学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点、难点:
重点:用列表的方法整理问题情境中的信息,用从条件想起或从问题想起的方法分析数量关系。
难点:正确整理、分析数学信息关系,学会通过所整理的信息决策问题解决策略,并内化成自己的问题解决策略。
教学准备:
课件
教学过程:
一、故事引入,感受策略。
课前同学们都看了《司马光砸缸救人》的故事,这个故事讲述了司马光遇到了要救落入大水缸里的孩子的问题。救人的办法有很多,如:可以从缸口把孩子拉出来,但是由于在场的都是孩子,人还没有缸高呢,力气就更小了,不可能能把落水的孩子拉出来;再如:也可以去叫大人来救,但是可能时间不允许……这些办法都不能很快地把落水的孩子救出来。在这种特殊情况下司马光通过动脑筋、想办法,终于看到了一块石头,于是想出了“砸缸放水救孩子”的办法救了落水孩子一命。司马光通过自己的观察和思考,在许多办法中选择砸缸救人的最好办法,就是一种大智慧,这样的过程就是应用策略解决救人的问题(板书:策略)。这是生活中的应用策略解决问题,其实在我们的数学学习中也经常遇到问题,也要动脑筋、想办法解决问题,要更好、更快地解决问题就必须采用一些解决数学问题的策略。今天我们就来研究数学中的“解决问题的策略”。
板书课题:解决问题的策略
二、合作探索,领悟内涵。
1、创设情境,感知列表整理的方法。
(1)导入语:
师:小朋友们都喜欢逛超市吧,今天有三位小朋友相约来到了超市里,他们准备买同一种笔记本,他们遇到了什么问题呢?我们一起去看一看。
(2)出示情境图,听录音,(录音中增加了“小华用去多少元?”和小军说的话“我用42元买笔记本,可以买多少本?”)要求小华用去多少元?我们要用到哪些条件呢?学生回答后,课件只留下有用信息,提问:你能找到信息中的关键词吗?你能将这些关键词整理写出来吗?学生交流,相互补充逐步简洁成:
小明3本18元
小华5本?元
添上表格线,形成一张完整的表格:
小明3本18元
小华5本?元
板书:列表整理信息
(3)问:谁能不看图,只看表格就能复述题目的意思?学生复述后,比较表格和情景图,你觉得哪儿的条件和问题,看上去更加简洁,排列的更加整齐?
2、分析解决问题,感受列表的价值。
(1)独立思考如何解决题中的这个问题。想好后在小组里交流。全班交流。归纳解决这个问题的两种思路:从条件想起,从问题想起。
板书:分析列式解答
讨论:要求小华用去多少元,可以怎么想?(学生活动)
师:同学们在解题时,会有两种不同的思路。一种从已知条件想起,想:根据买3本用去18元,可以先求出1本的价钱;也可以从要求的问题想起,想:要求买5本用去多少元,先要求出1本的价钱。
这样一来,你会列式解答了吗?请行动起来(学生活动)。
课件出示:
18÷3=6(元)
6×5=30(元)
答:小华用去30元。
师:核对一下,你做对了吗?
(2)师归纳:解决条件较多的问题时,我们可以把有用的信息和问题列表整理,使数量之间的关系更加清晰,从而很快找出解决问题的方法。列表是一种非常有效的解决问题的策略。
(3)下面我们就用列表的策略来帮小军算算42元可以买多少本笔记本?课件出示问题和空表格。
同桌交流,再集体交流,相机完善表格。
小明3本18元
小军?本42元
列式解答后,请一名学生说出解题思路。
18÷3=6(元)
42÷6=7(元)
答:小军买了7本。
(4)课件同时出示上述两个表格。问:求小华用去多少元和小军能买多少本,在思考过程中有什么相同的地方?有什么不同的地方?(引导学生依据屏幕上的列式回答)
篇10: 解决问题的策略教学设计
一、教材分析:
这节课主要学习用列表的方法收集、整理信息,用从所求问题想起的策略分析数量关系,寻找解决问题的有效方法。在列表整理信息时,本课例题呈现的信息更复杂,而且在列表时所求的问题也没有表示出来,需要学生先根据要求的问题选择相关信息列表,然后再确定解决问题的方法。
二、学情分析:
这部分内容主要是在学生掌握了简单实际问题、两步计算实际问题的结构和数量关系,学会了从条件出发、从问题出发分析数量关系的策略,积累了比较丰富的解决实际问题经验的基础上,教学两积之和等实际问题,帮助学生初步学会用列表的策略整理条件和问题,感悟从条件和问题出发分析数量关系的策略,总结和归纳解决问题的一般步骤。
三、教学目标:
1、学生在解决简单实际问题的过程中,初步体会用列表的方法整理相关信息的作用,学会用列表的方法整理简单实际问题所提供的信息,学会运用从已知条件想起或从所求问题想起的策略分析数量关系,寻找解决问题的有效方法。
2、通过自主探索、动手实践、合作交流等学习活动,学生经历提取信息,发现问题,列表整理条件,解决问题的知识获取过程,从而搜集信息,整理信息,发现问题、分析问题、解决问题的能力得以提高,并发展他们的推理能力。
3、通过学习,学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:用列表的方法整理问题情境中的信息,用从条件想起或从问题想起的方法分析数量关系。
教学难点:带着问题去寻找策略,分析数量关系。
四、教学方法:
教学中要知道学生通过对解决问题过程的回顾和反思,不断增强运用有关策略解决问题的自觉性。引导学生在用列表的方法解决问题的过程中,学会用自己的语言解释结果的合理性。
五、教学过程:
(一)创设情境,感知策略
谈话:首先,我们来玩个小比赛。这边两组叫红队,这边两组叫蓝队。拿出老师给你们准备的课程表。比赛规则很简单,请你找到老师所描述的科目,然后圈起来,圈好的同学立刻起立,咱们看看,哪队同学反应最快,注意,老师喊停以后,你就不能再动笔,也不能再站。明白了吗?红蓝两队的队员你们准备好了吗?
