采用自主探索,发展学生的思维能力
“最爱旺仔小馒头”通过精心收集,向本站投稿了8篇采用自主探索,发展学生的思维能力,以下是小编帮大家整理后的采用自主探索,发展学生的思维能力,欢迎大家分享。
篇1:采用自主探索,发展学生的思维能力
、教学过程
(一)创设问题情境,引出新课。
1、以疑导入,引发求知欲。先展示六螺帽,八角石英钟、多边形水果盘等多边形实物。由此激发学生自己要设计,怎样设计的求知欲。然后提出具体问题。
引题:我们学校要准备建造一个各边长为5米,各内角都相等的十二边形花坛。问各角是多少度?
2、复习提问,知识巩固。
⑴三角形内角和等于多少度?
⑵四边形内角和定理以及推导方法。
3、引入新课
上一节课学习了求四边形内角和的方法,怎样求五边形、六边形……n边形的内角和呢?下面我们一起来讨论这个问题(板书课题)。
(二)引导探索,研讨新知
1、以动激趣,浅探求知。
一画:画三角形、四边形、五边形、六边形(让学生自己动手画)。
二量:量出五边形、六边形各内角,并求出其和(让学生自己求知)。
三比较:比较四边形、五边形、六边形分别是三角形内角和的多少倍,并由此去探索他们之间的初步规律。
2、观察联想,启迪思维。
(六)回顾小结,验收成效
1、已知边数如何求内角和;
2、已知内角和如何求边数;
3、n边形的内角和与外角和成一定的比例关系,求其n边形的边数。
(七)课后作业(教材P91习题7.3第8、9题)
篇2:发展学生思维能力心得体会
创新思维是创新教育的核心,是培养学生创新能力的关键。创新思维包括发散思维、逆向思维、侧向思维、辩证思维等。
发散思维是以某一对象为出发点,通过想像、猜测等心理过程,激发各种新思想的一种思维方法。如在作文教学中,要求学生对“0”说一句话,结果同学们众说纷纭:“0”像一盘冷月,像一轮红日,像飞速旋转的车轮,像一群围观的人群,像妈妈滴落的眼泪,像爸爸举起的酒杯……“0”是起点,也是终点。有志者,失败从“0”开始;无志者,几经折腾,仍以“0”告终。培养学生的发散思维能力,可以突破传统观念的束缚,充分发挥学生的自由想像和自由创造的能力,使思想不断地向外延伸和拓展,最终获得创新性成果。
逆向思维就是从常规思维的反面去思考,打破思维定势,对人们习以为常的传统观念或旧的观点,大胆地进行否定或对原概念和定义以新的解释,提出独特的见解。如在现象与本质教学中,要求学生分析“眼见未必为实”。一只筷子在水中看上去是弯曲的,这是由于光的折射作用所致,而事实上筷子是笔直的。在讲解成语“见异思迁”时,一般人认为这是一种不良倾向,值得批判,而少数学生提出与常人相反的观点:一个有积极进取精神的人就应该见异思迁。从正反两方面举例论证,说理透彻,给人一种奋发向上的新鲜感。
侧向思维是利用其他领域的观念、知识或现象来寻求解决某个特定问题的可能途径和思路的一种思维方法。我国古代能工巧匠鲁班从带刺的茅草划破手掌得到启发而发明了锯;美国莱特兄弟看见空中鸟儿能够自由飞翔发明了飞机;蝙蝠在空中飞行,能利用超声波了解前面的障碍物,人们利用这种现象发明了雷达。人们在思考问题时,常常联想到某些已有的理论和知识,从而得到启发,找到处理和解决问题的办法。
辩证思维是指用全面的、一分为二的、发展的观点来分析问题的一种思维方法。它要求人们在看待某个现象或问题时,既要看到其积极方面,又要看到其消极方面。例如:教师讲解《愚公移山》一文,常常归纳出愚公改造自然的宏伟抱负和坚强毅力的含义。愚公移山的精神值得大家赞扬,但其方法恰当吗﹖与其让子子孙孙移山,倒不如叫愚公迁居。现实生活中,愚公果真那么移山,试问太行、王屋二山会移到哪年哪月﹖俗话说:“苦干不如巧干”,处理问题或解决矛盾时,要深思熟虑,寻找最佳方案解决问题,切不可一意孤行,我行我素。
总之,在教育教学过程中,教师若能积极创造条件,改变教法,注重学生思维能力的训练,学生的创新思维能力必将不断提高。
篇3:发展学生思维能力心得体会
初中学生学习理科,学生是通过习题练习来巩固学习过的基础知识。而题海战术是很多老师采用的,所谓能够提高学生成绩的法宝。这样一来学生学习负担重,教师忙于习题批改,而实际教学效果很不理想。数学题的解法大体包括:“审题”、“分析探求”、“解题过程”、“解题思考”四步。审题是解题的起点、解题过程是关键,最后的思考是解题的归宿。这四步是一个运用知识、锻炼思维、培养思维能力的过程。在解题中力求运用思考、变换、引伸、化归、数形结合思想等思维方法,才能更有效地培养学生的思维能力。
