欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 说课稿>数学五年级约数和倍数意义说课稿

数学五年级约数和倍数意义说课稿

2025-01-30 08:58:44 收藏本文 下载本文

“一号豆丁”通过精心收集,向本站投稿了16篇数学五年级约数和倍数意义说课稿,下面小编给大家带来数学五年级约数和倍数意义说课稿,希望能帮助到大家!

数学五年级约数和倍数意义说课稿

篇1:五年级上册约数和倍数的意义说课稿

五年级上册约数和倍数的意义说课稿

教学内容:

九年义务教育六年制小学数学第十册第49页

教学目的:

1、进一步理解和掌握整除的意义。

2、理解、掌握约数和倍数的意义,知道约数、倍数的相互依存关系,渗透辨证唯物主义思想教育。

3、让学生通过小组合作、交流,尝试解决问题;培养学生的数学交流能力和合作能力。

4、激发学生的学习兴趣,通过自学、讨论等方式的学习,培养学生自主学习能力。

教学准备:

1、两张卡片、

2、多媒体演示课件

〔评析〕为了体现当今新的教育观,即在课堂教学中,不仅要使儿童掌握一定的数学基础知识和基本技能,同时还要有目的去培养学生的数学能力。所以制定的目标体系全面、恰当。

教学过程:

一、复习整理、进一步理解和掌握整除的意义

1、整除的含义

①让学生在小卡片上写一道除法算式

②黑板上展示学生的除法算式

〔评析〕学生的学习材料是自己寻找的,而不是教师或书本给定的材料,它们来源于学生自己,这样的学习,可以使学生一开始就处于积极状态,使学生对学习充满着兴趣,学生乐于继续学习下去,而无须教师强迫学生学习。

③教师提出问题:A、哪一道除法算式的被除数能被除数整除

B、在什么情况下,才可以说“一个数能被另一个数整除”

④让学生分小组合作、交流,解决以上两个问题

⑤学生交流完毕,每小组派代表汇报本小组研究成果

〔评析〕让学生合作、交流,尝试解决问题,这样的教学即给了学生一个人人参与、自主探索的机会,使学生理解和掌握了知识;又使学生在平等、自由、真诚悦纳的.情意关系中学会了与人共处。

2、抽象概括整除的概念

①师:如果用字母a表示被除数,用字母b表示除数,在什么情况下,a能被b整除?

②生:略

③师:让学生完整地概括整除的意义

〔评析〕由于学生对整除的含义有了进一步的理解。所以通过学生讨论,师生对话,抽象概括出整除的概念,这样的教学,符合学生的认知规律,同时可培养学生的抽象概括能力。

3、巩固练习

①下面哪一组的第一个数能被第二个数整除

17和549和73.6和1.210和10

②下面四个数中谁能被谁整除

2、3、6、12

〔评析〕概念初步后,为了有效巩固,恰到好处增加了练习,练习题设计时,考虑到不同学生的发展,增加了开放题,这不仅激发了学生的学习兴趣,而且又加深了学生对整除的理解

二、新知教学,了解约数和倍数的意义

1、提出问题,看书自学

①在什么情况下,a是b的倍数,b是a的约数。

②约数和倍数中的数一般指什么数?不包括什么数?

③你能仿照书中的(例1)举一个例子,说明一个数是另一个数的倍数,另一个数是这个数的约数

2、学生自学,并回答问题及举例、说明理由。

〔评析〕教师提出问题,学生带着问题去自学,这样的学习,即体现了学生在课堂教学中的主体地位和作用,又培养了学生独立思考及自学能力。

3、明确约数和倍数的关系

根据实例提出问题:45能被15整除,能不能单独说45是倍数、15是约数,为什么?

生:略

师生共同小结:约数和倍数是相互依存的关系,不能单独地说一个数是倍数或约数。

〔评析〕通过以上的学习,学生明确了一个数是否是另一个数的倍数或约数时,必须是以整除为前提,约数和倍数是相互依存的概念,不能独立存在。突出了教学的重点,准确地把握了教学关键。

4、巩固练习

①下面每组数中,谁是谁的倍数?谁是谁的约数?

36和97和1445和451和100

②下列数中,谁是谁的倍数?谁又是谁的约数?

1、2、6、12

③游戏

规则:老师出示一个数,看你手中的卡片是否符合老师提出的条件,符合的请举起你的卡片。

a、我是12,12能整除谁?

你们是我的什么数?我又是你们的什么数?

b、我是19,谁是我的约数?

c、我是2,谁是我的倍数?

d、我是1,谁是我的倍数?(小结:1是所有自然数的约数)

e、让全体同学举起卡片,让具有数字6的同学指出自己的约数

〔评析〕练习题设计时,考虑到不同的学生要有不同的发展,即有层次,又有坡度,形式又有多样。即重视基本知识的训练,同时还将知识性、趣味性有机地结合。学生兴趣盎然,思维敏捷。通过练习,即巩固了知识,又使全体学生不同程度得到了发展

五、回顾反思,谈各人的收获。

师:今天我们研究了什么?又是怎样研究的?你有什么收获?

〔评析〕让学生总结本节课学习的方法,并谈自己的收获,这个过程不仅使学生明白了许多道理,而且使学生加深了对知识的理解和掌握;诱发了学生的创造性思维。学生的收获不仅只有知识,还包括能力、方法、情感等,学生体验到学习之乐,增强了学好数学的信心。

篇2:五年级数学《约数和倍数的意义》备课计划

五年级数学《约数和倍数的意义》备课计划

目标分析:

进一步探索理解整除的意义,知道约数、倍数的含义以及它们之间相互依存的关系。

难点分析:

这部分内容是在第八册整除知识的基础上进行教学的,是这一单元中最基本的概念,也是下一步学习质数、合数、互质数,以及求最小公倍数、最大公约数的前提。因此,约数、倍数的含义以及它们之间相互依存的关系是本小节的难点。要让学生明确以下情况:1、被除数、除数(0除外)、商必须都是整数,而商后没有余数,同时明确除尽和整除的区别,还要说明如A能被B整除,反过来可以说B能整除A的道理;2、约数和倍数必须以整除为前提,约数和倍数是一对相互依存的概念,不能独立存在,同时,因为0是任何非0自然数的倍数,任何非0自然数都是0的约数,在以后学习分解质因数等内容时,一般限于非0自然数,所以本节内容应把0排除在外;3、要把倍数与倍区分清楚;4、通过一些简单的方法找出一个数的约数和倍数。

解决策略:

由于知识内容比较抽象,为了使学生掌握好这部分知识,应尽量从学生已有的知识出发,用实际例子引出概念。

在复习整除概念的意义和教学例1时,一可以通过一些除法算式的对比形式,用定义对整除加以概括,并用字母表示相除的两个数,突出除数不为0,这样就使学生对整除的意义的理解在已有的基础上得到加深。二可以通过约数和倍数必须以整除为前提的认识过程,很快说出两个倍数关系谁能被谁整除,谁能整除谁,谁是谁的倍数,谁是谁的约数,避免学生常出现的谁是倍数,谁是约数的`错误认识,并强调倍数与约数是一对相互依存的关系。

在教学例2时,利用画彩条和集合图的方法表示一个数的约数。为了解决学生内容遗漏,可以用一对一的找法,如1212=1,就可以找到121=12。通过以上找法,让学生归纳出:一个数的约数个数是有限的,其中最大的约数是本身,最小的约数是1。

在例3时,同样可以参照例2画彩条和集合图的方法表示一个数的倍数。但必须强调找一个数的倍数,应从最小的倍数开始找,引导学生探索自然数是无限的,因此2的倍数也是无限的,所以可以用省略号表示,在用集合图表示倍数时,要注意在圈里写上省略号。在概括出一个数的倍数的个数是无限的,其中最小的倍数是它的本身时,要让学生弄清为什么一个数的倍数没有最大的,因为自然数的个数是无限的,所以一个数的倍数的个数也是无限的,因此没有最大的倍数。

课堂活动:

这节课注重学生的主动参与,自主建构,让学生在生活中理解约数、倍数的概念。具体表现如:

一是注重知识的内在联系,让学生利用已有知识经验推动新知识的学习。整除是建立约数、倍数概念的重要基础,针对知识的这一内在联系和学生已经学习了整除概念这一实际。新课前进行的复习准备,既能唤起学生对整除的回忆,激活学生的认知结构,又能为新课的学习作好充分的认知准备此外,在新课的学习和练习中,让学生感受到很多数的约数和倍数都不止一个,为公约数、公倍数等学习作铺垫。

二是充分激发学生主动参与,让学生进行自主建构.本节课在对约数、倍数的理解和关系把握的教学中,教师注重角色的转换,置学生于教学的主体地位,通过不同表述方式表达两个数的关系等,为学生进行自主探索搭建平台,学生在教师的引导、组织下,独立思考,合作交流,全面、深入理解约数、倍数的含义,清楚把握它们的关系。

三是课堂活动性强,练习形式丰富,内容全面。本节课在课堂活动的安排上,体现全面性、趣味性、深刻性。通过这样的练习,不但有利于学生全面巩固所学知识,更有利于激发学生参与的积极性,让学生体验到数学学习的乐趣。

篇3:公五年级数学《约数和倍数的意义》教学设计

公五年级数学《约数和倍数的意义》教学设计

教材分析

约数和倍数的意义是在学生已经学过整除知识的基础上进行教学的,这部分内容是后面学习质数和合数、质因数、分解质因数、求最大公约数、求最小公倍数等知识必须具备的基础知识,所以是本单元中最基本的概念.