师:你觉得这个比赛公平吗,为什么?
师小结:小小课程表用不同方法进行整理获得的效果就不一样,所以我们做任何事都要选择好的方法讲究策略,今天我们就一起来学习解决问题的策略(板书)
师:这两种整理的方法,你喜欢哪一种?
谈话:同学们都认为用列表的策略来整理课程让我们看得更清楚、一目了然,那我们就一起来研究列表的策略。(板书:列表)其实生活中列表整理的例子非常多,咱们一起来看一看(日历、值日表),咱们身边还有很多数学问题也可以用列表的策略来解决。
(二)激发内需,形成策略
1、联系生活,教学新课
(1)出示例题中的已知条件。
(2)看了这些信息,引导学生思考体会。(信息比较多)
师:条件这么多,看来需要整理一下,那可以怎么整理呢?
(3)根据学生反馈将所有的条件整理进一个表格中。
(4)出示问题:桃树和梨树一共有多少棵?
那你觉得解决这个问题需要用到表格中的所有信息吗?为什么?
小结:所以解决问题时,我们可以直接根据问题来整理信息。
(5)直接出示问题和简化的表格。
下面,请你想一想先算什么?再算什么?最后怎样?
(6)那你能说一说这题有怎样的数量关系吗?你是怎么想到的?
①学生反映从问题想起。(板书)
②回到表格,引导学生还可以从条件想起分析数量关系。
(7)让学生分布列算式解答,指名板演。
3×7=21(棵)
4×5=20(棵)
21+20=41(棵)
订正时提问:你每一步求出的是什么?
(7)答案是否正确?先进行检验,再与同学交流。
提醒学生:以后解题时都要对解决问题的结果进行检验,发现错误要及时订正。
3、这道题还有一问,请想一想:求杏树比梨树多多少棵,应该怎样解答?
请同学们先独立列表整理,然后说说怎样分析数量关系。
4、比较,小结
刚才我们一起解答了两个问题,你发现在解答这两个问题的过程中有什么共同点和不同点吗?
学生讨论、交流,总结得出解决问题时一般要经历的另外3个步骤。
(三)巩固拓展,提升策略
过渡:其实生活中,我们还有很多地方用到了列表的策略。学校里就有一些数学问题,让我们一起去看一看吧。
1、“练一练”第一题
独立看书明确题意。(请学生说说在图中知道了哪些数学信息)
问:看过图后,你从图中得到了哪些信息?指名学生说一说。图上有这么多的信息,你能用列表的策略把这些信息整理好吗?(学生整理信息)
班级交流:说说你是怎样想的?每步算式求出的是什么?(先求三、四年级分别有多少人)
2、“练一练”第2题
师:学校里的江老师也有问题要同学们解决,我们来看下。
学生读题,明确题意。
请同学们根据题目的条件和问题在作业纸上独立列表整理。
班级交流,说说是怎样想的,每一步求的是什么问题?
3、“练习九”第1题和第2题
请学生一起读题。(第2题先解答,再检验)
(四)全课总结
问:今天我们学习了什么解决问题的策略,那你有哪些收获?
讲述:其实,解决问题的策略还有很多很多,我们今天只是初步学习了其中的一种――用列表的方法整理信息的策略。谁能说说我们一般在解决怎样的数学问题时可以用到这个策略?相信在今后的学习中,同学们会形成越来越多的解决问题的策略。
篇11:《解决问题的策略》教学设计
一、教学课题 苏教版(国标本)四年级上册第八单元<解决问题的策略>. 二、教材简介 本单元教学用列表的策略解决实际问题.首先以有条理地整理信息、发现数量之间的联系作为策略教学的切入口,发现和利用数量关系是解决实际问题的关键.通过整理信息明确和把握数量关系,既是可操作的方法,也是解决问题的策略.让学生学会整理信息的常用方法,体会它的作用与意义,从而内化成自己的策略.解决问题的策略>
作 者:耿金娣 作者单位:江苏省丹阳市正则实验小学,212300 刊 名:新校园(下旬刊) 英文刊名:CONTEMPORARY EDUCATION RESEARCH 年,卷(期):20xx “”(12) 分类号:G63 关键词:篇12:《解决问题的策略》的教学设计
《解决问题的策略》的教学设计
教学内容:苏教版五年级(上册)第63-64页例1、例2
教学目标:1、使学生经历用“一一列举”的策略解决简单实际问题的过程,能有条理的分析数量关系,并获得问题的答案。2、沟通“一一列举”和“列表”两种策略的联系,通过列表,帮助学生养成有序列举的习惯。3、在学生感受这一策略的特点和价值的同时,进一步发展思维的条理性和严密性。
教学过程:
一、课堂导入
同学们,以前我们曾学过哪些解决问题的策略?好的策略可以帮助我们顺利地解决问题,今天这堂课,我们要学习一种新的策略,这种策略和以前学习的策略还有很大的关系呢!
二、教学例1
1、导语:我们来看看第一个问题。
出示:园艺工人用6根1米长的栅栏围成一个长方形花圃,他是怎样围的?
(1) 师:你可以算一算,或者画一画。写好后和你的同桌说说你是怎样想的?
(2)学生汇报 板书:长(m)2
宽(m)1
师:说说你是怎样想的?和他想得一样的同学请举手。
小结:看来这个花圃只有一种围法。
2、导语:我们再来看看另一个花圃:
出示:园艺工人准备用10根1米长的栅栏,围成一个大一些的'长方形花圃,有几种不同的围法?