对题目要有一个变换延伸的过程,培养学生思维的灵活性。数学题目的多种多样,千变万化,怎样培养学生思维的灵活性呢?应对题目变形、变换引伸才能培养学生思维的灵活性
一题多解。在解题时,要经常注意引导学生从不同的方面,探求解题途径,以求最佳解法。
例如“某村计划修一条长150米的路,前3天完成了计划的20%,照这样计算,完成这条路还需多少天?”首先老师要学生用多种方法解。在学生没有学习工程问题时,解法一般集中在以下三种上:①(150-150×20%)÷(150×20%÷3)=12(天);②150÷(150×20%÷3)-3=12(天);③150×(1-20%)÷(150×20%÷3)=12(天)。
针对这些解法,老师要善于引导学生比较三种方法的异同点,总结出“三种方法中都运用了全程150米”这一条件的共性。针对这一共性,老师可打破思维定势,启迪学生的新思维:“假如把150米当作一条路(用1来表示),还可以怎样解答?”这一点拨,学生很容易发现如下解法:④3×[(1-20%)÷20%]=12(天);⑤1÷(20%÷3)-3=12(天);⑥3÷20%-3=12(天)。综上六种解法,显然后三种解法(尤其是解法⑥),列式简洁,想象丰富,充分可以显示学生思维的灵活性。
二、一题多变。通常,教学中的变条件、变问题、条件和问题的互换等,都是一题多变的好形式,但是,变题训练要掌握一个原则,就是要在学生较牢固的掌握法则、公式的基础上,进行变题形练。否则,将淡化思维定势的积极作用,不利于学生牢固地掌握知识。
三、联系对比,提高解题的准确率。为了减少学生的解题错误,提高解题的准确率,除加强估算和检验外,通常较有效的办法是要善于联系对比,让学生在比较中认识、在比较中区别、在比较中理解、在比较中提高。
在中学数学题型中,归纳起来,不外乎是概念题、计算题、文字题、应用题和图式题等几大类。像计算式题、文字题、应用题、图式题大都是实际生活中的例子,只是用四种不同的描述形式表达而已。比如“6个苹果吃了2个,还有几个?”除用这种“应用题”的形式描述外,还可以用最简单的算式“6-2=?”来描述,也可以用一句话“6减2的差是多少?”或一幅线段图(或实物图)来描述。根据这种知识内在的联系特点,在教学中,要善于把各种描述的形式,联系起来,进行训练,达到由此及彼,由里及外,融汇贯通和举一反三的效果。
培养解题能力的途径和方法很多,但无论哪种途径和方法,最根本的、相通的是离不开思维的训练。
篇4:发展学生思维能力心得体会
一、理解教材,把握教材:
小学一年级数学课本蕴藏着丰富的培养学生思维能力的内容。教材每一单元,每一节的教学内容都是教师培养何发展学生思维能力的载体。我们要认真学习教材,理解教材,充分挖掘教材的智力因素,自觉地在教学中发展学生的思维能力。
如:在教材“十几减九”中,安排了4道例题。例1要求教师直观演示讲解,例2要求学生动手摆一摆,算一算,例3要求学生看图想一想,算一算,例4要求学生看算式想一想,算一算。4道例题,编者设计了四种不同的处理方法,明显第体现了四个不同的教学层次,这恰恰是教师在进行知识教学中,逐渐地培养学生思维,由动作思维形象思维抽象思维过渡的发展过程。教师只有理解到这点,把握教材,才能把自己置身于培养学生思维能力的高度,才能有意识地结合教学内容培养何发展学生的思维能力。
二、教师既要重视直观演示,又要重视学生的动手操作:
数学是一门高度抽象性的学科,一年级学生年龄小,他们的思维特点是以形象思维为主。因此,在数学教学中,教师必须根据儿童的思维特点,从直观入手,儿童的思维离不开动作。动手操作,一方面可以培养学生的操作能力,激发学生学习兴趣,调动学生学习积极性,更重要的一方面是通过动手操作,让学生摆一摆,看一看,想一想,也就是让学生通过多种感官去感知事物,去获取感性知识,去比较、分析、综合,抽象出事物的本质,得出概念,法则,找出解决问题的方法。
如:第二册中的例3:学校里养了12只白兔,7只黑兔。白兔比黑兔多几只?
