欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>比例的应用(用比例解决问题) 教案教学设计(人教新课标六年级下册)

比例的应用(用比例解决问题) 教案教学设计(人教新课标六年级下册)

2022-11-03 08:44:36 收藏本文 下载本文

“赋以千机”通过精心收集,向本站投稿了13篇比例的应用(用比例解决问题) 教案教学设计(人教新课标六年级下册),以下是小编收集整理后的比例的应用(用比例解决问题) 教案教学设计(人教新课标六年级下册),仅供参考,希望对大家有所帮助。

比例的应用(用比例解决问题) 教案教学设计(人教新课标六年级下册)

篇1:用比例解决问题 教案教学设计(人教新课标六年级下册)

导学内容:P59--60页例5、例6,完成做一做及练习九3--7题

导学目标

1、使学生能正确判断实际问题中涉及的量成什么比例关系,能利用正、反比例正确解答实际问题。

2、引导学生利用已学知识,自主探索,培养学生问题解决的能力。

导学重点:用比例知识解答比较容易的归一、归总应用题。

导学难点:正分析题中的比例关系,列出方程。

预习学案

1.一辆汽车行驶的速度不变,行驶的时间和路程。

2.一辆汽车从甲地开往乙地,行驶的时间和速度。

看上面的题,回答下面的问题:

(1)各有哪三种量?

(2)其中哪一种量是固定不变的?

(3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系?

导学案

1、学习例5

(1)出示例5:张大妈家上个月用了8吨水,水费是2.8元。李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?

(2)学生读题后,思考和讨论下面的问题:

① 问题中有哪两种量?

② 它们成什么比例关系?你是根据什么判断的?

③ 根据这样的比例关系,你能列出等式吗?

(3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

(4)根据正比例的意义列出方程:

解:设李奶奶家上个月的水费是χ元。

12.8/8=χ/10

8χ= 12.8×10

χ=128÷8

χ= 16 答:李奶奶家上个月的水费是16元。

(5)将答案代入到比例式中进行检验。

2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

3、学习例6新课标第一网

(1)出示例6:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包?

(2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。

(3)指名板演,全班评讲。

4、做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。

巩固练习

1、教科书P61练习九第3、4题。学生读题后,先说说题中哪个量是一定的,再独立进行解答。

2、完成练习九第5、6、7题。

总结:用比例知识解决问题的步骤是什么?

课堂检测

一、填空

1、车轮直径一定,所行的路程和车轮的转数成(    )比例。

2、因为每度电的价格一定,所以电费和用电的度数成(  )比例。

3、如果苹果的总重量一定,那么箱数和每箱的重量成(  )比例,也就是说,每箱的重量和箱数的(    )相等。

二、解决问题

1、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地的距离是400千米,需要行驶多少小时?xkb1.com

2、一个修路队,原计划每天修400m,15天可以修完。结果12天就完成任务,实际每天修多少米?

3、学校用同样的方砖铺地,铺5m2 ,用了方砖120块,照这样计算,再铺23m2,一共用了这种方砖多少块?

课后拓展

如图,有一只老鼠沿着A→B→C的方向逃跑,同时有一只猫也从A点出发沿着A→D→C 的方向追捕老鼠,在E点将老鼠捉住。已知老鼠的速度是猫的58 ,且CE长9米。求平行四边形ABCD的周长。

板书设计

用比例解决问题

例5 张大妈家上个月用了8吨水,水费       例6.一批书如果每包20本,要

是12.8元,李奶奶家用了10吨水,水        捆18包,如果每包30本,要捆

费是多少元?                              多少包?

解:设李奶奶家上个月的水费是x元。      解:设要捆x包。

12.88 =x10                                  30x=20×18

8x=12.8×10                               30x=360

8x=128                                    30x=36030

x=1288                                       x=12

x=16

答:李奶奶家上个月的水费是16元。         答:要捆12包。

篇2:用比例解决问题 教案教学设计(人教新课标六年级下册)

教学内容:教科书P59~60例5、例6,练习九3、7题。

教学目标:

1、使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。

2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。

3、培养学生良好的解答应用题的习惯。

教学重点:用比例知识解答比较容易的归一、归总应用题。

教学难点:正确分析题中的比例关系,列出方程。

教学过程:

一、复习铺垫,引入新课。(课件出示)

1、判断下面每题中的两种量成什么比例?

(1)速度一定,路程和时间.

(2)路程一定,速度和时间.

(3)单价一定,总价和数量.

(4)每小时耕地的公顷数一定,耕地的总公顷数和时间.

(5)全校学生做操,每行站的人数和站的行数.

2、下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗?

(1)用一批纸装订练习本,每本30页,可装订200本,每本50页,可装订120本。

(2)一列火车从甲地到乙地,2小时行驶60千米,照这样的速度,8小时可行240千米。

(3)读一本书,每天读20页,6天可以读完,如果每天读5页,需要x天读完。

3、课件出示例5情境图,问:你能说出这幅图的意思吗?(指名回答)李奶奶家上个月的水费是多少钱?想请我们帮她算一算,你们能帮这个忙吗?

(1)学生自己解答,然后交流解答方法。

(2)引入新课:象这样的问题也可以用比例的知识来解决,我们今天这节课就来讨论如何运用比例的知识来解决这类问题。板书课题:用比例解决问题

二、探究新知。

1、教学例5

(1)学生再次读题,理解题意。思考和讨论下面的问题:

① 问题中有哪三种量?哪一种量一定?哪两种量是变化的?

② 它们成什么比例关系?你是根据什么判断的?

③ 根据这样的比例关系,你能列出等式吗?

(2)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

(3)根据正比例的意义列出方程:

12.88=χ10

解:设李奶奶家上个月的水费是χ元。

8χ= 12.8×10

χ=128÷8

χ= 16

答:李奶奶家上个月的水费是16元。

(4)将答案代入到比例式中进行检验。

2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,指名板演并交流订正,比较两题的异同点,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

3、教学例6

(1)出示例6情境图,你能说出这幅图的意思吗?(指名回答)

(2)学生根据例5的解题思路思考:题中已知两种量?什么是一定的?已知的两个量成什么关系?