(1)师:长和宽都有哪些情况?请你思考之后写在作业纸上。
(2)学生汇报 板书:长(m)4 3
宽(m)1 2
师:你有几种围法?你呢?
师:还有没有其他的围法?看来我们已经找全了答案。(板书:全)
小结:第一个花圃,我们找到了1种围法,第二个花圃,我们找到两种不同的围法,像这样把符合要求的答案一一的找出来,这种方法叫做一一列举,(板书:一一列举),“一一列举”这就是我们今天要学习的新策略。
3、导语:下面请同学们用这个策略来解决一个问题。
出示例1:王大叔用18根1米长的栅栏,围成一个长方形羊圈,有几种不同的围法?
(1)请你思考之后,把不同的围法一一列举到第一张表格上。
(2)学生汇报(投影展示三张作业纸:不全、全而无序、全而有序)
师:这位同学列举了三种围法,他找全了吗?你有几种围法?那他缺哪一种? (教师在三种围法的表格中,填写第四种围法)现在全了吗?这张表格中剩下的空格还要不要填了?
篇13:四年级《解决问题的策略》教学设计
四年级《解决问题的策略》教学设计
教学内容
苏教版国标本四年级数学(下册)第89——90页
教学目标
1、使学生在解决有关面积计算的实际问题的过程中,学会用画直观示意图的方法整理相关信息,能借助所画的示意图分析实际问题中的数量关系,确定解决问题的正确思路。
2、使学生在对解决实际问题过程的反思中,感受用画示意图的方法整理信息对于解决实际问题的价值,体会画图整理信息是解决问题的一种常用策略。
3、使学生进一步积累解决问题的经验,增强解决实际问题的策略意识,获得解决实际问题的成功体验,提高学好数学的信心。
教学重点
学会用画示意图的方法整理相关信息、分析数量关系,确定解决问题的正确思路。
教学难点
掌握画示意图整理信息的方法,培养学生运用策略的能力。
设计理念
使学生产生学习新知的心理需求,让学生在自主探索、反思的过程中获得知识。
教学步骤
教师活动
学生活动
一、导入新课
1、提问:
你能画一幅长30厘米、宽20厘米的长方形的示意图吗?画画看。
说一说画图时要注意什么?
你会求这个长方形的面积吗?
长方形的.长、宽和面积有什么关系?你会用哪些关系式来表达这三者的关系?
2、谈话:刚才你们画出了长方形的示意图,也解答了简单的求长方形面积的问题。这节课我们将学习运用画图的策略来解决稍复杂的面积计算问题。(板书课题)
学生独立解决、汇报
二、教学新课
1、出示例题
2、根据示意图分析、解决问题
3、反思解题过程
(1)引导交流:提供了哪些条件?要求什么问题?用以前学过的列表的方法能把信息整理清楚吗?这样一个有关面积计算的问题,用什么方法能将条件和问题整理清楚?
使学生明确:这是一个有关图形面积计算的问题,如果画个图就可以将题意表达的更清楚了。
(2)自主尝试画图
要求画出的图能让人更清楚地看出题目的条件和问题。
组织交流:展示自己画的示意图,说说是怎么画出来的,结合示意图说说题目中的条件和问题。
引导学生比较展示出来的示意图,观察这些示意图,你觉得哪些画的好?哪些需要改进?
重点引导学生关注:a。题目中的条件和问题是否都作了准确的标注;b。画的图是否美观清晰,有关长方形的长与宽是否大致符合比例。
根据刚才的讨论,修正自己画的图。
看示意图分析:要求原来花圃的面积要先求什么?根据什么条件可以求出原来花圃的宽?
你认为解决这一类实际问题一般怎样做?
明确:
理解题意画示意图整理信息
根据示意图分析数量关系
列式计算解决问题
学生自主阅读
独立思考、交流
学生尝试画图、交流汇报
比较、改进自己的示意图
学生尝试列式计算解决问题,交流反馈解题的情况
小组交流,全班交流
三、巩固练习
1、指导完成试一试
出示题目,提问:你准备用什么样的策略解决问题?
按要求在教材提供的图上画出减少的部分
提问:要求现在鱼池的面积要先求什么?根据哪些条件可以求出原来鱼池的长?根据哪些条件可以求出原来鱼池的宽?你能解决吗?
2、想想做做第1题
3、想想做做第2题
学生自主阅读,
独立思考后全班交流
学生独立画图,同桌检查
学生尝试列式计算解决问题并结合所列式子再说说解决问题的思路。
学生独立完成。交流时让学生展示自己所画的示意图,再结合示意图说明自己的解题思路。
学生独立完成。交流时,先让学生从自己所画的示意图中指出增加的部分,再让学生结合示意图或所列的表格说明自己的解题思路。
同桌交流,指名回答
四、全课总结
这节课我们解决的是哪一类的实际问题?解决这类实际问题一般常用哪种解题策略?你还有什么收获?
同桌交流,指名回答
五、作业设计
校园里原有一块面积是210平方米的长方形草坪,如果草坪的宽增加6米,面积就增加到300平方米,原来草坪的长和宽各是多少米?
六、教后反思
篇14:解决问题的策略的数学教学设计
解决问题的策略的数学教学设计
教学目标
1.让学生在解决问题的过程中学会用“倒过来推想”的策略寻求解决问题的思路,并能根据问题的具体情况确定合理的解题步骤;
2.在对解决实际问题过程中不断反思,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。
3.让学生进一步积累解决问题的经验,获得解决问题的成功体验,并能将所学应用于实际生活中去。
教学过程:课前谈话师:同学们,今天陈老师到你们学校参加活动,我是从海门,然后经过大千,大兴,再到天补车站,最后来到天补中心小学。活动结束时,我还想沿原路返回到海门,该怎么走?(返回时,应该从现在的位置,倒过来走。)一、导入新课师:请同学们看看这些题,要解决这些问题,你认为怎样做就能突破难点了呢?