这类“求比一个数多几”的应用题数量关系学生不容易理解,这是教学的难点。教学时教师除了直观演示讲解外,还必须让学生动手操作。先摆12只白兔(用代替),再摆7只黑兔,(要和白兔一一对应)如图:
白兔:
黑兔:
学生通过动手摆,亲身感知并加深理解到:1。要求白兔比黑兔多几只,白兔可以分两部分,一部分是何黑兔同样多的7只,另一部分是比黑兔多的只数。从12只里去掉何黑兔同样多的7只白兔(学生边分析边摆),剩下的就是白兔比黑兔多的只数。根据减法意义,学生就能选择用减法来解答。这样,动手操作不但有助于学生理解数量关系,寻找解题思路,选择解题方法,而且还培养了学生分析,推理何解决简单问题的能力。
三、重视“想一想”更重视“说一说”
大纲指出:“逐步培养学生能够有条理有根据地进行思考。比较完成地叙述思考过程。”
思考,即想一想。实质就是把外部的物质操作活动转化为大脑的认知活动,这时内化的思维活动。所以教师每每让学生“摆”、“看”的同时就要学生想一想,这时非常重要的。然而每个学生是否开动了大脑——这个思考的机器,思考得是否正确,想得是否有条理,有根据,还要靠思维的工具——“语言”来检验,靠“说一说”来训练,因此重视“想一想”,更要重视“说一说”。教师要多让学生说,让每个学生都有说的机会。说一说“你是怎么做的”,“你又是怎样想的”,“说说这样做的道理”等等。总之,让学生用语言尽可能完整地叙述获取知识的过程。这样久而久之,学生即会想,又会说;即培养了学生的语言表达能力,又发展了学生的思维能力。
启蒙教育阶段培养学生思维能力至关重要。我们一定要根据学生的年龄特点,通过摆一摆,看一看,想一想,说一说,把学生的操作、观察、思维、语言有机地结合起来。在教学实践中长期坚持训练,不断培养何发展学生的思维能力,我们的学生就聪明起来。
篇5:让学生自主发展
--“自主、创新”数学课堂教学模式实验研究和思考
一、课题的提出:
目前,小学数学课堂教学还停留在以教师为中心的课堂教学结构上;加之教学过程中过份地强调学生技能、技巧的训练,忽视了学生的全面发展。这种传统的教学模式已越来越不适应素质教育(www.35d1.com-上网第一站35d1教育网)的需要,不利于新课标下的课堂教学的需要,不利于学生自主地学习。如何在课堂教学中突出学生的主体地位,培养学生的创新意识;如何让学生在轻松愉悦的环境中,变死学为活学呢?“自主、创新”数学课堂教学模式的提出,就是为了优化教与学关系,构建新的课堂教学体系,让学生成为真正的主人,使其在轻松愉悦的教学环境中创新地发现问题、解决问题,形成能力。
二、实验研究的目的及内容:
“自主、创新”数学课堂教学模式打破了传统数学中教师讲、学生听的“填鸭式”、“注入式”的教学方法,体现了新课标的新理念,充分体现了学生的主体地位,调动了学生学习的积极性,既关注了学生的学习结果,又关注了学生的学习过程。其目的就是要研究如何营造宽松、民主、和谐的学习氛围,激发学生的学习兴趣,使学生在教师的引导下,提出问题,然后通过小组或与他人合作,让学生亲自动口、动手、动脑主动地参与到问题的探究中,从而解决问题,形成认识和结论,并将形成的认识进行推广应用,使之升创新。此模式可概括为“激趣、明确目标--小组合作、自主学习--应用、升华创新--激励评价”四步。
三、实验的方法和步骤:
无论怎样改革课堂教学模式,都必须以一定的教学思想或理论为基础。作为课堂教学改革的实施者--教师,首先必须转变观念:从教育(www.35d1.com-上网第一站35d1教育网)上看,要树立对全体学生负责的观念,在培养学生全面发展的同时,要尊重学生个性差异的发展;既要注重学生知识技能的培养,又要注重学生创新精神和实践能力的培养;树立为学生终身学习打下基础的观念。从教学上看,要树立以学生为主体的观念,尊重学生、营造民主、和谐的教学氛围;树立“用材施教与发展个性的观念”,注重发散思维与创造力的培养;树立课堂教学效益观念,注重教师角色,教学方式、方法的转变,因此,我们在转变教育(www.35d1.com-上网第一站35d1教育网)观念的前提下,作了如下尝试。