(3)学生独立解答。

(4)指名板演,全班交流。

三、巩固提高。

做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。

四、课堂小结。

今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?

五、课堂作业。

教科书P62练习九第3、7题。

自行车里的数学

教学目标

知识与技能:巩固比例知识,了解普通自行车的速度与其内在结构的关系;变速自行车的能变化出多少种速度。

过程与方法:经历“提出问题-分析问题-建立数学模型-求解-解释与应用”的解决问题的基本过程,获得运用数学解决实际问题的思考方法。

情感态度与价值观:加深学生对所学知识及其相互关系的理解。培养学生学以致用,做事认真,用数学眼光透视周围事物,增强数学意识。

教学重难点

引导学生理解变速自行车能变速的原理。

教学过程

一、揭示课题

1、说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。

2、自行车里会有数学问题吗?想一想。

二、研究普通自行车的速度与内在结构的关系

1、提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。

2、分析问题

(1)学生讨论如何解决问题。

方案一:直接测量,但是误差较大。

方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。

(2)讨论:前齿轮转一圈,后齿轮转几圈?

前齿轮转的圈数× 前齿轮的齿数=后齿轮转的圈数× 后齿轮的齿数

3、建立数学模型,收集数据并求解。

(1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数 :后齿轮的齿数)

(2)分组收集所需要的数据,带入上述模式,求出答案。

4、汇报结果。

各小组展示并解释本组的研究过程和结果,在比较结果。

三、研究变速自行车能组合出多少种速度?

1、提出问题:变速自行车能组合出多少种速度?

(1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。)

(2)根据这个结构,可以组合出多少种速度?

2、分析问题,求解,汇报。

3、蹬同样的圈数,哪种组合使自行车走得最远?

四、学以致用

一辆变速自行车有2个前齿轮,分别有46和38个齿,有4个后齿轮,分别有20、16、14、12个齿,车轮直径66cm。小明从家到学校有一段平路和不是很陡的上坡路。平路1000米,上坡800米,小明如何使用变速车比较合理?小明骑车走这段平路至少蹬多少圈?

五、课堂小结

自行车里的学问可真大,你还能提出一些数学问题并解决吗?

[自行车里的数学]

1、踏板蹬一圈,是不是车轮也走一圈?

2、踏板蹬一圈,所走的路程与什么有关

3检测

(1)、一辆自行车的车轮直径是0.7米,前齿轮有48个齿,后齿轮有16个齿,蹬一圈自行车前进多少米?

(2)、一辆前齿轮有28个齿,后齿轮有14个齿,蹬一圈自行车前进5米。求自行车的车轮直径。(保留两为小数)

篇3:比例的应用(用比例解决问题) 教案教学设计(人教新课标六年级下册)

教学要求:1、使学生能正确判应用题中涉及的量成什么比例关系。

2、使学生能利用正反比例的意义正确解答应用题。

培养学生的判断分析推理能力。

教学重点:使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

教学难点:学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。

教学过程:

(一)复习

1.说说正、反比例的意义。

2.下面各题有哪三种量?其中哪一种量是固定不变的?哪两种是变化的?变化的规律是怎样的?这两种量成什么比例?

(1)一辆汽车行驶速度一定,所行的路程和所用时间。

(2)从A地到B地,行驶的速度和时间。

(3)每块砖的面积一定,砖的块数和总面积。

(4)海水的出盐率一定,晒出的盐和海水重量。

3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。

(2)一辆汽车从A地到B地,每小时行60千米,5小时到达。如果要4小时到达,每小时行驶75千米

(二)新课

例1:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

(1)用以前方法解答。

(2)研究用比例的方法解答

题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?

能不能利用这个关系式列比例解答?

解比例,同学自已完成,及时纠正。检验。

改变例1中的条件和问题

甲乙两地之间的公路长350千米,一辆汽车从甲地到乙地共行驶5小时,照这样的速度,2小时行驶多少千米?

教学例2一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果要4小时到达,每小时需要行驶多少干米?

1、以前的发法解答。

2、怎样用比例知识解答?

3 讨论结果填书上。

4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。

篇4:《用比例解决问题》的教学设计 (人教新课标六年级下册)

张鸿森供稿

【教学内容】《义教课标实验教科书  数学》(人教版)六年级下册第59-60页例5、6及做一做。

【教学目标】

1、进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,掌握运用比例知识解决实际问题的方法和思路,能正确运用正、反比例知识解决有关问题。

2、提高学生对应用问题数量关系的分析能力和对正、反比例的判断能力。

【教学重点】用比例知识解决实际问题。

【教学难点】正确分析题中的数量关系,列出方程。

【教学准备】多媒体课件

【自学内容】见预习作业

【教学预设】

一、自学反馈

1、今天的学习从一个简单的图形开始,(如图)。每个小长方形完全相同,紫色部分表示多少?

2、预设:

(1)60÷2×3=90(用总数除以份数,可以求出每份是多少;用每份数乘份数,可以求出总数是多少。)

(2)解:设紫色部分表示 。

÷3=60÷2

(3)解:设紫色部分表示 。(板书)

(4)解:设紫色部分表示 。

3、这节课,我们就一起用比例的知识来解决问题。

二、关键点拨

1、指着解法(3),你是怎么想的?

生: 都表示一个小长方形是多少。每个小长方形完全相同,说明比值一定,所以大长方形表示的数和小长方形的个数成正比例。

【若冷场,可提示: 分别表示什么?大长方形和小长方形表示的数成什么比例?】

2、汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要几小时到达?

(1)学生独立用比例解答。

(2)汇报交流,说说你的想法。

3、你认为用比例解决生活中的问题,关键是什么?