教材在复习“整除”的基础上概括出“整除”这个概念,然后引出约数和倍数的概念.在整数范围内,除法算式可以分为整除和不能整除两大类.引入了小数以后,除法算式又可以分除尽和除不尽两大类.这里的除尽,不但包含了整除的情况,还包含了被除数、除数或商是有限小数的情况,所以在教学中要列举各种有代表性的实例,让学生通过对算式中被除数、除数与商各种不同情况的观察、比较,使整除的概念从除尽的概念中分化出来.从而理解整除的意义,明白整除与除尽的关系.

学生学过约数和倍数的意义后往往把“倍数”和“几倍”混同起来,所以教学时应通过对比练习,使学生悟出两者的区别(可以说8是4的倍数,也可以说8是4的2倍;但是不可以说0.8是0.4的倍数,只能说0.8是0.2的2倍),从而进一步理解和掌握约数和倍数的本质.

教法建议

约数和倍数的意义是在学生已经学过整除知识的基础上进行教学的,这部分内容是后面学习质数和合数、质因数、分解质因数、求最大公约数、求最小公倍数等知识必须具备的基础知识,是本单元中最基本的概念.

复习引入时,教师要通过新旧知识的联系,抓住生长点, 对已掌握的“整除”的意义进行复习,通过观察算式的特征和结果,首先将算式分为除尽和除不尽两大类,然后再对算式中被除数、除数与商各种不同情况的观察、比较,使整除的概念从除尽的概念中分化出来.从而理解整除的意义,明白整除与除尽的关系.

约数和倍数是建立在整除的基础上的,所以教学求一个数的约数和倍数的时候,首先要利用整除式帮助学生理解除数和商是被除数的一对约数,进而发现约数可以一对一对的找,在学生学会找约数的基础上,教师可以给学生创设一个研讨,发现约数特点的情景.学生掌握了约数的特点,更能提高找约数的能力.找倍数的方法学生很容易理解,难点是对一个数的.倍数是无限的这个特点的认识,教师可以在练习中设计集合圈中加省略号和不加省略号两种题目,让学生通过对比讨论加深认识.

教学设计示例

约数和倍数的意义

教学目标

1、掌握整除、约数、倍数的概念.

2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.

教学重点

1、建立整除、约数、倍数的概念.

2、理解约数、倍数相互依存的关系.

3、应用概念正确作出判断.

教学难点

理解约数、倍数相互依存的关系.

教学步骤

一、铺垫孕伏(课件演示:数的整除 下载)

1、口算

6÷5 15÷3 23÷7

1.2÷0.3 24÷2 31÷3

2、观察算式和结果并将算式分类.

除尽

除不尽

6÷5=1.2 15÷3=15

1.2÷0.3=4 24÷2=12

23÷7=3……2

31÷3=10……1

3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除.

4、寻找具有整除关系的算式.

板书:15÷3=515能被3整除

5、分类除尽

除不尽

不能整除

整除

6÷5=1.2

1.2÷0.3=4

15÷3=15

24÷2=12

23÷7=3......2

31÷3=10......1

二、探究新知

(一)进一步理解”整除“的意义.

1、整除所需的条件.

(1)分析:24能被2整除,15能被3整除;

23不能被7整除,31不能被3整除;(商有余数)

6不能被5整除;(商是小数)

1.2不能被0.3整除;(被除数和除数都是小数)

(2)引导学生明确:第一个数能被第二个数整除必须满足三个条件:

a、被除数和除数(0除外)都是整数;

b、商是整数;

c、商后没有余数.

板书:整数整数整数(没有余数)

15÷3=5

2、用字母表示相除的两个数,理解整除的意义.

(1)讨论:如果用字母a和b表示两个数相除,那么必须满足几个条件才能说a能被b整除?

(板书:a÷b)

学生明确:a和b都是整数,除得的商正好是整数而没有余数,我们就说a能被b整除.

(板书:a能被b整除)

(2)继续讨论:在什么情况下才能说a能被b整除?(板书:b≠0)

学生明确:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除(也可以说b能整除a).

3、反馈练习.

(1)下面的数,哪一组的第一个数能被第二个数整除?

29和336和121.2和0.4

(2)判断下面的说法是否正确,并说明理由.

a.36能被12整除.

b.19能被3整除.()

c.3.2能被0.4整除.()

d.0能被5整除.()

e.29能整除29.()

4、”整除“与”除尽“的联系和区别.

讨论:综合以上所学知识讨论,”整除“和”除尽“有什么联系?又有什么区别?

篇4:五年级数学《约数和倍数》教案

教学目的:

1、知识与能力:使学生掌握数的约数和倍数的求法。使学生知道一个数的约数是有限个,一个数的倍数是无限个。

2、过程与方法:借助直观,使学生进一步认识约数和倍数的意义。

3、情感与态度:培养学生的的序思维能力

教学重点:掌握找一个数的约数和倍数的方法。

教学过程:

一、复习

1、说出倍数和约数的意义。

2、下面每组数中,哪个数是哪个数的倍数,哪个数是哪个数的约数?

12和415和51.2和4

3、下面的`数,哪些是12的约数,哪些是2的倍数?

123456812

二、新课

1、求一个数的约数

①教学例二,出示例2:12的约数有哪几个?

教师:要求12的约数有哪几个也就是求什么?(哪些数能整除12)

a、12里面有几个12?12÷12=1

b、这个算式说明什么?(12能整除12)

所以12是12的约数。

c、根据这个算式你还能想到什么?(12里有12个1)

12÷1=12,说明1能整除12,所以1是12的约数,用同样的方法找12的约数。

②12有没有比12小的约数?有没有比12大的约数?

12的约数一共有多少个?

12的约数

③做一做

④:一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

2、一个数的倍数

①教学例3:2的倍数有哪些?

师:要求2的倍数有哪些就是求什么?

1个2算式2×1=2

2个2算式2×2=4

2的倍数有多少个?(无限个)

最小的倍数是多少?最大的倍数是多少?

2的倍数

省略号表示什么?

②做一做

③:怎样求一个数的倍数?(用这个数乘以自然数)

一个数的倍数有多少个?(无限个)

最小的倍数是多少?(本身)

三、巩固练习做练习十一5、6题

注意:40以内7的倍数是有限的,所以不必用省略号,12的倍数是无限的,所以要用身略号。

四:

课后小记:

篇5:约数和倍数的意义数学教案

约数和倍数的意义数学教案

一、教法建议

【抛砖引玉】

通过本单元的教学要使学生掌握整除、约数、倍数、质数、合数、质因数、公约数、最大公约数、公倍数、最小公倍数等概念;知道有关概念之间的联系和区别,能够有条理、有根据地进行思考;能使学生掌握能被2、5、3整除的数的特征;会分解质因数;会求最大公约数(两个数)和最小公倍数。

(一)教学整除的概念

因为整除这部分知识,学生在第八册教材中已接触过,因此在教学整除的概念时要注意抓住三点。

1.复习“整除”的意义。

例如:你能说出整除的含义吗?下面哪个算式的第一个数能被第二个数整除?

23÷7=3……2 6÷5=1.2

15÷3=5 24÷2=12

2.用定义的形式对“整除”加以概括,并用字母表示。

两个数相除,如果用字母表示,可以这样说:整数a除以整数b (b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也就可以说b能整除a)。

3.突出强调除数不有是0。

(二)教学约数和倍数的概念

约数和倍数的概念是本单元最基本的概念,教学时要抓住五点。

1.通过“整除”引出“约数”和“倍数”的概念后,加以概括。

例如:15÷3=5,15能被3整除,我们就说15是3的倍数,3是15的约数。

如果整数a能被整数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数。

2.要强调倍数和约数是一对密不可分的概念。它们是互相依存的关系。

3.要掌握求一个数的“约数”和“倍数”的方法,并掌握其各自的特征。

在掌握一个数的约数和倍数求法的基础上,重点说明其特征:

一个数的约数的个数是有限的,其中最小的约数是1最大的约数是它本身。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。

可讨论一下为什么?

4.强调一个数既可以是另一个数的约数,又可以是其它数的倍数。

如:12既是60的约数,又是6的倍数。

5.要重点处理好0的问题。

根据约数和倍数的概念,0是任何自然数的倍数,任何自然数都是0的约数。但研究分解质因数、最大公约数、最小公倍数时,是把0除外的,所以要着重指出在后面研究的内容里不包括0,这样可以减少不必要的麻烦。

(三)教学能被2、5、3整除的数的特征主要把握以下四点

1.通过观察、引导,掌握能被2、5、3整除的数的特征。

2.能根据特征进行判断。

3.通过能被2整除的特征,引出奇数和偶数的概念。

能被2整除的数叫偶数,不能被2整除的数叫做奇数。

4.深化知识,沟通知识之间的联系。

(1)在□中填上几符合要求。

5□,能被2整除又能被3整除。

1□0,能被2、3、5同时整除。

(2)能被9整除的数,能否一定被3整除?为什么?