(一)注重创设情境,以“趣”导入
常言道“万事开头难”。一堂课是否成功,课前导入起十分重要的作用。它不仅要求教师课前要充分备课,准备教学具,还要求教师能将单调的教学问题融于生活之中。这一步要注重体现年级的'特点,还要注重学生已有的认知结构(不同区域--如城市与农村)。
低年级:注重创设问题情境,寓问题于童话故事之中。例如:一年级一位教师在教学“8+几”时,将教材中的图画改编为:一群小动物正在玩游戏,每个小动物身上都有一道“8+几”的算式,一只小熊在旁边哭着。这位教师出示了画面后,引导学生观察,然后让学生说说你发现了什么?这样,学生的兴趣被调动了起来,注意力集中到画面上,观察后有的同学说:“一只小熊在哭。它为什么哭呢?”教师再引导分析哭的原因,此时学生就会发现:其它一些小动物身上都有一些算式,小熊在为算不出算式而找不到朋友一起玩游戏而着急。这样学生的积极性被调动起来,8+几的结果会是多少呢?怎么算呢?(提出了问题)接下来,学生全都参与到帮小熊找朋友的学习活动中,从而效果很好,因此,低年级学生应从画面、故事、感性物体方面去设置问题的情境。
高年级:注重问题生活化、感知数学就在身边。
例如:一位六年级教师在教学“圆锥体体积”时,创设了这样一个情境:小明的爸爸是个木工,一天正在用一个圆柱制作一个圆锥。爸爸问小明:制作的圆锥的体积可能是多少?同学们,你们能帮帮小明吗?这样,学生的兴趣一下子被调动起来,纷纷说出自己的想法。有的说是圆柱体积的 ,有的说是 。这时,教师引导学生利用手中的圆
[1] [2] [3]
篇6:让学生自主发展
--“自主、创新”数学课堂教学模式实验研究和思考
一、课题的提出:
目前,小学数学课堂教学还停留在以教师为中心的课堂教学结构上;加之教学过程中过份地强调学生技能、技巧的训练,忽视了学生的全面发展。这种传统的教学模式已越来越不适应素质教育的需要,不利于新课标下的课堂教学的需要,不利于学生自主地学习。如何在课堂教学中突出学生的主体地位,培养学生的创新意识;如何让学生在轻松愉悦的环境中,变死学为活学呢?“自主、创新”数学课堂教学模式的提出,就是为了优化教与学关系,构建新的课堂教学体系,让学生成为真正的主人,使其在轻松愉悦的教学环境中创新地发现问题、解决问题,形成能力。
二、实验研究的目的及内容:
“自主、创新”数学课堂教学模式打破了传统数学中教师讲、学生听的“填鸭式”、“注入式”的教学方法,体现了新课标的新理念,充分体现了学生的主体地位,调动了学生学习的积极性,既关注了学生的学习结果,又关注了学生的学习过程。其目的就是要研究如何营造宽松、民主、和谐的学习氛围,激发学生的学习兴趣,使学生在教师的引导下,提出问题,然后通过小组或与他人合作,让学生亲自动口、动手、动脑主动地参与到问题的探究中,从而解决问题,形成认识和结论,并将形成的认识进行推广应用,使之升创新。此模式可概括为“激趣、明确目标--小组合作、自主学习--应用、升华创新--激励评价”四步。
三、实验的方法和步骤:
无论怎样改革课堂教学模式,都必须以一定的教学思想或理论为基础。作为课堂教学改革的实施者--教师,首先必须转变观念:从教育上看,要树立对全体学生负责的观念,在培养学生全面发展的同时,要尊重学生个性差异的发展;既要注重学生知识技能的培养,又要注重学生创新精神和实践能力的培养;树立为学生终身学习打下基础的观念。从教学上看,要树立以学生为主体的观念,尊重学生、营造民主、和谐的教学氛围;树立“用材施教与发展个性的观念”,注重发散思维与创造力的培养;树立课堂教学效益观念,注重教师角色,教学方式、方法的转变,因此,我们在转变教育观念的前提下,作了如下尝试。
(一)注重创设情境,以“趣”导入