(1)找出题目中的一定量;

(2)根据一定的量,判断相关联的两个量成什么比例。

三、巩固练习

1、一辆汽车3小时行驶180千米,照这样的速度,5小时行驶多少千米?

2、对比练习

(1)小明读一本书,每天读25页,16天可以完成。如果每天读20页,多少天可以读完?

(2)小明读一本书,每天读25页,16天可以完成。如果每天少读5页,多少天可以读完?

3、一根木料,锯3段需要9分钟,如果锯5段,需要多少分钟?(用比例知识解)

四、分享收获  畅谈感想

这节课,你有什么收获? 听课随想

反思与体会:

《练习九》的教学设计

张鸿森供稿

【教学内容】《义教课标实验教科书  数学》(人教版)六年级下册第61-62页练习九。

【教学目标】

使学生进一步熟练掌握正、反比例解决问题的方法,能正确地解决有关实际问题,提高学生的实践能力。

【教学重点】用比例知识解决实际问题。

【教学难点】正确分析题中的数量关系,列出方程。

【教学准备】多媒体课件

【自学内容】见预习作业

【教学预设】

一、基础练习

1、判断下面各题中相关联的量成什么比例。

(1)三角形面积一定,底和高。

(2)水池的容积一定,水管每小时注水量和所用时间。

(3)总面积一定,每块砖的面积和砖的块数。

(4)在一定的时间里,加工每个零件所用时间和加工零件个数。

2、说一说。

(1)判断两种量成正比例还是成反比例的关键是什么?

(2)用比例解决问题的步骤。

二、综合练习

1、用比例解决下面两个问题。

(1)有一批纸,可以装订每本24矾的练习簿216本,如果要装订成每本18页的练习簿,可以装订几本?

(2)装订一种练习簿,装订200本要用4800页纸,有1页的纸可以装订多少本?

过程要求:找出相关联的量,判断成什么比例;写出关系式;列式解答,指名两位学生板演。

2、引导比较。

(1)说出题中数量关系,写关系式。

每本页数×本数=总页数

(2)说一说哪一种量一定,另外两种量成什么比例。

(3)针对以上两题,说一说思维过程和解题步骤

① 找出题中数量关系,判断哪一种量一定,另外两种量成什么比例。

② 根据等量关系列比例式、解比例、检验。

三、巩固练习

完成课文练习九第6、7题。

四、分享收获  畅谈感想

这节课,你有什么收获? 听课随想

反思与体会:

《比例的整理和复习》的教学设计

张鸿森供稿

【教学内容】《义教课标实验教科书  数学》(人教版)六年级下册第63页整理和复习。

【教学目标】

1、使学生进一步理解比例的意义和性质,明确比和比例的联系与区别。

2、使学生能正确地、熟练地解比例。

3、使学生进一步理解、掌握正、反比例的意义,能正确进行判断。

【教学重点】用比例知识解决实际问题。

【教学难点】根据实际情况运用比例的知识解决问题。

【教学准备】多媒体课件

【自学内容】见预习作业

【教学预设】

一、自学反馈

1、关于比例的知识,通过你自己的整理和复习,谁愿意来说说,比例单元有哪些知识?

2、哪些是你学得很精彩的?哪些知识你还有遗憾?

二、比和比例的意义

1、什么是比?

2、什么是比例?比例的基本性质是什么?

3、比和比例有什么联系和区别?

指名口答,出示表格填空。

意义 项数 基本性质 举例

比例

三、解比例

1、什么叫解比例?

2、解比例是解方程吗?解方程也是解比例吗?为什么?

3、解比例。

完成课文“整理与复习”第2题。

过程要求:

(1) 学生独立练习活动。

(2) 说一说解比例的步骤,每一步运算的根据是什么?

(3) 请学生上台板书。新课标第一网

(4) 师生共同评价,并强调书写格式。

四、正(反)比例的意义

1、什么叫成正比例的量和正比例关系?

2、什么叫成反比例的量和反比例关系?

3、比较正、反比例的相同点和不同点。

相同点 不同点 关系式

正比例

反比例

4、你是如何判断两种量是否成正比例或反比例的?

学生通过交流,概括出“一找、二想、三判断”。

一找:哪两种上关联的量。

二想:两种相关联的量的变化情况,写出关系式。

三判断:联系关系式,看商一定还是积一定,判断成什么比例。

5、完成课文“整理与复习”第3题。

过程要求:

按复习中概括“一找二想三判断”三步骤进行练习。

(1)找出两种相关联的量。

(2)说一说两种量的变化情况,写出关系式。

(3)这里哪一种量一定,两种量成什么比例。

五、巩固练习

1、判断下列关系式中,两种变化的量成不成比例?若成比例,成什么比例?

(1)被除数÷除数=商      (2)被除数÷除数=商

(3)因数×因数=积        (4)因数×因数=积

2、完成课文练习十第1~3题。

六、分享收获  畅谈感想

这节课,你有什么收获? 听课随想

反思与体会:

www.xkb1.com

篇5:比例的应用 教案教学设计(人教新课标六年级下册)

教学要求:1、使学生能正确判应用题中涉及的量成什么比例关系。

2、使学生能利用正反比例的意义正确解答应用题。

培养学生的判断分析推理能力。

教学重点:使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

教学难点:学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。

教学过程:

(一)复习

1.说说正、反比例的意义。

2.下面各题有哪三种量?其中哪一种量是固定不变的?哪两种是变化的?变化的规律是怎样的?这两种量成什么比例?

(1)一辆汽车行驶速度一定,所行的路程和所用时间。

(2)从A地到B地,行驶的速度和时间。

(3)每块砖的面积一定,砖的块数和总面积。

(4)海水的出盐率一定,晒出的盐和海水重量。

3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。

(2)一辆汽车从A地到B地,每小时行60千米,5小时到达。如果要4小时到达,每小时行驶75千米

(二)新课

例1:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

(1)用以前方法解答。

(2)研究用比例的方法解答

题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?