(四)教学质数、合数、分解质因数要抓住四点

1.通过对每个数的约数的个数及特点进行分类,引出质数、合数的概念。

一个数,如果只有1和它本身两个约数,这样的数叫做质数(也叫做素数)。

如:2、3、5、7、11都是质数。

一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

如:4、6、8、9、10、12都是合数。

2.重点说明“1”既不是质数,也不是合数。

3.能利用质数与合数的概念,判断一个数是质数还是合数。

如:下面哪些数是质数?哪些数是合数?

19、21、43、67、2、89

4.掌握质因数、分解质因数的概念和分解质因数的方法。

(1)每个合数教可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。

如:60=2×2×3×5,2、2、3、5都是60的质因数。

(2)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

(3)通常用短除法来分解质因数,这样比较简便。

把一个合数分解质因数,先用一个能整除这个合数的质数(通常从最小的开始)去除,得出的商如果是质数,就把除数和商写成相乘的形式;得出的商如果是合数,就照上面的方法继续除下去直到得出的商是质数为止,然后把各个除数和最后的商写成连乘的形式。

(五)教学公约数和最大公约数要抓住以下四个方面

1.公约数和最大公约数的概念

几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

例如:1、2、4是8和12的公约数;4是8和12的最大公约数。

2.通过公约数的概念引出互质数的概念

公约数只有1的两个数,叫做互质数。

例如:5和7是互质数,7和9也是互质数。

3.求两个数最大公约数的方法

为了简便、通常写成下面的形式。

2 18 30 ……用公有的质因数2除

3 9 15 ……用公有的质因数3除

3 5 ……除到两个商是互质数为止

把所有的除数乘起来,得到18和30的最大公约数是2×3=6。

求两个数的最大公约数,一般先用这两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来。

在除的过程中,有时也可以用两个数的公约数去除。

4.求最大公约数的两种特殊情况

(1)如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。

(2)如果两个数是互质数,它们的最大公约数是1。

例如:7和21的最大公约数是7。

8和15的最大公约数是1。

对于能直接看出最大公约数的就不再用短除法来求了。

(六)教学公倍数和最小公倍数,要抓住以下四个方面

1.公倍数和最小公倍数的概念。

几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

例如:12、24、36、……都是4和6的公倍数,12是4和6的最小公倍数。

2.求最小公倍数的方法。

通常我们用分解质因数的方法来求几个数的最小公倍数。为了简便,通常写成下面的形式:

(1)求18和30的最小公倍数。

2 18 30 ……用公有的质因数2除

3 9 15 ……用公有的质因数3除

3 5 ……除到两个商是互质数为止

把所有的除数和商连乘起来,得到18和30的最小公倍数是2×3×3×5=90。

求两个数的最小公倍数,先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来。

(2)求8、12和30的最小公倍数。

求三个数的最小公倍数,通常这样做:

2 8 12 30 ……用三个数公有的质因数2除

2 4 6 15 ……4和6还有质因数2,再用2除以这个数,把15移下来

3 2 3 15 ……3和15还有公有的质因数,再用3除这两个数,把2移下来

2 1 5 ……2、1和5每两个数都是互质数,除到这里为止

在讲求最小公倍数的方法时,重点讲明算理。

3.求两个数最小公倍数的特殊情况。

(1)如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍 数。

如:12和48的最小公倍数是48。

(2)如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

如:7和8的最小公倍数是56。

以后计算时,如果能直接看出最小公倍数是多少,可以不写出计算过程。

4.通过讨论,比较求两个数的最小公倍数与求三个数的最小公倍数的相同点和不同点;比较求最大公约数与求最小公倍数的相同点和不同点。

【指点迷津】

1.“整除”和“除尽”有什么联系和区别?

在整数除法里,a÷b=c,除得的商c如果是整数,而没有余数,我们就说,a能被b整除,或者说b能整除a。如:15÷3=5,我们说15能被3整除,或者说3能整除15。

在除法里,a÷b=c,数a、数b、以及商c不见得是整数,但没有余数,我们就说a能被b除尽,或者说b能够除尽a。例如,10÷4=2.5、1.5÷3=0.5、1.5÷0.3=5,都可以说被除数a能被除数b除尽。

从上面可以看出,整除是限定在整数除法里的,而“除尽”就不一定限于整数除法。我们还可以用集合图表示其关系:如果a能被b整除,a就一定能被b除尽;反之,a能被b除尽,a却不一定能被b整除。即整除可以说是除尽,但除尽不一定是整除,整除是除尽的一种特殊情况。

2.“约数”和“倍数”有什么关系?又有什么不同?

如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。如12÷3=4,我们就说12是3的倍数,3是12的约数。不能说12是倍数,3是约数。由此可见,倍数和约数是相互依存的。

为了说明它们的不同点,请看下表。

个数

最小

最大

一个数的约数

有限

是1

是本身

一个数的倍数

无限

是本身

没有

3.什么叫质因数?什么叫分解质因数?

把一个合数分解成若干质数连乘积的形式,每一个质数就是这个合数的质因数。如:12=2×2×3,2、3叫12的质因数。

分解质因数就是把一个合数写成若干质数连乘积的形式。如12=2×2×3。

4.“0”是偶数吗?最小的偶数是几?

能被2整除的数叫做偶数,因为“0”能被2整除,所以“0”是偶数。但在小学讲数的整除时,是在自然数的范围内,不包括“0”,所以我们可以不说“0”是偶数。

最小的偶数是几?先要搞清范围,在自然数范围内,最小的偶数是2,到中学里学了负数就不存在最小的偶数了。

二、学海导航

【思维基础】

1.举例说明什么叫整除?

例如:20÷5=4,20能被5整除,或5能整除20。

整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)。

2.什么是约数和倍数?它们之间有什么关系?

如果整数a能被整数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数。

举例:20÷5=4,20能被5整除,我们就说20是5的倍数,5是20的约数。

约数和倍数是互相依存的。

3.找出60的约数,4的倍数。

60的约数有:1、2、3、4、5、6、10、12、15、20、30、60。

4的倍数有:4、8、12、16、20……

从上面可以看出:一个数约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。

4.说说下面的数哪些能被2整除?哪些能被3整除?哪些能被5整除?各自的特征是什么?

21、54、65、204、280、58、83、114、75、320、87、155

能被2整除的数有:54、204、280、58、114、320。

能被3整除的数有:21、54、204、114、75、87。

能被5整除的数有:65、280、75、320、155。

由此可知:

个位上是0、2、4、6、8的数,都能被2整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除。

个位上是0或者5的数,都能被5整除。

5.说出什么叫质数、什么叫合数并判断下面各数哪些是质数、哪些是合数。

3、27、41、6、11、19、69、57、97

一个数,如果只有1和它本身两个约数,这样的数叫做质数(也叫做素数)。

一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

质数有:3、41、11、19、97

合数有:27、6、69、57

6.把下面各数分解质因数,并说出分解质因数的方法。

12、15和20的最小公倍数是2×2×3×5=60。

求两个数的最小公倍数,先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来。

【学法指要】

1.三个连续自然数的乘积为什么一定是6的倍数?

思路分析:因为任意三个连续自然数里,至少有一个是2的倍数和一个是3的倍数,而2的倍数与3的倍数的乘积,就必然是6的倍数。

2.书架上有96本科技读物,如果不一次拿走,也不是一本一本地拿走,要求每次拿走的本数同样多,而且正好取光,问共有多少种拿法?

思路分析:通过读题,便可理解题目的意思,就是求96的约数的个数是多少,而题目告诉我们如果不一次拿走,也不是一本一本地拿走,实际是要我们把1和96这两个约数扣除才是要求的答案。

96的约数的个数:(5+1)×(1+1)=12(个)

扣除约数1和96,则约数的个数是:12-2=10(个)

答:共有10种拿法。

3.在1~100的自然数中,既没有约数2,又没有约数3,还没有约数5的数,共有多少个?

思路分析:在1~100的自然数中,把有约数2的数、有约数3的数、有约数5的数扣除,就是要求的答案的个数。

在1~100的自然数中,

有约数2的数有:100÷2=50(个)

有约数3的数有:100÷3=33(个)……1

有约数5的数有:100÷5=20(个)

有约数2、3的数有:100÷(2×3)=16(个)……4

有约数3、5的数有:100÷(3×5)=6(个)……10

有约数2、5的数有:100÷(2×5)=10(个)

有约数2、3、5的数有:100÷(2×3×5)=3(个)……10

解:在1~100的自然数中,既没有约数2,又没有约数3,还没有约数5的自然数共有:100-=26(个)

4.用0、2、4、5、7组成一个五位数,使这个数是除以5余4的最小的五位数。

思路分析:用0、2、4、5、7组成的五位数有很多,如24570、24507、24057、20457……满足最小五位数这个条件的最高位上的数字必须是最小 的那个数字,而这五个数字其中最小的那个数字是0,0在这五位数中不能排首位,所以只能把2排在最高位打头。题目的要求是最小的五位数,千位上的数字必须是0,百位上是5,十位上是7,个位上是4。那么为什么百位上不是4呢?因为题目的要求是除以5余4。所以百位上的数字不能是4,只能把4放在个位上。

解:用0、2、4、5、7组成的一个五位数,使这个数除以5余4,还须是最小的五位数,那只能是20574。

5.一个长方体的3个侧面积分别为s1=20平方厘米,s2=15平方厘米,s3=12平方厘米。求这个长方体的体积是多少?