出示91页第5题
师:你们是怎么想的?
师:是啊,知道了现在的情况,我们要求出原来的数,用这种倒回去的方法还真管用。板书:倒过来原来←—————现在继续看,老师这儿还有两个杯子,装着一些果汁,两杯共有400毫升,我现在从甲杯中倒40毫升到乙杯中,现在两杯同样多。(出示图)你能用自己的话说一说倒的过程吗?(你知道甲杯原来有多少毫升吗?)【教师在原来的甲图下面用?板书】请你解决这个问题,要解决甲杯原来有多少毫升,我们可以也从现在出发(现在甲杯有多少毫升)师:我们顺着题目给我们的信息,你们知道现在他们各有多少毫升吗?(200毫升)你从哪句话的出这个结论的?那么知道甲杯现在有200毫升,原来呢?
师:我们把乙杯的200ml果汁中取出倒进去的40ml果汁还给甲杯,我们看看甲杯和乙杯各有多少毫升的果汁呢?让生自己填表.教师根据下面的表格来边讲边填甲杯/ml乙杯/ml现在00原来200+40200-40知道了甲杯,那乙杯现在和原来各有多少毫升呢?现在能写答了吗?刚才我们解决了生活中的几个小问题,走返回的路线,比较两个杯子中水的多少,求甲乙两杯果汁原来各有多少毫升,都是采用从现在出发,倒回去想原来(指着板书说),这种方法是我们解决问题的一种重要策略。板书:解决问题的策略二、教学新课逐层递进,感知还原刚才我们所涉及到的变化过程只有一次,假如变化的过程超过一次呢。继续请看,(小黑板出示例2)谁来读读上面的信息。解决这个问题,你们会用什么策略解决它呢?大家想不想自己先试试啊?在试之前老师先有几个小建议:请看:1、用我们以前学过的方法整理条件。2、你准备用什么策略来解决这个问题。3、列式解答,然后在小组内说说自己的想法。听明白吗?开始吧!(老师深入到学生中去了解学生解决问题的过程,适时点拨)我们首先来分析一下这道题数量的变化过程,→整理条件(指一名学生说)你是怎样整理条件的?【原有?张→又收集了24张→送给小军30张→还剩52张】刚才大家用这样的方式:把条件整理成(板书)(上面)+24-30【还有同学这样:————→()————→52】大家看得懂他整理的方法吗?整理好条件,你们用什么策略想这个问题的?(倒回去想)也就是从现在出发:送给小军的'再拿回来,收集的变为不收集。原有?张→又收集了24张→送给小军30张→还剩52张原有?张←去掉收集的24张←跟小军要回30张←还剩52张如果上面的“送”我们用-30,那现在要我们这个地方的“要回来”用什么呢?(+30)+24-30()————→()————→52(在原来的板书上写下面的数字)←————←————-24+30你们会列算式吗?老师把它写下来,同意他的这种做法吗?(52+30-24=58)师:还有其它的解法吗?现在能写答了吗?你知道自己解决的是否正确该怎么办呢?(要检验)☆师:现在我们把求出的答案,放到题目里,再顺推过去,看一看剩下的是52张吗?现在我们可以放心的写答了。刚才同学们真了不起,通过自己的探索,共同研究解决了这道问题,有没有想过,刚才解决问题你们用的什么策略。(倒回来想、倒推、倒着想………)那么遇到怎样的问题,可以用倒过来推想的策略来解决呢?(已经知道变化后的结果,要求原来有多少,可以用这样的策略)
继续请看:算一算:练一练(出示题目)小军收集了一些画片,他拿出画片的一半还多1张送给小明,自己还剩25张。小军原来有多少张画片?如果你是小军,你会拿这一半多一张吗?多送的在倒推时应该多补回来,同学们在下面试试,试着解答。三、巩固新知应用于实际生活
早晨,老师上班时,看到有人锻炼身体——向前走几步,向后退几步,医生说这样对身体有好处!那我们思考问题的时候,经常也能倒过来想想,对我们的思维也有帮助。同学们想不想让我们的思维能力变得更强些?下面我们轻松一下,做个小游戏,大家都玩过扑克牌吧?将四张扑克牌,放在①-------④号四个位置上,老师请一个小朋友到前面来看看这几张牌是怎样摆放的,并把答案写在纸上。
现在老师把这四张牌——这四张牌位置改变了,不过老师告诉你,如果这四张牌是这样:一、将2号位与4号位的牌交换位置二、将3号位与4号位的牌交换位置三、将1号位与3号位的牌交换位置最后得到的四张牌是8、7、6、5你们能猜出这四张牌原来分别是怎么摆的吗?(6857)有点难度了吧?没关系,咱们每组都有这4张牌,咱们推推看,试试看。那我们来验证一下。
今天这节课就上到这儿了,但是我并不希望这就是一个结束,恰恰相反我希望这是一个好的开始,希望你们把今天所学到的,应用到生活中去。猜年龄:老师今年的年龄乘3再减9,然后除以6,就是你们的年龄(12)。你能算
出老师今年多少岁?学了今天这节课,你们有什么收获呢?