能不能利用这个关系式列比例解答?

解比例,同学自已完成,及时纠正。检验。

改变例1中的条件和问题

甲乙两地之间的公路长350千米,一辆汽车从甲地到乙地共行驶5小时,照这样的速度,2小时行驶多少千米?

教学例2一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果要4小时到达,每小时需要行驶多少干米?

1、以前的发法解答。

2、怎样用比例知识解答?

3 讨论结果填书上。

4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。

整理和复习

教学要求:

1、使学生进一步理解比例的意义和基本性质,能区分比和比例。

2、使学生能正确理解正、反比例的意义,能正确进行判断。

3、 培养学生的思维能力。

教学过程:

知识整理

1回顾本单元的学习内容,形成支识网络。

2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。

复习概念

什么叫比?比例?比和比例有什么区别?

什么叫解比例?怎样解比例,根据什么?

什么叫呈正比例的量和正比例关系?什么叫反比例的关系?

什么叫比例尺?关系式是什么?

基础练习

1填空

六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是(    )。

小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是(     )。

甲乙两数的比是5:3。乙数是60,甲数是(    )。

2、解比例

5/x=10/3                   40/24=5/x

3 、完成26页2、3题

综合练习

1、A×1/6=B×1/5              A:B=(   ):(   )

2、9;3=36:12如果第三项减去12,那么第一项应减去多少?

3用5、2、15、6四个数组成两个比例(  ):(  )、( ):( )

实践与应用

1、如果A=C/B那当(  )一定时,(   )和(   )成正比例。当(  )一定时,(  )和(   )成反比例。

2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是5.4它们的比是5:4,这块钢板的实际面积是多少?

篇6:比例的应用 教案教学设计(人教新课标六年级下册)

教学内容:教科书第6~8页的例4~例6,练习二的第1题。

教学目的:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。

教学重点:理解比例尺的意义;能根据比例尺正确求图上距离和实际距离。

教学难点:设未知数时长度单位的使用。

教具准备:教师准备一些比例尺不同的地图或本校、本地的平面图。

教学过程:

一、复习

1.复习提问:长度单位:千米、米、分米、厘米、毫米之间的进率及化聚方法。

1米=(    )分米=(     )厘米=(      )毫米

1千米=(     )米=(      )厘米

2.什么叫做比?

3.化简下面各比。        12 :8          10厘米:100厘米

2米:140厘米    3米:15千米        16厘米:90千米

二、新课

教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。Xkb1.com

1.教学比例尺的意义。

(1)教学例4。

设计一座厂房,在平面图上用10厘米的距离表示地上10米的距离。求图上距离和实际距离的比。

让学生读题。指名回答:

“这道题告诉我们什么?”(在平面图上用10厘米的距离表示地面上10米的距离。)

“要我们做什么?”(求图上距离和实际距离的比。)板书:图上距离 :实际距离

“图上距离知道吗?实际距离也知道吗?各是多少?”继续板书如下:

图上距离 :实际距离

10厘米 :    10米

“10厘米和10米的单位相同吗?能直接化简吗?”

教师说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。

“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作厘米后实际距离仍是整数,计算起来比较方便,所以要把米化作厘米。)

“10米等于多少厘米?”学生回答后,教师把10米改写成1000厘米。

“现在单位统一了,是多少比多少,怎样化简?”教师边说边擦掉10和1000后面的单位“厘米”,并加上“ :”,板书成如下形式:

图上距离 :实际距离

10  :  1000

请一名同学到黑板前化简这个比,别的同学在练习本上做。集体订正后,教师写出这道题的“答:…”。

然后说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,我们就给它起一个名字叫做“比例尺”。(板书:图上距离 :实际距离=比例尺)有时图上距离和实际距离的比也可似写成分数形式。(板书:或

图上距离 =比例尺

实际距离

图上距离是比的前项,实际距离是比的后项。为了计算简便,通常把比例尺写成前项是1的最简单整数比。

教师出示比例尺不同的地图和本地、本校的平面图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。

最后教师指出:

①比例尺与一般的尺不同,这是一个比,不应带计量单位。

②求比例尺时,前、后项的长度单位一定要化成同级单位。如 1O厘米:1O米,要把后项的米化成厘米后再算出比例尺。

③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。比如,例4中的比例尺通常写成:1:100=

(2)巩固练习。

让学生完成第6页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“ l”。

2.教学根据比例尺求图上距离或实际距离。

教师:知道了一幅图的比例尺,我们可以根据图上距离求出实际距离,或者根据实际距离求出图上距离。

(1)教学例5。

在比例尺是1:6000000的地图上,量得南京到北京的距离是15厘米。南京到北京的实际距离大约是多少千米? 新 课标 第一 网

指名读题,并说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了南京到北京的图上距离,求南京到北京的实际距离。)

教师启发:因为图上距离:实际距离=比例尺,要求实际距离可以用解比例的方法来求。

“这道题的图上距离是多少?”板书:15

“实际距离不知道,怎么办?”(用x表示。)在15的下面板书出x,并在它们中间画上分数线。

“因为图上距离和实际距离的单位要相同,所设的x应用什么单位?”(应用厘米。)板书:解:设南京到北京的实际距离为x厘米。

“比例尺是多少?写成什么形式?”(写成分数形式。)最后板书成下面的形式:

15 =    1

x 6000000

指定一名学生到前面求X的值,其他学生在练习本上做。订正后,回答:

“现在求出的实际距离是多少厘米,题目要求的实际距离是多少千米。应该怎么办?”板书:90000000厘米=900千米,并写出这道题的答。

之后,再回忆一下解答过程。

(2)巩固练习。

做第 7页上的“做一做”。先让学生说出图中的比例尺是多少,表示什么意思,再用直尺量出图中河西村与汽车站间的距离,然后计算出实际距离。集体订正时,要注意检查学生是否把实际距离化成了千米。

(3)教学例6。

出示例6:一个长方形操场,长110米,宽90米,把它画在比例尺是 的图纸上,长和宽各应画多少厘米?