思路分析:根据长方体6个面的特征,我们知道:每个长方体的6个面都是相对的两个面的面积相等。但是已知的3个面的面积都不相等,我们就可以推出:已知的3个面一定相交于一个顶点。这样,我们就可以画出这个长方体的图。

然后把已知条件都标在图上,假设这个长方体的长、宽、高分别为a、b、c,s1=ab=20,s2=ac=15,s3=bc=12(如图所示)。求这个长方体的体积,必须知道这个长方体的长、宽、高各是多少。但是长、宽、高都没直接给出。不过,长、宽、高这三个数中,每两个数的乘积我们都知道,如果把每两个数的乘积再相乘,里面一定有三个数之积。我们仔细分析:ab×ac×bc,根据乘法的交换律和结合律,可以变换为(abc)×(abc)。如果我们能把3个侧面积的积,分成两个相同的数的乘积,问题就可以迎刃而解。abc就是长方形的体积。那么3个侧面积的乘积怎样分成两个相同的数相乘呢?把这几个相乘的数分解质因数。

解: 20×15×12

=2×2×5×3×5×3×2×2

=(2×2×3×5)×(2×2×3×5)

=60×60

∴abc=60

答:这个长方体的体积是60立方厘米。

【思维体操】

1.有甲、乙两数,它们的最大公约数是6,最小公倍数是72,求甲、乙二数。

解法一: 72=2×2×2×3×3

=2×2×(2×3)×3

=4×6×3

4×6=24

6×3=18

答:甲、乙二数分别是24和18。

解法二: 72÷6=12

12=2×2×3

因为,2与6(2×3=6)不是互质数,所以,只有4(2×2=4)与3才是互质数。

6×4=24

6×3=18

答:甲、乙二数分别是24和18。

评析:解法一把甲、乙二数的最小公倍数分解质因数,从这个质因数连乘式中找出它们的最大公约数,再组成一个连乘式。这个连乘式中除去有它们的最大公约数外,必须有两个互质数。用这两个互质数分别乘以它们的最大公约数,就可以求出这两个数。

解法二用甲、乙二数的最小公倍数除以它们的最大公约数,所得的商必是甲、乙二数取出最大公约数后,所剩下的两个互质数的积。因此,把所求得的商再分解因数,并搭配成两个互质数,最后用这两个互质数分别乘以它们的最大公约数,就可以求出这两个数了。这两种解法各有千秋,一般采取第一种解法的比较多。

2.从1+2+3+……+1991所得的和是奇数还是偶数?

解法一:求出它们的和是多少?

=1983036

所以它们的和是偶数。

解法二:从1到1991的数中,偶数有1990÷2=995(个),其和为偶数;有995+1=996(个)奇数,其和为偶数。因为两个偶数的和一定是偶数。所以,1+2+3+……+1990+1991的和是偶数。

评析:解法一是先确定其和是奇数还是偶数,根据求连续自然数和公式,求出它们的和,然后知道和是偶数。解法二是先确定从1到1991这1991个自然数中奇数的个数和偶数的个数,然后根据自然数中任意几个偶数的和还是偶数,单数个奇数的和仍为奇数,双数个奇数的和为偶数这一特征,来确定其和是奇数还是偶数。

这两种解法,第一种是采用计算的方法比较麻烦,我们提倡第二种方法,它是根据这一列数的特征,按奇、偶数排列,来找出答案的。

3.在1、2、4、6、12、24、36、48中,哪些数是24的约数?哪些数是3的倍数?

分析:由于题目给出了有限的几个数,所以在思考24的约数以及它的倍数时,只能从题目中的已知的这几个数中选择。这比写出某个数的全部约数或指某数的几个倍数的题目,有一定难度。

解答:本题24的约数有1、2、4、6、12、24,24的倍数有24、48两个。

4.从小到大写出10个有约数11的数。

分析:由于某数有约数11,说明某数能被11整除。某数有约数11,实质上某数是11的倍数,所以只要从小到大写出11的倍数即可。

解答:从小到大10个有约数11有数是11、22、33、44、55、66、77、88、99。

5.既有约数2,又有约数3的50以内最大数是几?

分析:解答时首先要理解题意,同时要注意得数的范围。

解答:既有约数2,又有约数3的'最小数是6,50以内6的倍数有6、12、18、24、30、36、42、48。其中最大的数是48,因此48就是本题的答案。

6.三个连续自然数的乘积为什么一定是6的倍数?

分析:因为任意三个连续自然数时,至少有一个是2的倍数和3的倍数,而2的倍数与3的倍数的乘积,必须是6的倍数。

7.在1~100的自然数中,既没有约数2,又没有约数3,还没有约数5的数,共有多少个?

分析:在1~100的自然数中,把有约数2的数,有约数3的数、有约数5的数扣除,就是问题所求。所以解这道题时先分别求出1~100的自然数中有约数2、3、5数的个数。

解答:在1~100的自然数中:

有约数2的数有:100÷2=50(个)

有约数3的数有:100÷3=33(个)……1

有约数2、3的数有:100÷(2×3)=16(个)……4

有约数2、5的数有:100÷(2×5)=10(个)

有约数3、5的数有:100÷(3×5)=6(个)……10

有约数2、3、5的数有:100÷(2×3×5)=3(个)……10

在1~100的自然数中,既没有2的约数,又没有3的约数,还没有5的约数的自然数共有:

100-=26(个)

三、智能显示

【心中有数】

(一)本单元学习的主要内容

(二)请你考考自己

选择题。把正确答案的字母填入括号内。

(1)第一个数能被第二个数整除的是。

(A) 15和2 (B) 3和8 (C) 1.5和5 (D) 24和6

(2)两个奇数的和是( )。

(A)质数 (B)合数 (C)可能是质数,也可能是合数 (D)可能是质数、1或者合数

(3)两个数的( )个数是有限的。

(A)公约数 (B)公倍数 (C)最大公约数 (D)最小公倍数

(4)在自然数中,凡是7的倍数( )。

(A)都是偶数 (B)都是奇数 (C)都是质数 (D)可能是奇数,也可能是偶数

(5)如果a÷b=5,那么( )。

(A) a一定能整除b (B) a可能整除b

(C) b一定是a的约数 (D) b可能是a的约数

(6)甲数=2×3×5×a,乙数=2×3×7×a,当a=( )时,甲、乙两数的最大公约数是30。

(A) 2 (B) 3 (C) 5 (D) 7

【动脑动手】

1.奶奶家有一个天达牌电子表,每起24分钟亮一次灯,每到整点钟响一次铃。早晨6点时,这个电子表既响铃又亮灯。那么,下一次既响铃又亮灯时是几点钟?

2. 6与哪个数的最大公约数为3,而最小公倍数为30。

3.为迎接30年大庆少先队员跳集体舞,不论每列4人、5人或6人,都能排成一个长方形队伍而无剩余,问少先队员至少有多少人?如果人数在150到200之间,那么少先队员有多少人?

参考答案:

1.思路分析:因为这个电子表6点整的时候既响铃又亮灯,又因为它每走24分钟亮一次灯,所以从6点钟起电子表走的分钟是24分钟亮一次,只要是24分钟的倍数电子表都会亮灯。也就是说,下一次既响铃又亮灯时,电子表所走的分钟数一定是24的倍数。同样道理,因为电子钟每到整点钟响一次铃,即电子表每走60分钟响一次铃。那么下一次既响铃又亮灯时,电子表所走的分钟数也一定是60的倍数。所以下一次既响铃又亮为时,电子表所起的分钟数一定是24和60的公倍数,而且是它们的最小公倍数。

解:(1)求24和60的最小公倍数。

=120

(2)计算走了几个小时。

120÷60=2(小时)

(3)计算下一次既响铃又亮灯时是几点钟。

6+2=8(点)

答:下一次既响铃又亮灯时是上午8点钟。

2.思路分析:因为两数的乘积等于这两数的最大公约数与最小公倍数的乘积。

解:设所求的数是a,则6a=3×30,a=15,所以所求的数是15。

3.思路分析:根据题意可知,少先队员人数分别能被4、5、6整除,所以人数是4、5、6的公倍数,题目要求至少有多少人,因此要求4、5、6的最小公倍数。

解:=60(人)

答:少先队员至少有60人。

60×3=180(人)

答:如果少先队员在150至200之间,那么少先队员有180人。

【创新园地】

1.兔子出生两个月后就能生一对小兔,这一对小兔两个月后又能生一对小兔。如果年初养了初生的一对小兔,一年后共有几对兔子(不考虑意外死亡)?

2.有近3米长绳子,把它分别剪成长6厘米、8厘米或9厘米的短绳,结果都剩下3厘米,求绳长。

3.有一张长为105厘米、宽为75厘米的大纸,裁成大小相同的小正方形纸,要求无多余。问至少可裁多少张?

4.体育室有96根跳绳,如果不是一次拿走,也不是一根一根地拿走,要求每次拿走的根数同样多,而且正好取光,问共有多少拿法?