常言道“万事开头难”。一堂课是否成功,课前导入起十分重要的作用。它不仅要求教师课前要充分备课,准备教学具,还要求教师能将单调的教学问题融于生活之中。这一步要注重体现年级的特点,还要注重学生已有的认知结构(不同区域--如城市与农村)。
低年级:注重创设问题情境,寓问题于童话故事之中。例如:一年级一位教师在教学“8+几”时,将教材中的图画改编为:一群小动物正在玩游戏,每个小动物身上都有一道“8+几”的算式,一只小熊在旁边哭着。这位教师出示了画面后,引导学生观察,然后让学生说说你发现了什么?这样,学生的兴趣被调动了起来,注意力集中到画面上,观察后有的同学说:“一只小熊在哭。它为什么哭呢?”教师再引导分析哭的原因,此时学生就会发现:其它一些小动物身上都有一些算式,小熊在为算不出算式而找不到朋友一起玩游戏而着急。这样学生的积极性被调动起来,8+几的结果会是多少呢?怎么算呢?(提出了问题)接下来,学生全都参与到帮小熊找朋友的学习活动中,从而效果很好,因此,低年级学生应从画面、故事、感性物体方面去设置问题的情境。
高年级:注重问题生活化、感知数学就在身边。
例如:一位六年级教师在教学“圆锥体体积”时,创设了这样一个情境:小明的爸爸是个木工,一天正在用一个圆柱制作一个圆锥。爸爸问小明:制作的圆锥的体积可能是多少?同学们,你们能帮帮小明吗?这样,学生的兴趣一下子被调动起来,纷纷说出自己的想法。有的说是圆柱体积的 ,有的说是 。这时,教师引导学生利用手中的圆柱体、圆锥体学具,进行实验操作。这样既提出了学习的目标,又激起了学生求知的欲望。
总之,问题情境设置的好坏,直接关系到学生学习兴趣的调动。当然,不同的年级,不同的课型,设计的方法也各不相同;但要贴近学生生活实际,有利于学生学习兴趣、求知欲望的.激发,也有利于学生获得学习的成就感。
(二)以“合作学习”为主,注重个性的发展
学生对知识的获取的过程,实质是一个认识的过程,也就是把书本知识转化为他们的认知过程。这一过程的实施,只有学生充分地动手、动脑、动口,使学生全身心地投入到学习活动中,通过合作探究来完成的。在引导学生对知识进行探究时,我们的做法是通过“自主探究与合作交流”来完成的,这样既体现了合作学习的原则,又体现了个性发展的原则。
例如:在教学《比较万以内数的大小》时,首先分类板书出由学生搜集的数据:85、388、1240、2580、3105、4500、3600、1等。然后,教师提出:你想先比较哪两个数的大小?为什么?学生回答后,教师及时地引导学生分组讨论。这样学生通过讨论、交流得出:85<388、因为85不足100,而388快到400了,所以388大一些。2580>1240,因为2个千比1个千大,3105<3600,因为都有3个千,但1个百比6个百小。……学生在合作探究,交流中归纳了其大小比较的方法,尝到了学习成功的喜悦。既突出了数学的重点,也使教学难点迎刃而解。
(三)注重“知识应用”培养创新意识
学习数学知识的目的,就是应用。学生通过合作探究所学到的知识,只有通过去解决实际问题,才是学习的目的。因此,知识的应用这一环节至关重要。它既要使每个学生的个性差异得到体现,又要发挥学生的创新潜能,使其主动地质疑问难。因而教师设计练习时,要注意:1、练习要层次分明,难易适度,多向有效;2、练习方式能调动学生的自主性;3、练习设计要有创造性的问题,以利于启迪学生创新;4、练习设计要具有实践性,使学生感知“数学就在身边,生活中有数学”。例如:学习了圆锥的体积后,让学生去测算圆锥形砂堆、麦堆的体积。学习了“相遇问题”后,可设计“甲、乙两辆汽车分别从相距550千米的A、B两城同时出发,相向而行。甲车每小时行55千米,乙车每小时行48千米,几小时后,两车相距35千米?”此类训练题,以利于对学生进行发散性、开放性的思维训练,又如“一辆客车每小时行48千米,一辆货车每小时行52千米,如果两车同时从相距320千米的两地出发,2小时后两车相距多远?”