指名读题并说出题目告诉了什么,求什么。(告诉了操场的长和宽的实际距离和比例尺,求长和宽的图上距离。)

教师:我们先来求长的图上距离。长的图上距离不知道,应设为x。(板书:解:设长应画x厘米。)长的实际距离是多少?它和图上距离的单位相同吗?怎么办?比例尺是多少?

然后让学生求x的值,并说出求解过程,教师板书出来。

“这道题做完了吗?还要求宽的图上距离。宽的图上距离不知道,应用什么未知数来表示呢?因为前面求长的图上距离时,已经用了x,这里就不能再用它来表示宽的图上距离了,要用其它的字母来表示。我们就用y来表示、”板书:设宽应画y厘米。让学生把这道题做完。最后教师写出这道题的答。

三、练习

1、比例尺=(         )          实际距离=(                )              图上距离=(                 )

2.2.5米=(         )厘米         0.00006千米=(            )厘米      0.032米=(        )厘米             350000厘米=(             )千米              3.5千米=(           )厘米

1、独立完成练习二第1题,并订正。

2、完成练习二的第2题、3题。

第3题,让学生先想想比例尺子 表示的意思。1厘米的图上距离相当于100厘米的实际距离。)然后再量出图中所示的宽和高,并计算出实际的宽和高各是多少。集体订正时,要让学生说说计算出的实际的宽和高的单位是什么。

篇7:比和比例 教案教学设计(人教新课标六年级下册)

第一课时

教学目标:

使学生进上步理解和掌握比和比例的意义与性质。

区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。

教学过程:

讲述本课复习课题并板书

基本概念的复习

比和比例的意义与性质。

什么叫比?什么叫比例?(就学生所举的例子再让学生说说比和比例中各部分的名称),比的后项为什么不能是0?

比和分数、除法有什么联系?

说说比的基本性质的比例的基本性质?

比的基本性质与比例的基本性质各有什么用处?

看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?

完成教材95的“做一做”。

结合第3题让学生说说什么叫做解比例?根据是什么?

示比值和化简比。

独立完成教材96页上的题目。

说说求比值与化简比的区别?

(求比值是根据比的意义。用前项除以后项,得到 结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。

看书中的表,总结方法。

完成教材96页的“做一做”

比例尺

问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。

2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?

比例尺除写成数字化形式处,还可怎样表示?

完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)

练习巩固

完成教材十九页第1~4题。

全课总结(略)

篇8:用比例解决问题教学设计

用比例解决问题教学设计

【教学目标】:

1.掌握用正比例知识解答含有正比例关系问题的步骤和方法。

2.使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。

3.发展学生探究解决问题策略的能力,帮助其构建相应的知识结构。

【教学重点】:

1.判断题中相对应的两个量和它们的比例关系。

2.利用正比例的关系列出含有未知数的等式,运用比例知识正确解决问题。

【教学难点】:

1.掌握用比例知识解答解答应用题的步骤和方法。

2.理解“用比例解决问题”的结构特点,从而构建知识结构。

【教学准备】:多媒体课件

【教学过程】:

一、激发兴趣,回忆旧知

1.师:本节课是我们这个单元最后的一个内容,今天我们运用所学的知识来解决问题,希望大家用精彩的表现完成这节课!

师:我们先来回忆一下已经学过的知识吧!(课件出示:)

我会判断:判断下列每题中的两个量是不是成比例,成什么比例?

(1)总价一定,单价和数量。(成反比例)

(2)速度一定,路程和时间。(成正比例)

(3)总钱数一定,用去的钱数和剩下的钱数。(不成比例)

2.师:看来同学们正比例和反比例的知识学得都很不错,下面我我们就一起来研究——用比例解决问题。(板书课题:用比例解决问题)

二、揭示课题、探索新知。

(一)教学例5(课件出示:情境图)

1.回顾旧知

师:从这幅图中你能知道哪些信息?

(1)例5中的已知条件是:张大妈家:用了吨水,水费是()。李奶奶家:用了()吨水。所求的问题是:

师:(1)要解决水费的问题,就要知道水的单价和用水量。根据我们的生活经验,水的单价虽然不知道,但它是一定的。(2)李奶奶家上个月的水费是多少钱?想请我们用我们以前学过的方法帮她算一算,你们能帮这个忙吗?(3)学生自己解答,然后交流解答方法。(学生可以先求出单价,再求总价或先求出用水量的倍数关系再求总价。)(4)师:像这样的问题也可以用比例的知识来解决。

2、探究解法师:用比例解决这个问题之前,我们先来思考:

(1)这道题中涉及哪两种量?

(2)哪种量是一定?

(3)水费和用水的吨数成什么比例关系?你是根据什么判断的?讨论分析:从上表可以知道(每吨水的价钱)一定,所以(水费)和(用水量)成(正)比例。也就是说,两家的(水费)和(用水量)的(比值)相等。

(4)根据这样的比例关系,你能列出等量关系式吗?

张大妈家水费:用水吨数=李奶奶家水费:用水吨数

(5)如果设李奶奶家上个月的水费是x元,请根据表中相对应的数据和判断列出比例式,然后解答。解:李奶奶家上个月的水费是X元钱。(板书)

28:8=x:10

8x=28×10

x=35

答:李奶奶家上个月的水费是35元钱。

3、探究用比例解题的方法。

师:你是怎么想的?(根据上面的数据,概括:因为每吨水的价钱一定,所以水费和用水的吨数成正比例。也就是说,两家的'水费和用水的吨数的比值是相等的。)

师:28:8和x:10分别表示什么?(水费单价)同学们再思考,看看有没有出现其它比例的解法,如果有,教师也要进行评析。

4、检验

师:这个问题我们用比例的知识解决了,你有什么方法检验自己的解答是正确的呢?(启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方法或一般方程方法解答来检验等。)

三、变式练习。

师:同学们很了不起,帮李奶奶解决完了问题,能再帮王大爷解决一个问题吗?课件出示:“王大爷家上个月的水费是42元,他们家上个月用了多少吨水?”(让学生进行变式练习。)教师巡视,个别指导。

四、巩固练习:智慧城堡

1、小明买4支圆珠笔用了6元,小刚想买3支同样的圆珠笔,要用多少钱?提示:你知道哪种量不变吗?你能试着用比例解决吗?