参考答案:

1.年初的一至兔子,到3月份生一对;到两个月后的5月份,年初的一对兔子和3月份生的一对兔子,2对兔子生2对;到7月份,4对兔子生4对;到9月份8对兔子生8对;到11月份16对兔子生16对;到第二年的1月正好一年,就有32对兔子生32对。

解:1+1+2+4+8+16+32=64(对)

答:一年后共有64对兔子。

2.解:=72

72×4+3=291(厘米)=2米91厘米

答:绳长2米91厘米。

3.解:(105、75)=15

(105÷15)×(75÷15)=35(张)

答:至少可裁35张。

4.分析:根据题意求共有多少种拿法?与96的约数的个数有密切的关系。题中告诉我们如果不一次拿走,也不是一根一根地拿走。显然问题所求就是求96的所有约数个数去掉1和96这两个约数的个数的差。

解:96的约数有:1、2、3、4、6、8、12、16、24、32、48、96共12个。

12-1-1=10(个)

答:共有10种拿法。

【同步题库】

1.先口算,然后对符合整除意义的式子后面的括号里画“√”,对不符合整除意义的在括号里画“×”。

93÷3= ( ) 19÷2= ( )

3.5÷5= ( ) 4÷4= ( )

7.4÷3.7= ( ) 4÷0.8= ( )

2.填空

(1)在20、4.8、92、、0、0.3、111、1中,( )是自然数,( )是整数。

(2)写出小于9的所有自然数( );比5小而又不小于0的整数有( )。

(3) 29的约数有( );36的约数有( )。

(4)在30~50中6的倍数有( )。

3.判断下面各题,对的画“√”,错的画“×”。

(1)凡是能够除尽的一定能够整除。 ( )

(2)自然数和零都是整数。 ( )

(3)一个数的倍数都比它的约数大。 ( )

(4)1是所有自然数的约数。 ( )

(5)任何一个数都有约数。 ( )

4.下面的每组数中,哪一个数是另一个数的倍数,哪个数是另一个数的约数。

180和60 36和36 19和133

5.把正确的答案填在括号里。

(1)最小的一位数是( )

①0 ②0.1 ③1

(2)一棵桃树上结了桃,表示桃的个数是( )。

①整数 ②分数 ③小数 ④自然数

(3)下面三种说法正确的是( )

已知a能整除7,那么a是( )

①14 ②必定是7 ③是1或7。

(4) 73是73的( )。

①约数 ②倍数 ③约数也是倍数

6.在下面的圈内填上适当的数

16的约数 30以内的8的倍数 91的约数

7.下图左图里的数能被右图里的哪些数整除?用直线连线来。

8.既有约数5,又是2的倍数的最小三位数几?

9.100以内除以2或除以5有余数的数一共有多少个?

10.数a是60的约数,又是15的倍数,数a可能是几?

11.根据已知条件,求出a、b的值。

(1)已知:a÷b=3.5,a÷b=3……7

求:a=( );b=( )

(2)a÷b=3,a-b=16

a=( ),b=( )

12.在( )里填上最小的自然数。

【参考答案】

1.(√) 2.(×)

(×) (√)

(×) (×)

2.(1)(20、92、111、1)是自然数,(20、92、111、1、0)是整数。

(2)小于9的自然数有(8、7、6、5、4、3、2、1);比5小而又不小于0的整数有(4、3、2、1、0)

(3)29的约数有(1、29);36的约数有(1、2、3、4、6、9、12、18、36)

(4)30~50中6的倍数有(30、36、42、48)

3.判断题

(1)(×)(2)(√)(3)(×)(4)(√)(5)(×)

4.180是60的倍数,60是180的约数;36是36的倍数,36是36的约数;19是133的约数,133是19的倍数。

5.选择题

(1)最小的一位数是(1)

(2)表示桃的个数是(自然数)

(3)那么a是(1或者7)

(4)73是73的(约数也是倍数)

6.略 7.略

8.既有约数5,又是2的倍数的最小数是10,10的倍数中最小的三位数是100,所以,既有约数5,又是2的倍数的最小三位数是100。

9.这道题只要求出除以2或除以5没有余数的数有多少个,再用100减去这个数即可。

除以2没有余数的数有100÷2=50(个),除以5没有余数的数有100÷5=20(个),其中除以2除以5都没有余数有100÷(5×2)=10(个),它们每10个数中出现一次。于是100以内除以2整除以5没有余数的共有50+20-10=60(个)。那么100以内除以2或除以5有余数的数就应该有:

100-60=40(个)

10.数a可能是15、30、45、60。

11.(1)a÷b=3.5得知a是b的3.5倍,a÷b=3……7,可知a比b的3倍多7,而b的3.5倍又比它的3倍多0.5倍,0.5倍与7相对应,可以求b

b=7÷(3.5-3)=14,a=14×3.5=49

(2)a÷b=3,得知a是b的3倍,又知a-b=16,也就是a比b多16,此题是差倍问题。先求b,再求a。

b是16÷(3-1)=16÷2=8

a是8×3=24

12.

篇6: 五年级数学《约数和倍数》教学反思

3月10日,我上了“约数和倍数”一课,又经过丁主任的指导,感触颇深。

一、关于目标定位

在设计这节课时,首先确定了以理解“整除”、“约数”和“倍数”的意义及相互间的关系、整除中“1”和“0”两个特殊的数的情况作为知识目标;判断是否是整除、正确叙述整除、约数和倍数关系及在概括整除的意义环节中培养观察、类推等能力作为技能目标。这仅仅是在设计教案之初设定的目标,是完整教案中的一部分,它的定位准确仅是上好这节课的前提,而非保证。而更重要的是在具体教学过程设计中体现出的目标定位,这是备好一节课的基本条件。最重要的,则是教学实施过程中体现的目标定位,这才真正是评定一节课的目标定位的依据。我在这一节课的设计中,即上述前两个方面,目标定位是比较明确的,但最关键的第三个方面即实施过程中所体现出的目标定位相对来说就没有足够的.重视,因此也就使得原先设定的目标没有得到最好的落实。这使我感觉到,目标的定位并非在教学设计时设定好了就可以“一劳永逸”,而是一定要贯穿到整个教学流程的始终。

二、关于教学设计

我在设计这节课时,在设定目标之后就在目标的指引下按“一般流程”来设计教学过程,并参照了一些好的课例,课的知识点、环节、问题情境的设计是很完整的。但现在想来,如果在设计教案时首先确定一个大的框架,然后再进行填补,肯定能使教学思路更为清晰,重点更为突出。就像搭一个建筑物,先搭一个大框架,再逐步填充,比脑子里想着结构一块砖一块砖垒上去更加容易把握住。我在这节课的设计之初,有一个比较明确的大体框架,但在具体设计时,则一个一个环节细细推敲,甚至于一句话都要推敲得令自己满意为止。但这样随着“推敲”的逐步深入与细化,课的大框架即整体思路反而淡化了,甚至有一些模糊,这显然是得不偿失的。这使我感觉到,要备好一节课,必须始终把握住一个整体的框架,而不能过于重视一些细枝末节的东西,这样才能把握住课的重点,形成一个清晰的教学思路。

三、关于教学实施

为了上好这节课,我首先想到了摆正教师与学生的主导与主体地位,于是精心设计了每一个环节,能让学生自主探究的决不包办替代,这在如今形势下应该算是“应时之举”。课的第一部分是理解“整除”的意义,我也组织了学生探究,即算、分类、找特征、概括意义;最后关于两个特殊的数“0”与“1”,也安排了一组填充来让学生找规律。但在具体实施中,由于怕“讲过头”有越位之嫌,关键处学生即使探究不出什么来也不敢讲,却不想导致了“导”得太多,完全违背了初衷,甚至像兜圈子,也因而坐失良机,降低了效率。该出手时还是得出手,而不是从一个极端走向另一个极端,学生无法探究出的或者是根本不需要由学生探究的,该讲授还是要讲授,该自学的还是自学,我想这样才是对新课改的正确把握。

要提高数学教学的质量,精讲多练无疑是最有效的策略。要做到这一点,我们要做的还有很多,很多。

篇7:约数和倍数的意义(人教版五年级教案设计)

教学建议

教材分析

约数和倍数的意义是在学生已经学过整除知识的基础上进行教学的,这部分内容是后面学习质数和合数、质因数、分解质因数、求最大公约数、求最小公倍数等知识必须具备的基础知识,所以是本单元中最基本的概念.

教材在复习“整除”的基础上概括出“整除”这个概念,然后引出约数和倍数的概念.在整数范围内,除法算式可以分为整除和不能整除两大类.引入了小数以后,除法算式又可以分除尽和除不尽两大类.这里的除尽,不但包含了整除的情况,还包含了被除数、除数或商是有限小数的情况,所以在教学中要列举各种有代表性的实例,让学生通过对算式中被除数、除数与商各种不同情况的观察、比较,使整除的概念从除尽的概念中分化出来.从而理解整除的意义,明白整除与除尽的关系.

学生学过约数和倍数的意义后往往把“倍数”和“几倍”混同起来,所以教学时应通过对比练习,使学生悟出两者的区别(可以说8是4的倍数,也可以说8是4的2倍;但是不可以说0.8是0.4的倍数,只能说0.8是0.2的2倍),从而进一步理解和掌握约数和倍数的本质.