(四)注重评价,激励为主
学生在对知识获取的探究活动中,由于小学生往往具有表现欲望,需望自己的行为得到别人的关注,得到别人的认可。因此,此模式在教学活动过程中,注重对学生的评价。评价时,以学生的自主为中心,以学生的创新为核心,以学生的发展为目的,坚持“全体性、全面性、主体性、创新性”的原则,坚持“教师评价与学生互评”的原则。评价要因势利导,以“重在进步”、“重在创新”为主,要引导学生虚心地接受合理的评价,从而扬长避短。如:“今天你表现得真不错,如果你计算时再仔细些,你会更捧”,“真捧!想像力真丰富。如果你也像××那样,注意力集中些,你会更优秀”等等。
四、对实验的几点体会
1、学生会学、乐学能力全面提高
通过近四年来的研究实践,我们认为学生的学习能力,学习兴趣较之以前有了普遍的提高。通过实验班与对比班的调查对比,实验班有近90%的同学喜欢上数学课,而对比班不足70%,同时,实验班的学生上课时注意力集中、兴趣浓、思维敏捷、创新意识强。学生之所以会学、乐学,主要是首先激发了学生学习的兴趣,激发了他们的求知欲望。这正说明了“兴趣是最好的老师”。
2、创新精神得到良好的培养
小学数学是培养学生创新意识、创新能力和创新精神的基础学科。实验证明,通过实验教学,绝大部分学生有创新的欲望,在学生中能展开想象的翅膀,提出较有价值的问题。如学生在找0.5、1.5、4.5___、___、___、___ 的排列规律时,有的学生从后一个数与前一个数的差中去寻找规律,有的同学从相邻两个数的倍数关系中去寻找,有的同学发挥想象,从两个数的和中去寻找出和构成的一个等差数列的规律,得出“0.5、1.5、4.5、5.5、8.5、9.5、12.5”创新意识的解答方法。
3、注重人文教育的渗透。
数学并不枯燥,其中蕴藏着丰厚的人文哲理,正如挪威诗人约恩松纪念挪威数学家阿贝尔的诗所说:“数的科学,像时间一样不知不觉地流逝。融于永不消失的晨曦,是千变万化的数字,她们,像雪一样纯,比空气更轻,却强于整个世界,其值无价。她们带来的是一片光彩。数学是多么美丽。”本模式之所以能充分调动学生学习积极性使师生情感交融,思想共鸣。主要是我们教师为学生创设了一种轻松、愉悦、和谐、平等的、民主的学习氛围,使学生在富有情趣的学习活动中,学会学习的本领,形成团结协作、相互帮助的良好品质,养成谦虚好学的良好习惯,加强了学生间良好的人际关系的交往。
4、教师能教、乐教、教学水平显著提高。
在实验中,教师通过学习现代教育理论,教学理念得到更新、教学方法先进,教学水平提高,实验教师能教、乐教,并形成自己的教学特点,教学风格。
五、值得探究的问题
1、该模式中的“创设问题情境”,本着激发学生的学习兴趣,寓教于乐之中。但实际教学中,如何准确把握这一环节,不出现“本末倒置”、“画蛇添足”的现象,使其真正为“激趣”服务。
2、小组合作学习的方式,是本模式的重要环节。但教学中实施“小组合作、探究学习”的方式、方法,具有普遍的随意性、盲目性。如何正确运用“小组合作”的学习方式,使教法和学法有机地统一起来,从而真正体现“自主、合作”的探究模式,全面提高课堂教学效率。
当然,“自主、创新”数学课堂教学模式,不是数学课堂教学的固定模式,它只是在创新教育的前提下,为全面实施新课标下的数学课堂教学提供了一个操作性较强的数学教学的思路和框架。经过近四年的不懈探索,我们认为这种教学模式,能给学生创造动手、动口、动脑的机会,能让他们的个性得到充分地发展,能让他们品尝到成功的喜悦,能让他们自主的发展起来,能有利于在教学中培养学生的创新意识、创新精神和创新能力,这就是成功的教育。
篇7:引导学生自主探索教学初探
在数学教学中,如何发挥学生的主体作用,引导学生应用知识自主探索,培养学生探索精神,发展学生创新能力。我认为教师要更新教育观念,主动转换角色,自觉适应新课改需要,教学中着重引导学生主动参与,自主探索。在教学中,我是从以下几个方面努力的。