2、小兰的身高1.5m,她的影长是2.4m,如果同一时间、同一地点测得一棵树的影子长4m,这棵树有多高?提示:你知道吗?影长与身高的比是一个定值!试着用比例解决吧!

五、课堂总结。

解决了以上几个问题,我们一起来反思一下刚才的学习过程,归纳出用比例解决问题的步骤,好吗?(学生自己用语言叙述)

(1)判断题目中两种相关联的量是成正比例还是反比例;(判)

(2)设未知量为x,注意写明计量单位;(设)

(3)根据题意列出比例式;(列)

(4)解比例;(解)

(5)验算,作答。(验)

六、布置作业:

第63页练习十一,第4题;

第64页练习十一,第6题、第7题。

篇9:《用比例解决问题》教学设计

《用比例解决问题》教学设计

教学目的:

1、让学生掌握用正、反比例的方法解决问题。

2、使学生体验由算术解法向比例解法的思维转化过程。

3、形成解题多样化技能。

教学重难点:

重点:学会用正反比例方法解决问题。

难点:在具体情境中区别用何种比例解决问题。

教学过程:

一、复习

师:同学们,这段时间我们一直在学习有关正、反比例的知识。下面,请看复习题。

(出示题目)

1、ab=c(a、b、c均不等于0)

当a一定时,b和c成什么比例?

当b一定时,a和c成什么比例?

当c一定时,a和b成什么比例?

2、速度()=路程

工作总量( )=工作时间

( )数量=总价

总本数( )=每包本数

每袋重量( )=总重量

师:这节课,我们一起来学习用解决问题。

二、新授

1、出示例5

① 学生第一反映怎么解。小结,这是用的.我们以前学的归一的办法。

② 教师引导由加油站汽车加油付款比较,找出单价不变,建立关系式。

水费:吨数=单价

③ 学生述说,教师板演用正比例解法的书写过程。

④ 出示书上第二问,学生回答列式。

您现在正在阅读的《用比例解决问题》教学设计二文章内容由收集!本站将为您提供更多的精品教学资源!《用比例解决问题》教学设计二巩固练习:

(1)、小明买了4枝圆珠笔用6元。小刚想买3枝同样的圆珠笔,要用多少钱?

(2)、我国发射的科学实验人造地球卫星,在空中绕地球运行6周需要10.6小时,运行14周需要用多少小时?

(3)、师徒合作加工600个零件,8天加工了100个零件,照这样计算,剩下的零件还需要多少天才能加工完?

小结:首先找相关联的量,判断成什么比例;接着列方程;最后解方程并检验。

2、出示例6(学生自己解答)

① 抓住不变的东西----总的本数判断成反比例关系

② 建立关系式:每包本数包数=总数

③ 学生述说,教师板演用反比例解法的书写过程。

④ 出示书上第二问,学生回答列式。

巩固练习:

(1)学校小商店有两种圆珠笔。小明带的钱刚好可以买4枝单价是1.5元的。如果他想都买单价是2元的,可以买多少枝?

(2)车队向灾区运送一批救灾物资,去时每小时行60km,6.5小时到达灾区。回来时每小时行78km,多长时间能够返回出发地点?

(3)生产一批水泥,原计划每天生产150吨,可按时完成任务。实际每天增产30吨,结果只用25天就完成了任务。原计划完成生产任务需要多少天?

3、深化练习:

一辆汽车从甲地开往乙地,计划每小时行60km,9小时到达。但实际上2.5小时只行了125km,照这样的速度,汽车要几小时才能到达乙地?

篇10:用比例解决问题教学设计

教学目标:

1、掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。

2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。

教学重点:

用比例知识解答比较容易的归一、归总应用题。

教学难点:

正确分析题中的比例关系,列出方程。

教学过程:

一、导入新课。(课件出示)

1、判断下面每题中的两种量成什么比例?

(1)速度一定,路程和时间.

(2)路程一定,速度和时间.

(3)单价一定,总价和数量.

(4)每小时耕地的公顷数一定,耕地的总公顷数和时间.

(5)全校学生做操,每行站的人数和站的行数.

2、下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗?

(1)用一批纸装订练习本,每本30页,可装订200本,每本50页,可装订120本。

(2)张大妈家上个月用了5吨水,水费是10元。照这样计算,李奶奶家用了10吨水,水费是20元。

我们已经学习了比例,比例的基本性质,正比例,反比例,今天这节课我们就运用比例的知识来解决实际问题。板书课题:用比例解决问题。

二、揭示目标:

1、进一步熟练地判断成正、反比例的量。

2、学会用比例知识解答比较容易的应用题

三、探究新知。

例5:张大妈家上个月用了8吨水,水费是12.8元。照这样计算,李奶奶家用了10吨水,水费是多少元?

自学指导一:

1、理解题意,用以前学过的方法解答。

2、题中有哪两种量?它们成什么比例关系?并说出理由。

3、根据这样的比例关系,设李奶奶家上个月的水费是x元钱。你能列出等式吗?

4、解比例,检验,作答。

小结:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

解:设李奶奶家上个月的水费是χ元。

8χ= 12.8×10

χ=128÷8

χ= 16

答:李奶奶家上个月的水费是16元。

检验1:小明买了4枝圆珠笔用了6元。小刚想买3枝同样的圆珠笔,要用多少钱?

例6:一批书,如果每包20本,要捆18包,如果每包30本,要捆多少包?