教法建议

约数和倍数的意义是在学生已经学过整除知识的基础上进行教学的,这部分内容是后面学习质数和合数、质因数、分解质因数、求最大公约数、求最小公倍数等知识必须具备的基础知识,是本单元中最基本的概念.

复习引入时,教师要通过新旧知识的联系,抓住生长点, 对已掌握的“整除”的意义进行复习,通过观察算式的特征和结果,首先将算式分为除尽和除不尽两大类,然后再对算式中被除数、除数与商各种不同情况的观察、比较,使整除的概念从除尽的概念中分化出来.从而理解整除的意义,明白整除与除尽的关系.

约数和倍数是建立在整除的基础上的,所以教学求一个数的约数和倍数的时候,首先要利用整除式帮助学生理解除数和商是被除数的一对约数,进而发现约数可以一对一对的找,在学生学会找约数的基础上,教师可以给学生创设一个研讨,发现约数特点的情景.学生掌握了约数的特点,更能提高找约数的能力.找倍数的方法学生很容易理解,难点是对一个数的倍数是无限的这个特点的认识,教师可以在练习中设计集合圈中加省略号和不加省略号两种题目,让学生通过对比讨论加深认识.

教学设计示例

约数和倍数的意义

教学目标

1、掌握整除、约数、倍数的概念.

2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.

教学重点

1、建立整除、约数、倍数的概念.

2、理解约数、倍数相互依存的关系.

3、应用概念正确作出判断.

教学难点

理解约数、倍数相互依存的关系.

教学步骤

一、铺垫孕伏(课件演示:数的整除 下载)

1、口算

6÷5 15÷3 23÷7

1.2÷0.3 24÷2 31÷3

2、观察算式和结果并将算式分类.

除  尽 除  不  尽

6÷5=1.2      15÷3=15

1.2÷0.3=4     24÷2=12 23÷7=3……2

31÷3=10……1

3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除.

4、寻找具有整除关系的算式.

板书: 15÷3=5     15能被3整除

5、分类

除  尽 除  不  尽

不能整除 整  除

6÷5=1.2

1.2÷0.3=4 15÷3=15

24÷2=12 23÷7=3……2

31÷3=10……1

二、探究新知

(一)进一步理解“整除”的意义.

1、整除所需的条件.

(1)分析: 24能被2整除,15能被3整除;

23不能被7整除,31不能被3整除;(商有余数)

篇8:小学五年级数学《整除、约数和倍数》教案设计

小学五年级数学《整除、约数和倍数》教案设计

教学目标:

使学生在理解自然数,整数意义的基础上理解整除。约数和倍数的意义。能正确的判别整除和除尽,约数和倍数可含义,为学生求最带公约数和最小公倍数大好基础。

教学过程:

一、复习

1、学生回答

(1)什么叫做自然数?

(2)哪些是整数?

(3)整数和自然数有什么关系?

二、引入新课

1、观察除法算式

15÷3=31.5÷3=0.5

24÷4=63.6÷09=4

80÷20=416÷3=5……1

2、找出左边三题和右边三题有什么不同?

3、回答提问

左边:被除数、除数、商都是自然数

右边:被除数、除数、商是小数且有些还有余数

4、揭示整除的意义

5、讲解约数也倍数两个概念。

6、例题讲解

15除以5,商是3,没有余数----15能被5整除

如果数a能被数b整除,a就叫b的倍数,b就叫做a的`约数。

7、整除与除尽的概念区别

除尽包括整除,能除尽的不一定能整除,能整除的一定能除尽。

三、巩固练习

四、总结布置作业

反思:数的整除应强调以下几点:

1、数的整除里的数指自然数。

2、只有当被除数和除数、商都是自然数的时候,且没有余数才能说整除,

3、应让学生通过多种渠道知道倍数和约数的概念。因为这在以后的教学中是非常重要的。

4、区别整除与除尽的关系。应通过多种例子让学生真正的了解。

篇9:五年级数学《因数和倍数》 说课稿

五年级数学《因数和倍数》 说课稿

一、说教材

《倍数和因数》是小学人教版课程标准实验教材五年级下册第2单元的内容,也是小学阶段“数与代数”部分最重要的知识之一。《因数和倍数》的学习,是在初步认识自然数的基础上,探究其性质,其中涉及到的内容属于初等数论的基本内容,相当抽象。在这一内容的编排上与以往的教材有所不同,没有数学化的语言给“整除”下定义,而是在本课时通过乘法算式借助整除的模型na=b直接给出因数与倍数的概念。在地位上,这节课是因数、倍数的概念引入,为本单元后面的内容、以及第四单元的最大公因数、最小公倍数提供了必需且重要铺垫。(注:教学目标、教学重、难点略)

二、说学情分析

本节课内容是五年级下册的内容,但采取借班上课的形式,选取了四年级的学生。在此之前,学生已经已经分段认识了亿以内的整数,基本完成了整数四则运算的学习(本学期刚学完)。但学生由于年龄的关系和个人思维发展的不同,在抽象能力和语言表达和思考的全面性方面需要老师的进一步引导。但由于本课是由乘法引入,且减少了以前老教材关于“整除”等繁杂概念,大大简化了叙述和记忆的过程,预期学生是可以理解并掌握的。

三、说设计理念

本节课的在设计理念上,本人总结四点特点,而这四个特点也

刚好在我教学的四个环节中生成:

第一,从生活切入,实现数形结合,完成概念的有意义建构。

数论的内容,如果从数字本身出发进行研究,对小学生来说就抽象了些。本节课,教师以解决问题“12个小正方形拼成一个长方形,有哪几种拼法?”为引子,让学生在解决这个问题的过程中,学习数学概念,避开了抽象,有利于帮助学生完成有意义的建构。同时,在解决问题时,学生思考“哪几种拼法”时,教师给出了不同的建议,可以想象,也可以在本子上画一画,这样既符合不同的学生思维发展有不同,老师有针对的引导,其次,使数与形有机地结合,这样,学生对概念的理解不仅是数字上的认识,而且能与操作活动与图形描述联系起来。学生经历了“先形后数”的过程,也就是知识抽象的过程。

第二,抓住学生思维的“最近发展区”,促使学生学会有序思考,从而形成基本的技能与方法。

能列举一个数的因数,是本节课技能目标中很重要的一部分。教学活动中,教师牢牢的抓住了学生思维的“最近发展区”,让学生在已有经验的基础上,独立的列举一个数的因数,在集体交流的过程中,教师适时的追问“用什么方法找的?”,让学生充分暴露个性化的思考方法,教师点拨出学生思维中各自的优势:一对一对的找;从“1”开始有序的找,再通过有效分析,取得学生整体的认同。这样的设计,让学生在独立思考——集体交流——互相讨论过程中,学习有序思考,从而形成基本技能与方法,做到即关注了过程,又关注了结果。

第三,充分借助生成的素材,实现有效的合作探索,引导学生在比较中归纳寻找共性。

一个数的因数的特征,单凭记忆也不难接受,为防止学生进行“机械学习”,教师提出问题“任意一个自然数的因数有什么特点?”,让学生观察6、11、16和24的因数,思考:一个数的因数的个数是有限的还是无限的?其中最小的是几?最大的是几?教师在研究方法方面给学生提供了引导,学生的思维有了明确的指向,便于通过探索发现规律。

第四,重视数学意义的渗透与拓展,力求用数学的本质吸引学生,促进学生学习数学的持续发展。

数学教学,要树立为学生的继续学习、终身发展服务的意识,不能关注短效、急功近利。本节课的设计,教师就注意到了学生的学习后劲。如在备课之初,在是否需要完美数的介绍这一抉择上,教师反复考虑:由于一节课的`时间有限,为表达因数与倍数的整体关系,很多老师在设计内容时,都在一个课时就将求因数和求倍数的方法全部包含。但最终本人选择舍去求倍数,把它放在了后面的课时学习,将完美数的介绍以及小故事纳入本节课的教学,虽然此内容和现行学习任务之间的关系都不大,但却是学生继续学习数学所需要的,因为只有有了文化的气息,数学才变得有了灵魂,让学生感觉数学的厚重、数学的魅力,才能让学生透过枯燥,产生对数学的积极情感,增强学习数学的持久动力。

四、说教学效果

上完课后,一些老师认为有部分学生并掌握到教学目标里的知识技能目标,未掌握到有效的方法,学生思维水平与表达方式有限,把这个内容拿来在四年级上并不合适。首先,本人认为,教师这节课的引导是有不足的,教学目标并未很好的实施。本人也曾经看过有大量名师找了四年级甚至三年级的学生上过这节课。从理论上说,只要基本能完成整数乘除法的学习的学生都可以进行这部分的学习。当然,放在每个年级来上出现的效果理应都会有不同。同样,这节课四年级的学生有着他们自己的思维水平,由于学生的思维发展水平有限,出现一些思维的无序是非常合理的,作为老师不能太关注短效,不能太急功近利。然而,究竟是否该放在四年级来上,如果可以上,究竟怎样把握教法与学法的度,各家之谈,本人仅是做了一次不成熟的尝试,只希望抛砖引玉,老师们可以给出更多的意见,作为一次有意义的谈论

篇10:小学五年级数学《找一个数的约数和倍数》教案设计

小学五年级数学《找一个数的约数和倍数》教案设计

教学目标:

1、使学生学会找出一个数的约数的方法,能正确、便捷地找出一个数的约数。

2、学会找出一个数的倍数的方法,能正确地找出一个数的一些倍数。

教学过程:

一、准备题

1、什么是整除?