设计意图:
在本次教学中,我设计了三个层次,首先我用走返回的路线和一直现在的数要求原来的数引入,让学生建立知识结构的根基,这是为了更好的为后面的内容做铺垫,让他们在学习新知时更能顺其自然,做到“润物细无声”。
接着在教学例1时我用自己预先准备的画代替例题图,这样能更明显的看到“倒过来推想”的过程。在过程清晰的解决了这题以后,出现不止一次变化的例题2,于是我精心设计了三个小问题作为让他们自己攻克难关的引路石
1、用我们以前学过的方法整理条件。2、你准备用什么策略来解决这个问题。3、列式解答,然后在小组内说说自己的想法。
让学生在整理的过程中进一步掌握有关数量发展,变化的线索,感受“倒过来推想”的必要性,体会不同策略在不同解决问题过程中的不同价值。上到这里似乎已经结束新知,其实真正的难关就在后面,练一练中的“拿出了这些画片的一半多一张”成了此刻的难点,在如何突破这个难点上,我想到了动手操作,实践出真知的道理,我让生自己先预演如何分步拿出6张纸的一半多一张再分步放回去,以这样一个形式解决这个实际问题。
最后我结合相关的实际情况设计了两道新颖的练习题作为巩固:翻纸牌和猜年龄。也有利于学生对所学解决问题策略的理解。从而让学生自觉,主动地运用相关策略解决生活中的实际问题。
篇15:《解决问题的策略1》教学设计
《解决问题的策略(1)》教学设计
教学目标
1、让学生在解决问题的过程中体验列举的策略,会用这种策略解决一些相关的实际问题,能通过不遗漏、不重复的列举找到符合要求的所有答案。
2、培养学生思考数学问题的条理性、有序性,体会解决数学问题方法的多样性、灵活性,发展学生的思维能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,并获得解决问题的成功体验,提高学好数学的信心。
教学准备:
教师:多媒体课件;飞镖2支;镖盘一只。
学生:小棒;表格。
教学过程:
一、谈话导入:
同学们,今天是老师第一次到宝应来,老师乘车来的时候发现:宝应的2路公交车是每隔15分钟发一班,请大家想一想:如果从早上6点开始发车,到早上7点,一共发了几班车?
小结、揭题:
像这样,把每次发车的时刻一个一个的列出来,这就是解决问题的一种策略。今天,我们就研究“解决问题的策略” 板书课题:“解决问题的策略”
二、探究策略:
(一)、教学例1
1、解决:“可以怎样围?”
(1)王大叔在围羊圈的.时候遇到了一个数学问题,同学们,你们愿意帮帮他吗?(课件出示: 王大叔用18根1米长的栅栏围成一个长方形羊圈)这个长方形的羊圈可以怎样围呢?
(2)能用小棒摆出来吗?1根小棒代表1米,请大家动手试一试。
(3)交流:谁来说说,你是怎样围的?
(4)教师问:有跟他不一样的围法吗?
2、解决:“有多少不同的围法?”
同学们说的都不错,那王大叔的羊圈一共有多少种不同的围法呢?能写出来吗?(课件出示表格)
3、展示学生表格
(1)展示重复的8种的表格,问:长8宽1,谁来说说:你是怎样想的?你们同意他的答案吗?说说你们的理由。
(2)再展示有顺序的4种,说:看看这张表格对吗?
(3)展示没有顺序的表格并比较:
这张表格呢? 两张表格你们认为哪一张更好一些?为什么?
教师评价:对,按顺序填表才会显得有条理。
(4)展示有重复和遗漏的表格:
老师这里有张表格,大家看看,有什么意见?
(5)小结:
切换到电脑:教师小结同时课件演示:刚才我们在填表的时候,把不同的围法一个一个排列出来,从而解决了问题,运用的就是“一一列举” 的策略(板书:“一一列举”)
(6)集体订正
现在请同桌互相看看,写对的请举手,针对写错的学生,让错误的学生订正,没按顺序写的请你按顺序写一写。、
同学们,刚才我们在填表的时候发现有的同学重复了,可能有的同学遗漏了,想一想,在一一列举的时候怎样才能做到不重复、不遗漏呢?
(7)观察面积和长、宽的关系,发现规律。
在大家的帮助下,王大叔知道羊圈有4种不同的围法,现在他想围一个面积最大的长方形,你们能帮他算出每个长方形的面积吗?第一个长方形的面积是?第2个呢?第3个?……
你们认为王大叔会选哪一种?
比较长方形的长、宽、和面积,你们发现了什么?
看看长和宽的和,你们有什么发现?
小结:看来有顺序的一一列举,还能帮助我们发现隐藏的数学规律。
(二)、教学例二
(1)王大叔的羊圈围好了,现在呀他要去买羊。当他赶到羊市场的时候,发现坏了,市场里只剩下最后3只羊,而且颜色各不一样。(课件出示图片)1只是黑色、1只是白色、1只是灰色,(课件出示:最少买1只羊,最多买3只羊)如果王大叔最少买1只羊,最多买3只羊学生回答。(课件出示:一共有多少种不同的买羊方案?)一共有多少种不同的买羊方案?
(2)最少买1只羊,最多买3只羊,知道这句话什么意思吗?
(3)你准备用什么策略解决这个问题?列举时你打算先考虑买几只羊的情况?
教师引导:买1只羊可以怎样买呢?买2只羊可以怎样买呢?买3只羊呢?能把所有的不同方案都写出来吗?
(4)展示学生作业,教师给予评价。
过渡:刚才同学们一一列举的过程还可以用表格来表示:(出示表格)教师演示并讲解。
(5)小结:通过列表格我们能很快看出是否有重复、有遗漏,这是一种科学有效的整理方法。
三、练习拓展
刚才同学们表现很出色,现在让我们轻松一下,做个游戏,好不好?
(1)出示飞镖问:这是什么?有没有玩过?今天我们就玩投飞镖的游戏。(出示镖靶)问:10什么意思?投中红色部分就是10环。投中蓝色部分呢?黄色部分呢?你们想投吗?谁先来?