自学指导二:

1、题中有哪两种量?它们成什么比例关系?并说出理由。

2、根据这样的比例关系,设要捆x包。你能列出等式吗?

3解比例,检验,作答。

检验2:学校小商店有两种圆珠笔。小明带的钱刚好可以买4枝单价是1.5元的,如果他想都买单价是2元的,可以买多少枝?

交流总结:解答用正、反比例解的应用题的步骤:

1、判断题中哪两种量是相关联的量?成不成比例?成什么比例?

2、设未知数X,注上单位名称。

3、根据正、反比例的意义列出比例式。

4、解比例。

5、检验、作答。

四.巩固延伸:

1、食堂买3桶油用780元,照这样计算,买8桶油要用多少钱?

2、同学们做广播操,每行站20人,正好站18行.如果每行站24人,可以站多少行?

3、500千克的海水中含盐25千克,120吨的海水含盐几吨?

课堂小结。

今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?

课堂作业。

教科书P62练习九第3、7题。

板书设计:

用比例解决问题

1、判断题中哪两种量是相关联的量?成不成比例?成什么比例?

2、设未知数X,注上单位名称。

3、根据正、反比例的意义列出比例式。

4、解比例。

5、检验、作答。

篇11:用比例解决问题教学设计

教学目标:

1、使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。

2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。

3、培养学生良好的解答应用题的习惯。

教学重点:

用比例知识解答比较容易的归一、归总应用题。

教学难点:

正确分析题中的比例关系,列出方程。

教学过程:

一、复习铺垫,引入新课。(课件出示)

1、判断下面每题中的两种量成什么比例?

(1)速度一定,路程和时间.

(2)路程一定,速度和时间.

(3)单价一定,总价和数量.

(4)每小时耕地的公顷数一定,耕地的总公顷数和时间.

(5)全校学生做操,每行站的人数和站的行数.

2、下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗?

(1)用一批纸装订练习本,每本30页,可装订200本,每本50页,可装订120本。

(2)一列火车从甲地到乙地,2小时行驶60千米,照这样的速度,8小时可行240千米。

(3)读一本书,每天读20页,6天可以读完,如果每天读5页,需要x天读完。

3、课件出示例5情境图,问:你能说出这幅图的意思吗?(指名回答)李奶奶家上个月的水费是多少钱?想请我们帮她算一算,你们能帮这个忙吗?

(1)学生自己解答,然后交流解答方法。

(2)引入新课:象这样的问题也可以用比例的知识来解决,我们今天这节课就来讨论如何运用比例的知识来解决这类问题。板书课题:用比例解决问题

二、探究新知。

1、教学例5

(1)学生再次读题,理解题意。思考和讨论下面的问题:

①问题中有哪三种量?哪一种量一定?哪两种量是变化的?

②它们成什么比例关系?你是根据什么判断的?

③根据这样的比例关系,你能列出等式吗?

(2)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

(3)根据正比例的意义列出方程:

12.88=χ10

解:设李奶奶家上个月的水费是χ元。

8χ=12.8×10

χ=128÷8

χ=16

答:李奶奶家上个月的水费是16元。

(4)将答案代入到比例式中进行检验。

2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,指名板演并交流订正,比较两题的异同点,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

3、教学例6

(1)出示例6情境图,你能说出这幅图的意思吗?(指名回答)

(2)学生根据例5的解题思路思考:题中已知两种量?什么是一定的?已知的两个量成什么关系?

(3)学生独立解答。

(4)指名板演,全班交流。

三、巩固提高。

做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。

四、课堂小结。

今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?

五、课堂作业。

教科书P62练习九第3、7题。

篇12:用比例解决问题教学设计

教学内容:

人教版课标教材六年级下册第59—60页 例5、例6。

教学目的:

1、让学生掌握用正、反比例的方法解决问题。

2、使学生体验由算术解法向比例解法的思维转化过程。

3、形成解题多样化技能。

教学重难点: 重点:学会用正反比例方法解决问题。

难点:在具体情境中区别用何种比例解决问题。

教学过程:

一、复习

师:同学们,这段时间我们一直在学习有关正、反比例的知识。下面,请看复习题。

(出示题目)

1、a×b=c(a、b、c均不等于0)

当a一定时,b和c成什么比例?

当b一定时,a和c成什么比例?

当c一定时,a和b成什么比例?

2、速度×=路程

工作总量÷( )=工作时间

( )×数量=总价

总本数÷( )=每包本数

每袋重量×( )=总重量

师:这节课,我们一起来学习用解决问题。

二、新授

1、出示例5

① 学生第一反映怎么解。小结,这是用的我们以前学的归一的办法。

② 教师引导由加油站汽车加油付款比较,找出单价不变,建立关系式。

水费:吨数=单价

③ 学生述说,教师板演用正比例解法的书写过程。

④ 出示书上第二问,学生回答列式。

巩固练习:

(1)、小明买了4枝圆珠笔用6元。小刚想买3枝同样的圆珠笔,要用多少钱?

(2)、我国发射的科学实验人造地球卫星,在空中绕地球运行6周需要10.6小时,运行14周需要用多少小时?

(3)、师徒合作加工600个零件,8天加工了100个零件,照这样计算,剩下的零件还需要多少天才能加工完?

小结:首先找相关联的量,判断成什么比例;接着列方程;最后解方程并检验。

2、出示例6(学生自己解答)

① 抓住不变的东西----总的本数判断成反比例关系

② 建立关系式:每包本数×包数=总数

③ 学生述说,教师板演用反比例解法的书写过程。

④ 出示书上第二问,学生回答列式。

巩固练习:

(1)学校小商店有两种圆珠笔。小明带的钱刚好可以买4枝单价是1.5元的。如果他想都买单价是2元的,可以买多少枝?

(2)车队向灾区运送一批救灾物资,去时每小时行60km,6.5小时到达灾区。回来时每小时行78km,多长时间能够返回出发地点?