一、创设情境,激发自主探索欲望。
问题情境是指学生觉察到的一种有目的,但又不知如何达到这一目的的心理困境,是体现在学生原有的数学知识基础上但又不能直接解决的新问题。而“欲望”会让人产生一种冲动,是动力的源泉。在教学中,教师应努力创设学生自主探索的问题情境,激发学生学习数学的兴趣,让学生积极主动地投入到学习活动中去。创设学生自主探索问题的情境,要把握好“激励情感――设计问题――组织问题”三个环节,创设的问题要具有启发性、层次性、开放性、难易适度。
如:教学“长方体表面积”时可设计这样一个问题:我们通常最多只能看到长方体、正方体的3个面,如果要想一眼看到长方体纸盒6个面,你有办法吗?学生经过思考后,想出了不同方法:沿长方体的棱剪开,再展平;或一个面一个面切下来摆在桌上。然后让学生操作比较,找出了最佳方法。在参与探索中,找出在不同情况下,求长方体的表面积的方法,学生真正体会到动手参与成功的喜悦。这样的开放性问题,既没有限制学生思维,又有效激发了学生兴趣,使学生的操作变“要我作”为“我要作”真正体现了学生主动参与。
二、信任学生,给学生自主探索的空间和时间。
学生才是学习的真正主人。在小学阶段,学生有着强烈的求知欲、自信心,他们总想成为研究者、发明者、探索者。在学生参与数学学习活动时,尽量让他们进行自主探索,就能满足他们的心理需求。因此,教师应充分相信学生,应留给学生充分进行独立思考与自主探索的时间和空间,鼓励学生通过自己研究去发现问题和解决问题。在教学中教师应做到:凡是学生能看懂的内容就放手让他们自学;凡是学生动手操作能得出的某一规律,就放手让学生去完成;凡是学生能独立解决的问题,就放手让学生去解决……这样,就能让学生在独立思考中学会思考,在自主探索中学会求知,从而调动了主动学习的积极性。
例如:在教学“三角形面积计算”时由于学生已掌握了平行四边形、长方形的面积计算方法,且能从平行四边形面积计算方法的推导中受到启发。我就放手让学生用自己喜欢的方式去研究三角形面积计算方法,让他们进行操作实验,并通过小组讨论,结果学生从两个方面自主地探索出三角形面积计算方法:一是把两个完全一样的三角形拼成一个等底等高的平行四边形或长方形;二是把一个平行四边形沿对角线剪开成两个完全一样的三角形。这样不仅自主地掌握了三角形面积的计算方法,而且培养了学生的'动手操作能力、归纳能力。
三、鼓励学生大胆猜想、质疑,教给学生自主探索的钥匙。
从某种意义上讲,人们发现有关数学知识的过程是一个凭借自己的直觉,先提出某种有目的的猜想,再进行验证,从而揭示出某一类数学问题的有关规律的过程。因此在教学中,教师要鼓励学生对这类数学问题进行大胆的、有目的地猜想,促进学生主动学习。
如:教学“圆环面积的计算”时,学生观察图后,引导学生思考,你认为圆环面积应怎样计算?学生思考后大胆猜测计算方法,结果很快提出了两种想法:①∏R2-∏r2;②∏(R-r)2。为了验证猜想是否成立,他们又积极主动参与到检验中去。这样,学生不仅学习兴趣浓郁,积极性高,而且活跃了学生思维,培养了探索实践能力。
在学生参与数学活动时,教师要鼓励学生质疑问难。如:教学“长方体表面积”时,由于教师鼓励学生质疑,有一学生针对“做一个长2分米,宽1分米,高0.5分米的长方体,至少要多少平方分米硬纸板?”提出“为什么要强调‘至少’不要行不行?”这疑就质得很好,显然质疑能促使学生主动探索。因此,教师不仅要鼓励学生质疑问难,而且应引导学生排疑解难,逐步提高学生的质疑水平和解疑能力,教给学生自主探索的钥匙。
通过新课改的学习,我深深地体会到探究性学习是引导学生自主探索问题、研究问题、解决问题,获取知识的一种学习方式,让学生自主探索学习,是对传统教育观念的挑战,是让学生主动探索数学知识,形成一定数学技能的同时,发展学生情感、态度、价值观和各方面的能力,最终达到数学知识的获取与智能的发展同步的目的。
篇8:引导学生自主探索教学初探
引导学生自主探索教学初探