出示:游戏的规则是投中2次。(教师板书)
第一次投中,问:有没有投中?多少环?同学们猜一猜:第2次可能投中几环?我们看看,他究竟投中几环。(再投)
看看,一共得了多少环?
还有谁想投?
(2)现在,如果再请一位同学投,投中2次,可能会得多少环?能把所有的答案列举出来吗?请同学们用加法算式在纸上写出来。
展示学生作业问:你是按什么顺序列举的?
(3)教师:现在如果游戏规则是:只投两次(板书)
先说说,和投中2次有什么区别?投不中就是多少环?只投两次,除了刚才出现的情况以外,还有可能得到多少环?
(4)老师发现,我们宝应实小五( 1 )班的同学今天的表现真不错,大家知道宝应是个好地方,有很多特产,你们能向大家介绍介绍吗?
老师觉得这4种不错(课件出示:藕粉 荷叶茶 莲藕汁 大闸蟹)看看,是什么?
如果今天来的客人老师请你推荐其中的一种或两种,有多少种不同的推荐方法?
交流:同学们,谁来说说,你是怎么推荐的?
我相信我们会场上的客人老师一定会根据同学们的推荐,去选择自己满意的特产。
四、小结:
同学们,通过今天的学习,你有什么收获?在用列举的策略解决问题时你觉得要注意些什么?
五、作业:
练习十一1-3
篇16:数学解决问题的策略教学设计
数学解决问题的策略教学设计
教学内容:
xx版第十一册89-90页的例1、练一练,练习十七第1题。
教学目标:
1、使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2、使学生在对解决实际问题的过程中不断反思,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学过程:
一、情境导入
同学们,早上喜欢和牛奶吗?和牛奶有益身体健康。
我女儿在家也喜欢喝牛奶,每次早晨喝一小杯(出示一小杯)。我早晨每次喝一大杯(出示一小杯)。大杯中的牛奶大约是小杯牛奶的2倍。
出示1大杯和2小杯,问1大杯可以够我和几次?2小杯可以够我女儿喝几次?
1大杯和2小杯都给我喝,可以喝几次?
1大杯和2小杯都给我女儿喝,可以喝几次?
指名汇报,说说是怎样想的`?
说明:刚才想的过程其实就是替换的策略。
揭示课题:用替换的策略解决实际问题
二、自主探索
1、出示:小明把720毫升果汁倒入6个小杯和1个大杯,正好都倒满。小杯和大杯的容量各是多少毫升?
思考:你能解决吗?为什么?(使学生联想到都是大杯或者都是小杯比较容易解决;或者告诉大杯容量与小杯容量的关系。)
2、出示例1:小明把720毫升果汁倒入6个小杯和1个大杯,正好都倒满。小杯容量是大杯的13,小杯和大杯的容量各是多少毫升?
说说所增加的条件,你是怎样理解的?
思考,你准备怎样解决?先独立思考,然后小组内交流想法。
3、全班交流,重点让学生说明怎样替换,替换之后是什么杯子,总量是多少?
使学生感悟到无论怎样替换之后的果汁总量是不变的。
(根据学生的回答,以课件演示替换的过程)
思考,为什么要把1大杯替换成3小杯,或者把3小杯替换成1大杯?(感受替换的依据)
4、学生列式解决。
指名汇报,注重结合替换的思路,理解算式。
师:像这样的实际问题,我们用替换的策略进行解决,是否正确呢?
学生提出检验的方法,并阅读书上的介绍,然后进行检验。
5、小结用替换的策略解决实际问题的过程,加深对解题思路的理解。
6、体现价值。
教师介绍用方程解答的方法,还可以请学生说说不用替换的策略,还可以怎样解决。然后进行比较,使学生深深感受到策略的价值。
三、完成练习的第1题。
1、在题中用图表示替换的过程,然后解决问题,并检验。
2、汇报交流,将学生的作品在实物展示台上展示。注意体现学生可能出现的不同情况,(有可能出现线段图)
3、结合图说出算式。
4、这个题目还有不同的替换吗?为什么?使学生认识到具体情况具体对待。
四、指导练一练
1、读题,尝试解答,教师巡视了解。
2、练一练与例题相比有难度,因此让学生在指导下完成,可以用优秀生的思路来提示其他学生。
3、重视图的作用,以图来帮助理解。
五、思考
1、本课应该以策略的价值体现为主,还是应该以替换的依据为主?感觉难以合理安排。
2、课堂教学时,忽视了学生在替换过程中语言的准确表达。如:用什么替换什么,或者把什么替换成什么。在数学中语言应该是规范、到位的。
篇17:浅谈解决问题策略教学心得体会
各位老师,今天我执教的是五年级《解决问题的策略》,这一内容是在学生已经学习了用画图和列表的策略解决问题的基础上,教学用“倒过来推想”的策略解决实际问题。
反思这节课的备课过程,是自己一个对教材编排意图不断提出质疑,不断理解深化的过程。
下面就谈谈这节课备课的体会:
(1)明确教材意图,是上好课的前提。
在理解教材意图中,我备课时经历了一番曲折。
最先,拿到书后,给我的第一感觉就是如果我是学生,教师给我出了这两道题目,我怎么也不会想到教材中预设的思考方式。
如例1的两杯果汁,教材出示了在倒过来推想的策略基础上,用画图和列表帮助理解的思考流程。如果让学生自由选择方法的话,我想学生不会选择用这种方式,可为什么教材会这样呈现?
如例2的小明集邮。教材出示了“根据题意摘录条件进行整理,再倒过来推想”的策略,特别是根据题意摘录条件进行整理这一设计,备课的时候,我曾问过学生,如果让你自己做例2,你会想到摘录条件吗?没有一个学生表示会这么做。
问题出来了,为什么教材所设想的解决问题的步骤与方法,我和我的学生都不认同呢?是教材的编者错了吗?还是我理解教材上出现了误差。
我们一定都记得这句话:“用教材来教,而不是教教材。”在设计教学的时候,我甚至有种冲动,不是说用教材教吗?既然学生都不认可教材的预设思路,为什么不另起炉灶,重新设计呢?