2、25和5,谁能被谁整除,谁是谁的倍数,谁是谁的约数?

二、教学例118和24的约数各有哪几个?

1、首先明确找一个数的约数,就是看这个数能被那些自然数整除?

找18的约数,就是看18能被哪些自然数整除:18除以=()

2、找约数的方法;

A、从最小的.自然数1找起,也就是最小的约数找起,一直找到它本身。

1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18

B、用一一对应的试除法来做:也从最小的自然数试除,在能整除的时候,除数和商都是这个数的约数,不成整除的时候,除数和商都不是这个数的约数,一直除到除数比商大为止。

18/1=18(1和18都是18的约数)

18/2=9(2和9都是18的约数)

18/3=6(3和6都是18的约数)

18/4不能整除

18/6=3除数已比商大。

18的约数按顺序排列是:1、2、3、6、9、18。

3、用同样的方法找24的约数。

24/1=24(1和24都是24的约数)

24/2=12(1和24都是24的约数)

24/3=8(1和24都是24的约数)

24/4=6(1和24都是24的约数)

24/5不能整除

24/6=4除数已比商大。

4、观察约数的特征:

18、24的约数也可以分别用图表示

思考:根据上面的图回答

1、约数中最小的一个是什么数?(1)

2、约数中最大的一个是什么数?(本身)

3、一个数的约数的个数是有限的。

1、2、3、6、9、18

1、2、3、4、6、8、12、24

18的约数24的约数

5、练一练

找15和36的约数各有哪几个?

三、教学例23和5的倍数各有哪些?

1、求一个数的倍数,可以把这个数分别乘以1、2、3…..。所以

3的倍数有3、6、9、12、15、18、21、24、27……

5的倍数有5、10、15、20……….

3、6、9、12、15、18……

2、3、5的倍数也可以分别用图表示:

5、10、15、20、25、30……

3的倍数5的倍数

观察上图发现:(1)一个数最小的倍数是什么数?(本身)

(2)一个数有没有最大的倍数?(没有)

(3)一个数的倍数的个数是无限的。

2、练一练

(1)50以内4、9的倍数各有哪几个?

四、巩固练习

1、在下面的圈里填上适当的数

2、在4、8、16、32、40、48、64、80这几个数中,

80的约数有(4、8、16、40、80),

8的倍数有(8、16、32、40、48、64、80)

3、32能被哪几个数整除?32有哪几个约数?32是哪几个数的倍数?

32能被1、32;2、16、4、8整除。32的约数有1、32、2、16、4、8。32是1、32、4、8、2、16的倍数。

五、总结布置作业

反思:在教学找一个数的约数和倍数的时候,在以下几个方面的教学应加强:

1、约数中最大的和最小的约数是什么。

2、倍数中最大的和最小的倍数是什么

3、强调一个数最大的约数和最小的倍数是一样大的是它本身,。

4、如何找出所有的约数,而且确认已全部找出的方法应加强。

篇11:小学五年级数学《找一个数的约数和倍数》教案设计

2、约数中最大的一个是什么数?(本身)

3、一个数的约数的个数是有限的。

1、2、3、6、9、18

1、2、3、4、6、8、12、24

18的约数24的约数

5、练一练

找15和36的约数各有哪几个?

三、教学例23和5的倍数各有哪些?

1、求一个数的倍数,可以把这个数分别乘以1、2、3…..。所以

3的'倍数有3、6、9、12、15、18、21、24、27……

5的倍数有5、10、15、20……….

3、6、9、12、15、18……

2、3、5的倍数也可以分别用图表示:

5、10、15、20、25、30……

3的倍数5的倍数

观察上图发现:(1)一个数最小的倍数是什么数?(本身)

(2)一个数有没有最大的倍数?(没有)

(3)一个数的倍数的个数是无限的。

2、练一练

(1)50以内4、9的倍数各有哪几个?

四、巩固练习

1、在下面的圈里填上适当的数

2、在4、8、16、32、40、48、64、80这几个数中,

80的约数有(4、8、16、40、80),

8的倍数有(8、16、32、40、48、64、80)

3、32能被哪几个数整除?32有哪几个约数?32是哪几个数的倍数?

32能被1、32;2、16、4、8整除。32的约数有1、32、2、16、4、8。32是1、32、4、8、2、16的倍数。

五、总结布置作业

反思:在教学找一个数的约数和倍数的时候,在以下几个方面的教学应加强:

1、约数中最大的和最小的约数是什么。

2、倍数中最大的和最小的倍数是什么

3、强调一个数最大的约数和最小的倍数是一样大的是它本身,。

4、如何找出所有的约数,而且确认已全部找出的方法应加强。

篇12:小学五年级数学《找一个数的约数和倍数》教案设计

教学目标:

1、使学生学会找出一个数的约数的方法,能正确、便捷地找出一个数的约数。

2、学会找出一个数的倍数的方法,能正确地找出一个数的一些倍数。

教学过程:

一、准备题

1、什么是整除?

2、25和5,谁能被谁整除,谁是谁的倍数,谁是谁的约数?

二、教学例118和24的约数各有哪几个?

1、首先明确找一个数的约数,就是看这个数能被那些自然数整除?

找18的约数,就是看18能被哪些自然数整除:18除以=()

2、找约数的方法;

A、从最小的自然数1找起,也就是最小的约数找起,一直找到它本身。

1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18

B、用一一对应的试除法来做:也从最小的自然数试除,在能整除的时候,除数和商都是这个数的约数,不成整除的时候,除数和商都不是这个数的约数,一直除到除数比商大为止。

18/1=18(1和18都是18的约数)

18/2=9(2和9都是18的约数)

18/3=6(3和6都是18的约数)

18/4不能整除

18/6=3除数已比商大。

18的约数按顺序排列是:1、2、3、6、9、18。

3、用同样的方法找24的约数。

24/1=24(1和24都是24的约数)

24/2=12(1和24都是24的约数)

24/3=8(1和24都是24的约数)

24/4=6(1和24都是24的约数)

24/5不能整除

24/6=4除数已比商大。

4、观察约数的特征:

18、24的约数也可以分别用图表示

思考:根据上面的图回答

篇13:五年级数学《分数的意义》说课稿

一、说教材

1、教学内容:人教版五年数学下册分数的意义。

2、教材分析:

分数的意义是在三年级学生已经初步认识分数的基础上进行教学的,主要是使学生理解不仅一个物体,一个计量单位,可以用单位“1”来表示,许多物体组成的一个整体也可以用单位“1”来表示,进而总结概括出分数的意义。

3、教学目标:

知识目标:了解分数的产生,认识单位“1”,理解分数的意义,能说明一个分数所表示的实际意义。

能力目标:通过一些直观演示,实际操作,培养学生动手操作能力,分析、概括能力。

情感目标:让学生在轻松和谐的氛围中主动参与,积极合作,充分体验,感受数学与生活的密切联系。

4、教学重点、难点:建立单位“1”的概念,理解分数的意义。

二、说教法:

学生认识事物是由易到难,由浅入深循序渐进的。学生虽然在前面的学习中对分数有了初步的认识,但要使学生理解单位“1”的概念,进一步明确分数的意义,必须遵循他们的认知规律。因此,本课坚持以学生为主体,教师为主导的原则。采用创设情景、启发诱导、自主探究、动手操作等教学法,并穿插直观演示。通过动手操作、直观演示,让学生充分感知,再经过比较、归纳,突破许多物体组成的一个整体也可以看作单位“1”这一难点,层层推进、步步深入,并在此基础上理解分数的意义,培养了学生的多种能力。

三、说学法:

学生学习过程的始终,都离不开学法。在本课的教学中学法的指导寓于教学过程的始终。

1、教给学生探索知识的方法。教师为学生提供了一些动手的材料,正方形纸、四个苹果、一米长的绳子,让学生用这些学具以小组合作的形式将他们分一分、画一画、折一折、剪一剪表示四分之一。然后观察、比较他们的相同点和不同点,领悟出单位“1”不仅仅可以是一个物体、一个计量单位、还可以是许多物体组成的一个整体,达到感性认识到理性认识的升华。

2、引导学生在获取知识的同时,掌握对事物本质进行归纳总结的方法。学生在在动手操作、比较之后归纳出了单位“1”也可以是许多物体组成的一个整体。让学生进行2次操作体会由于分的份数不同,取的份数不同,产生的分数也不同,在此基础上进一步明确分数的意义概括出:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

三、设计思路

本节课着重研究的是分数的意义,主要设计思路是尽可能多的让学生动手去操作去实践,从而自己得出分数的意义。在备这节课时我就挖空心思地为学生考虑,应该准备哪些材料让学生操作?什么材料既让学生容易操作又能进行有效学习?最后决定用一张圆形纸片、一张长方形纸片、一米长的线段平均分成10份、一些正方体以及一些火柴棒,组织学生分小组学习,提高交流合作学习的能力。尽量做到让每一个数学知识都是在学生亲身经历了知识产生过程、体验了愉快的学习过程之后才在学生的脑海中生根发芽。使学生学习有价值的数学,从而使他们获得发展。