(3)生产一批水泥,原计划每天生产150吨,可按时完成任务。实际每天增产30吨,结果只用25天就完成了任务。原计划完成生产任务需要多少天?

3、深化练习:

一辆汽车从甲地开往乙地,计划每小时行60km,9小时到达。但实际上2.5小时只行了125km,照这样的速度,汽车要几小时才能到达乙地?

三、全课小结

篇13:用比例解决问题教学设计

教学内容:

教科书第59页例5以及相关练习题。

教学目标:

1、使学生能正确判断题中涉及的量是否成正比例关系。

2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。

3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。

4、在成功解决生活中的实际问题中体会数学的价值。

教学重点:

利用已学的正比例的意义,通过自己探索掌握解答正比例应用题的方法。

教学难点:

正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。

教具准备:

小黑板

教学过程:

一、复习铺垫,激发兴趣。

1、填空并说明理由。

(1)速度一定,路程和时间成( )比例。

(2)单价一定,总价与数量成( )比例。

(3)每块地砖的大小一定,砖的块数和所铺的总面积成( )比例。

【设计意图:通过复习,让学生温故而知新,为学习下面的内容铺垫。】

3、提出问题:老师请你用一把米尺去测量学校旗杆的高度,你能行吗?

生1:把旗杆放下量。

生2:爬上去量。

生3:利用影子的长度量。(如果没有学生说教师可做适当引导。)

师:相信通过这一节课的学习,你一定会找到解决的方法的。

【设计意图:激起学生学习这习欲望,欲望是产生动机的催化剂。】

二、揭示课题、探索新知。

1、小黑板出示例5

张大妈:我们家上个月用了8吨水,水费是12.8元。

李奶奶:我们家用了10吨水,上个月的水费是多少钱?

思考:题中告诉了我们哪些信息?要解决什么问题?

师:你能利用数学知识帮李奶奶算出上个月的水费吗?

(1) 学生自己解答。

(2) 交流解答方法,并说说自己想法。

算式是:12.8÷8×10

=1.6×10

=16(元)。(先算出每吨水的价钱,再算出10吨水需要多少钱。)

(也可以先求出用水量的倍数关系再求总价。)

10÷8×12.8

=1.25×12.8

=16(元)

【设计意图:用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。】

师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)

(3)小黑板出示以下问题让学生思考和讨论:

1)题目中相关联的两种量是( )和( ) ,说说变化情况。

2)( )一定,( )和( )成( )比例关系。

3)用关系式表示是( )

(4)集体交流、反馈

板书: 水费 用水吨数

12.8元 8吨

?元 10吨

水费:用水吨数 = 每吨水的价钱(一定)

师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

(5)根据正比例的意义列出比例式(方程):

学生独立完成,教师巡视。

反馈学生解题情况。

8

12.8

10

χ

解:设李奶奶家上个月的水费是χ元。

12.8 :8 =χ:10 或 =

8χ=12.8×10 8χ= 12.8×10

χ=128÷8 χ=128÷8

χ= 16 χ= 16

答:李奶奶家上个月的水费是16元。

【设计意图:在教师引导下,学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。】

(6)将答案代入到比例式中进行检验。

你认为李奶奶用了10吨水交16元钱,这个答案符合实际吗?你是怎么判断的?

生交流,汇报。

2、变式练习。

刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?出现下面的练习:

张大妈:我们家上个月用了8吨水,水费是12.8元。王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?

(1)比较一下改编后的题和例5有什么联系和区别?

(2)学生独立用比例的知识解决这个问题。指名板演。(教师巡视)

(3)集体订正,学生说一说你是怎么想的?

3、概括总结

师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用比例解决问题的思考过程是怎样的?

学生讨论交流,汇报。

师总结:

1、分析找出题目中相关联的两种量。

2、判断他们是否是正比例关系。

3、根据正比例的意义列出比例。

4、最后解比例。

5、检验作答。

【设计意图:归纳解题的策略,有助于提高学生解决问题的能力。】

三、巩固练习,形成技能。

1、解决课前提出的问题。小明在解决这一问题时,采集到了下面信息:在下午1时旗杆旁的一棵高2米的小树影长1.5米,旗杆影长9米,你能根据这些信息解决求旗杆高吗

师提醒:同一时间、同一地点的身高和影长成正比例。

学生读题后,先思考以下三个问题。

① 题中已知哪两种相关联的量?

②它们成什么比例关系?你是根据什么判断的?

② 你能列出等式吗?

生独立完成,并汇报解答过程。

2、教科书P60“做一做”。

生独立解答。

【设计意图:通过练习的巩固,提高学生解决问题的能力。同时从学生的生活实际入手,引导学生把所学的知识运用与生活实践,从中体会所学知识的生活价值。】

四、全课总结

通过今天的学习,你有什么收获?

五、布置作业

练习九第3、5题。

板书设计:

用比例解决问题

水费 用水吨数 解:设李奶奶家上个月的水费是χ元。

12.8元 8吨

?元 10吨 12.8 :8 =χ:10

8χ= 12.8×10

水费:用水吨数 = 每吨水的价钱(一定)

χ=128÷8

χ= 16

答:李奶奶家上个月的水费是16元

【比例的应用(用比例解决问题) 教案教学设计(人教新课标六年级下册)】相关文章:

1.比和比例 教案教学设计(人教新课标六年级下册)

2.《比例的和复习》的教学设计 (人教新课标六年级下册)

3.用比例解决问题数学教学反思

4.用比例解决问题教学反思总结

5.比例的应用教学设计

6.比例的意义和性质 教案教学设计(人教新课标六年级上册)

7.《比例的应用比例尺》教学设计

8.比例的应用优秀教学设计

9.解决问题 教案教学设计(人教新课标三年级上册)

10.解比例教学设计

下载word文档
《比例的应用(用比例解决问题) 教案教学设计(人教新课标六年级下册).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部