在经历了长时间的痛苦思索后,我终于领悟的教材的意图。
我用一句话来概括自己的认识,“如果我的教学目的只是教会学生会解答例1和例2的话,那我就只能是教教材。而真正的用教材来教,应该是通过对例1和例2的解答,让学生经历倒过来推想的思维过程,认识倒过来推想策略的特点,并在以后的学习中会用这个策略解决问题。
认识到这一点,我对教材的理解上升到了另一个境界。
例1与例2只是本课教学目标的载体。解决问题的策略是多样的,所以,例1与例2如果我不学倒过来推想的策略让学生做,学生会不会做?结果应该是肯定的。比如例2,学生非常熟练地就能用求未知数的知识解答。
我的学生之所以想不到例1和例2所呈现的思维方法,那是因为这些方法正是本节课所要探讨的“倒过来推想”的策略。
(2)选择教学方法,应从教学目标入手,不可盲目求新求异。
备课时,我对教学方法的选择也经历了一个曲折的探索过程。
新课程改革给数学课堂带来了生机活力,我们的孩子有了更多的机会去自主探索,我们的教师有了更多的自觉让学生在自主、合作、探究的课堂中,去学生数学知识。学生能在这样的课堂中学习无疑是幸福的。
所以,拥有这样观点的我也必然要在这节课里,想给学生更多的自主空间。
所以,第一次备课,我给了学生很大的自学空间。比如:例1的教学中,我在提示题目之后,便引导学生自主选择策略去解答。在例2的教学中,我尝试让学生自己试着去根据题意整理条件。结果让我大失所望。孩子们虽然画出了图,可是这个图不是根据倒过来推想策略画出来的,这还有什么意义。在例2的教学中,学生甚至跟我反应:如果让他们自己解答例2还能懂,可是如果让他们整理条件,反到被绕糊涂了。
这一切是为什么?难道,自主探索在这里行不通。
反思这节课的教学目标,这是一节教会学生用不同的方法去解决问题的课,而要教学生的策略正是孩子们生活经验中所缺乏的。学生在长期的学习中形成了由前往后思考的习惯,必将影响到本节课里2道例题的解答。
想到这里,我懂得了教师教学用书上教案编写者的意图。在我第一次看到教学用书上的教案时,我是不以为然的。我认为:教学用书上的教学过程太过精细,没有给学生太多的空间与探索。现在,我明白了:有的知识是离不开教师的精心引导,特别是像倒过来推想这种策略,是不太适宜自主探索的。
在也是这节课为什么没有采用学生自主学习这一非常流行的方法的原因所在。
想起了曾经听过一位教师执教的,也是这一节课,例2的教学是学生自学的,学生非常顺畅地将教材例2预设的思维过程演译了一次,学生的表现让我惊讶不已。
各位老师,以上的一些纯粹是我个人在上完这节课后的一点思考,都是自己的真实想法。本来是不敢讲的,因为怕讲错了。不过一想,继续是交流嘛!应该说一些真实的想法,希望得到各位老师的虚心指导。
篇18:浅谈解决问题策略教学心得体会
“形成解决问题的一些基本策略,体验解决问题的多样性、发展实践能力和创新精神”是《数学课程标准(实验稿)》确定的目标之一。苏教版课程标准数学实验教材从四年级(上)起,每册都编排一个“解决问题的策略”单元。为了更好的把握新课程的意图,更好的落实这一课程目标,学校数学组对教材中的“解决问题的策略”进行了系列性的磨课活动。一轮探讨活动下来,大家感触颇多。
一、关注教材,由薄读厚,把握教材编写的意图。
教材是学生获取知识、进行学习的主要材料,也是教师开展教学活动的主要依据。现行的教材是依据新课程标准的要求和精神,贯彻新课程理念而编写的。教学时应该充分尊重教材、理解教材和吃透教材。
前后联系读厚教材:读懂教材要求教师能系统的分析教材内容,把握教材之间的纵横联系。也就是说,教师不能孤立地理解教材内容,而要把教学内容放到知识结构中去,在知识板块中理解教材所处的地位,从而正确定位。纵观解决问题的策略,教材的编排如下表:
册数 教学内容
四(上) 用列表的策略解决实际问题。
四(下) 用画图的策略整理和表达信息,寻找解决问题的方法。
五(上) 用枚举的策略解决实际问题。
五(下) 用“倒过来想”的策略解决实际问题。
六(上) 用“替换和假设”的策略解决实际问题。
六(下) 用“转化”的策略解决实际问题。
字斟句酌读透教材:读透教材就是要研读教材的一词一句、一图一画以及例题的前后顺序,练等等。例如,六年级上册“解决问题”安排的是用“替换和假设”的策略。本单元的教学可以分成两步:例1教学替换的方法和初步的假设思想,例2应用替换和假设的策略解决稍复杂的问题。例1的问题情境比较容易引发替换的需要,并借助直观形象的替换过程与方法,使学生理解替换是解决问题的一种策略。第90页的“练一练”起承前启后的作用,问题解决应用了例1的替换思想,但无论是把大盒换成小盒,还是把小盒换成大盒,替换后所有盒子里可以装球的总数都会比原来减少或增加,在这一点,它又为例2的教学作了铺垫。例2有可能经过两次甚至多次的连续替换思路的稳定、有序展开,需要依靠画图、列表、枚举等其他策略的支持。相应的“练一练”让学生进一步体会例2那样的替换活动,为独立解决练习十七的有关问题打下基础。这样字斟句酌,深刻领悟后,设计例1的教学时,一般就可以分成四步:一:图文结合,发现策略。二:引导替换,运用策略。 三:交流策略,感悟方法。四:回顾策略,体验再认。