要点:创设情境 ,信任、鼓励、激发学生自主探索欲望,交给学生自主探索空间与时间,大胆猜想质疑在验证中获得初探成功的喜悦。关键词:引导 自主探索 初探
在数学教学中,如何发挥学生的主体作用,引导学生应用知识自主探索,培养学生探索精神,发展学生创新能力。我认为教师要更新教育(www.xfhttp.com-雪风网络xfhttp教育网)观念,主动转换角色,自觉适应新课改需要,教学中着重引导学生主动参与,自主探索。在教学中,我是从以下几个方面努力的。
一、创设情境,激发自主探索欲望。
问题情境是指学生觉察到的一种有目的,但又不知如何达到这一目的的心理困境,是体现在学生原有的数学知识基础上但又不能直接解决的新问题。而“欲望”会让人产生一种冲动,是动力的源泉。在教学中,教师应努力创设学生自主探索的问题情境,激发学生学习数学的兴趣,让学生积极主动地投入到学习活动中去。创设学生自主探索问题的情境,要把握好“激励情感――设计问题――组织问题”三个环节,创设的问题要具有启发性、层次性、开放性、难易适度。
如:教学“长方体表面积”时可设计这样一个问题:我们通常最多只能看到长方体、正方体的3个面,如果要想一眼看到长方体纸盒6个面,你有办法吗?学生经过思考后,想出了不同方法:沿长方体的棱剪开,再展平;或一个面一个面切下来摆在桌上。然后让学生操作比较,找出了最佳方法。在参与探索中,找出在不同情况下,求长方体的表面积的方法,学生真正体会到动手参与成功的喜悦。这样的开放性问题,既没有限制学生思维,又有效激发了学生兴趣,使学生的操作变“要我作”为“我要作”真正体现了学生主动参与。
二、信任学生,给学生自主探索的空间和时间。
学生才是学习的真正主人。在小学阶段,学生有着强烈的求知欲、自信心,他们总想成为研究者、发明者、探索者。在学生参与数学学习活动时,尽量让他们进行自主探索,就能满足他们的心理需求。因此,教师应充分相信学生,应留给学生充分进行独立思考与自主探索的时间和空间,鼓励学生通过自己研究去发现问题和解决问题。在教学中教师应做到:凡是学生能看懂的内容就放手让他们自学;凡是学生动手操作能得出的某一规律,就放手让学生去完成;凡是学生能独立解决的问题,就放手让学生去解决……这样,就能让学生在独立思考中学会思考,在自主探索中学会求知,从而调动了主动学习的积极性。
例如:在教学“三角形面积计算”时由于学生已掌握了平行四边形、长方形的面积计算方法,且能从平行四边形面积计算方法的推导中受到启发。我就放手让学生用自己喜欢的方式去研究三角形面积计算方法,让他们进行操作实验,并通过小组讨论,结果学生从两个方面自主地探索出三角形面积计算方法:一是把两个完全一样的三角形拼成一个等底等高的'平行四边形或长方形;二是把一个平行四边形沿对角线剪开成两个完全一样的三角形。这样不仅自主地掌握了三角形面积的计算方法,而且培养了学生的动手操作能力、归纳能力。
三、鼓励学生大胆猜想、质疑,教给学生自主探索的钥匙。
从某种意义上讲,人们发现有关数学知识的过程是一个凭借自己的直觉,先提出某种有目的的猜想,再进行验证,从而揭示出某一类数学问题的有关规律的过程。因此在教学中,教师要鼓励学生对这类数学问题进行大胆的、有目的地猜想,促进学生主动学习。
如:教学“圆环面积的计算”时,学生观察图后,引导学生思考,你认为圆环面积应怎样计算?学生思考后大胆猜测计算方法,结果很快提出了两种想法:①∏R2-∏r2;②∏(R-r)2。为了验证猜想是否成立,他们又积极主动参与到检验中去。这样,学生不仅学习兴趣浓郁,积极性高,而且活跃了学生思维,培养了探索实践能力。
在学生参与数学活动时,教师要鼓励学生质疑问难。如:教学“长方体表面积”时,由于教师鼓励学生质疑,有一学生针对“做一个长2分米,宽1分米,高0.5分米的长方体,至少要多少平方分米硬纸板?”提
[1] [2]
【采用自主探索,发展学生的思维能力】相关文章:
10.学生自主实习承诺书






文档为doc格式