二、关注学生,由表及里,彰显教学设计心理起点。
学生在学习新知识前,不是一张“白纸”,他们或多或少地积累了一定的知识、经验。因此,在教学前教师要经常思考:学生在学习这部分内容之前,已经具有哪些知识和经验,可能还存在什么问题?把握学生的学习起点资源,是数学课堂动态生成的基础,也是彰显教学设计心理起点、有效提高课堂教学质量的前提。因此,在这一教学活动中,我们不仅要关注“关于解决问题的策略,学生已经触及了哪些?”这一知识经验准备状态,更应关注“为什么要学习解决问题的这个策略”的心理原点问题。
四年级(下册)“解决问题的策略”,教材的例题是典型的相遇问题。主要编写意图是启发学生通过画图或列表的策略来整理题中的条件和问题。学生在四年级上学期已经学会用列表整理信息的方法,因此,在出示例题后“你能用自己喜欢的方法整理信息吗?”学生自然会联想到刚学过的列表整理的方法。因此教学的侧重点便落在研究如何画线段图来整理信息。教学中教师分以下几个层次展示:1、展示学生尝试的原始线段图,从例题的文字叙述到示意图,为了让学生充分领略线段图的含义,教师带领学生做全、做细了线段图。2、接着电脑演示完整的画图过程,让学生在规范的引领下再次感受线段图。3、最后,让学生进行完整的操作。那为什么列表与画线段图都是解决问题的策略,而要把浓重的笔墨倾注于后者?教师在解题说理的过程中有意让学生比较,从而明白线段图在行程问题中更加形象与合适。有详有略,有主有次,使课堂教学呈现出立体感。
三、关注教师,由虚到实,凸显课堂教学设计亮点。
教师要研究教材的逻辑体系和结构、明确教学重点和难点,还要领会教材预设的知识发生、发展的过程,充分考虑学生在学习过程中遇到的困难、产生的疑问,更应结合自身的特点,让课堂成为展示自己风采的场所。
六年级(上)导入新课时,擅长讲故事的女教师是这样开始的:同学们,喜欢听故事吗?下面我给大家讲个曹冲称象的故事:曹操是三国时代的一位君王,有一次有人送来一头大象,曹操想知道大象的体重。大臣们都想不出好办法来替大象称体重。这时曹操5岁的小儿子曹冲从人堆里走出来,告诉大家想到的办法。先把大象牵到船上,在船帮齐水处作个记号,再将大象牵走,把石头运到船上去,一直到先前作的记号为止,这时石头的重量就和大象的重量相等了。称出石块的重量就知道了大象的重量。(播放课件《曹冲称象》三幅图片)。
师:听了故事后,你觉得曹冲是个怎样的孩子?
生:曹冲真是一个聪明的孩子!
师:对啊!曹冲很好地运用了转化的策略,称出了大象的体重,你们也会运用这种方法去解决数学中的问题吗?
“曹冲称象的故事”,让学生在优美的音乐声中初步感受解决问题的策略,渲染了气氛,导入了新课;而另一位男教师则觉得不太适合自己,尤其是对于六年级的学生来说,在这方面已经有了自己的经验。于是他就“开门见山”,谈话导入:“同学们,今天我们一起来学习解决问题的策略。你认为什么叫策略?”学生们凭着已有经验,认为策略就是一种方法,一种计策、一种谋略。虽少了几分热闹,但多了几许思考。
四、关注过程,由浅入深,呈现教学流程反思视点。
数学是思维的体操,教师在组织学生进行探究活动时,更要重视学生探究的过程,以及探究的深入与细致。
五年级(上)教学的“解决问题的策略”以图文结合的形式出示例题:王大叔用18根1米长的栅栏围成一个长方形羊圈,有多少种不同的围法?教研组在第一次设计教学流程时是这样安排的:(1)先让学生说说从题中获取的数学信息;(2)然后用小棒实际摆一摆,观察所摆的长和宽分别是多少?(3)操作后让学生说说长和宽的米数,引导学生有序填写下表:
长方形的长/米
长方形的宽/米
这一教学流程的实施非常顺畅。教学时安排学生用小棒摆一摆,其所表达的信息是在教学时借助学具进行直观操作,自然展开列举活动。只是对于一部分学生来说,已能不借助操作,直接进行列举。统一安排这一操作活动,使这些孩子兴味索然。据此考虑与发现,在第二次的教学活动中,进行适当调整,让学生获取数学信息后简单分析:(1)“不同围法是什么意思?同学们能找出一共有多少种不同的围法?试试看?”(2)学生进行探究、思考。(3)交流反馈:生1:我是用小棒摆的,宽摆1米,长就是8米;宽是2米,长就是7米,宽摆3米,长就是6米;宽是4米,长就是5米,再摆下去就和前面一样了,所以有四种。生2:我没有用小棒摆,因为长方形的周长是18米,一条长和一条宽的和就是9米,8+1=9;7+2=9;6+3=9;5+4=9,这样也找到了四组。师:“比较用小棒摆和直接列出的围法一样吗?”生:“一样。”------第二次的教学中教师放手让学生根据自己的知识经验,自由地选择解题策略,给每一个孩子提供了独立思考的空间,充分激活了学生的思维潜能:一部分学生可以通过学具操作寻求答案;一部分学生可以直接根据长和宽的和,直接列举,甚至达到了有序列举。教学虽然看似无序,却生动活泼,富有活力。
【解决问题策略的教学设计】相关文章:
4.教学设计策略






文档为doc格式