在课堂教学时,学生利用我为他们准备的材料展开别开生面的研究,在小组合作操作过程中,学生获得许多不同的分数,然后从这些不同的分数产生中逐渐得出分数的意义。特别是学生在利用正方体和火柴棒进行操作的时候,可以从中很好地体验把许多物体看作一个整体,也就是单位“1”,突破这节课的教学难点,从而让学生深刻地理解分数的意义。

四、说本节课的教学过程。

这部分我将分为以下几个环节:

1、复习回顾,激活记忆

2、自主探究,概括新知

这一环节分为以下几个层次

(1)合作交流,理解单位“1”

(2)概括分数意义,认识分数单位

3、内化知识,解决问题

4、课堂总结,全面升华

篇14:五年级数学《分数的意义》说课稿

一、教材分析

(一)教学内容

人教版的九年义务教育六年制小学数学教材第十册书P60——62《分数的意义》。

(二)教学内容的地位及作用

《分数的意义》是本单元教学内容的主干,也是本单元教学的重点, “分数”的知识对于学生来说并不是一张白纸。是他们在四年级学习中已借助操作、直观初步认识了分数。知道了分数的各部分名称、读写法、以及知道把一个物体、一个计量单位平均分成若干份,取这样的一份或几份,可以用分数来表示的基础上进行学习的。这节课的学习是系统学习分数的开始,也是把分数的概念由感性上升到理性的开始。尽管教材在知识呈现上显得比较简单,但是使学生学起来有一定的难度,因为知识点较多,一共有五个。分别是分数的意义、分数各部分的名称和含义、以及分数单位和单位“1” 的含义等。而理解分数的意义是这节课的教学重点,也是学生的学习重点。这节课教学难点是单位“1”的理解。学好这节课是后面学习真分数和假分数、分数基本性质以及分数应用题的重要前提,对以后学习有关分数知识有着举足轻重的作用。

(三)教学目标

1、经历观察、操作等学习活动,建立单位“1”的概念,理解分数的意义,知道分数单位、分数各部分的名称及含义。

2、在分析、比较、辨析活动中,拓展思维、发展抽象概括能力。

3、感受分数在生活中的应用,激发学习数学的兴趣。

二、设计理念

数学课程标准指出,数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。由于学生对分数意义的学习虽然不是从零开始,但是小学五年级的学生的思维特点在很大程度上还需要直观形象思维的支撑,对概念的理解还需要经历从直观到抽象、朦胧到明晰的过程,所以这一过程就需要教师给学生提供丰富的素材,充分感知,形成表象,把理性知识物化在演示、操作过程中,使具体形象向抽象转化,建立分数的概念。基于以上教学理念,这节课我主要采用直观的教学方法,引导学生动手操作,在操作中感知,在发现中交流,在交流中体验,在体验中得到发展。

三、设计思路

本节课的教学主要体现以下三个特点:

1、关注学生的已有知识经验。

2、充分尊重学生的认知发展规律。(感知—表象—抽象)

3、让学生在练习巩固、内化的同时,激发学生学习数学的兴趣。

四、教学过程:

具体安排有四个环节:

(一)揭示课题,忆旧引新。

师:关于分数,你们已知道了哪些知识?“在唤醒学生已有知识的同时,学生可能会谈到分数的读写法、分数的产生、分数的各部分名称、简单分数的含义等(如1/2 1/4),这时教师作适当的小结。

(二)提供材料,学习新知。

1、动手操作,初步感知。(利用实物感知)

根据学生在前面提到的一个分数作例子(如:1/4)让生小组合作,动手操作。

师:你能否用学具袋中的学具(学具袋中有三角形、长方形、圆形、多根小棒、多个正方体)来表示1/4?

(1)小组合作分一分或摆一摆

(2)大组汇报(边说边展示作品)

(3)引导学生观察分析以上的表示过程,有什么相同点和不同点?

(4)归纳说明单位”1“的含义。

(5)列举单位”1“。

2、利用图像,加深感知。(利用图像感知)

(1)出示图例(略)用分数表示阴影部分:(其中两个不能用分数表示)。

(2)说一说它们的分子、分母各表示什么意思?

(3)引导学生认真观察图围绕以下几点说一说有什么体会

A、一个物体、一些物体可以用”1“表示;

B、”平均分",没有平均分就没有分数;

C、其中的一分或几分的数都可以用分数表示。

3、创造分数,加深理解。

用画图的方法把12个小正方体分一分,画一画,表示出一个分数,并把这个分数表示的意义说给同桌听。分数有:1/2 1/3 2/3 1/4 2/4 1/6 2/6 5/6 1/12等

4、深化整体,总结意义。

(1)师:我们已学了那么多的分数,那什么叫分数?

(2)然后引导学生进行分析、比较,抽象概括出分数的意义。

(3)最后接着问:这些分数的分数单位会是多少呢?(自学书本书p62)

(三)巩固练习,强化意义。

数学练习是巩固知识,培养基本技能不可缺少的组成部分。这节课练习的安排主要体现本节课的基本内容、重难点。

1、从第一个纸盒里拿出1根小棒,就拿出了这盒的1/5,第一个纸盒里有几根小棒?

2、从第一个纸盒里拿出2根小棒,就拿出了这盒的1/5,第一个纸盒里有几根小棒?

3、从第一个纸盒里拿出3根小棒,就拿出了这盒的1/5,第一个纸盒里有几根小棒?

(四)课堂总结。

课堂总结也是课堂教学的重要组成部分,它起着画龙点睛的作用。这节课我采用说一句话的形式来总结课堂。如:这节课我们学习了分数,你能用一个分数说一句话吗?把数学与学生的生活实际联系起来,可以使学生感到生活中处 处有数学。学起来自然、真实、亲切,从而激发学习兴趣提高解决问题的能力,达到学以致用的目的。

篇15:五年级数学《分数的意义》说课稿

一、说教材

(1)地位与作用:《分数的意义》是在学生初步认识分数的基础上进行学习的,是把分数的概念由感性上升到理性的开始;将为以后学习分数与除法的关系、真分数、假分数以及分数的基本性质奠定基础,是本单元的重点。

(2)学情分析:由于教学内容较为抽象,对学生学习有着一定难度,尤其是对单位“1”的理解,所以在教学时,需要将抽象的知识与直观形象的场景相结合,来激发学生的学习兴趣,培养学生的抽象思维能力。结合教材的内容和学生知识基础的实际情况,我确定了本课的教学目标及教学的重难点。

(3)教学目标:

我设计了知识目标、能力目标、情感目标三维目标

1、知识目标:建立单位“1”的概念,理解分数的意义,并知道分数各部分的名称。

2、能力目标:通过动手操作和直观教学,使学生在充分感知的基础上,形成并理解并形成分数的概念;培养学生的实践、观察及创新能力,促进其思维的发展。

3、情感目标:让学生体会数学与生活的密切联系,从而对数学出示好奇心,增强学生学好数学的信心。

教学重点:理解分数的意义作为本节课的教学重点。我借助图形感知、类比推理,让学生经历分数的形成过程,从而在感性认识的基础上上升到理性认识,所以让他们主动参与,把抽象的教学变为直观的教学是本节课的重中之重。

教学难点:理解整体和单位“1”是本节课的教学难点 。让学生必须明白把一个整体平均分成的份数不一样,表示出来的分数也不一样;在一定情况下,分数虽然一样,如果选取的份数不一样,看作的整体也是不一样的,学生学习起来会感到抽象,所以要多举实例,多加比较,多方引导,才能突破难点。

二、说教法学法

《数学课程标准》指出:数学教学要使学生通过数学活动,让学生亲身经历数学知识的形成过程,掌握基本的数学知识和技能,从而激发学生对数学学习的兴趣。因此,在教学中我为学生提供丰富的感性材料,采用了创设情境、动手操作及自主探究的教学方法,即把画一画、折一折、说一说、讲一讲、做一做的权利和时间交给学生,充分调动学生眼、口、脑、手等多种感官参与认识活动,充分调动学生学习的积极性和主动性。

三、说教学流程:

为让学生掌握教学重点,突破教学难点,这节课我设计了1、创设情境,认识 “1”2、类比推理,揭示单位“1” 3、沟通单位“1”,归纳分数的意义 4、借助分数,归纳分数单位5、应用升华,深化分数的意义6、学生谈收获六大环节进行,循序渐进、步步深入,来达到预设的目的。

第一个环节:创设情境,认识 “1”

说出生活中哪些物体的数量可以用1来表示?

1可以想象成一个物体,也可以也可以想象成一堆、一些物体,也就是说任何物体不管有多少,不管有多大,只要我们把它看作一个整体,都可以想象成1,1既然无所不包,我们就在1上加个引号,由此引出“1”

第二个环节:类比推理,揭示单位“1”。

通过3个苹果作为“1”,类比推出6个苹果,12个苹果,18个苹果中含有多少个“1”,有几个1就是几,3个苹果所看作的“1”,其实就成了一个计量的单位,从而引入单位“1”。

第三个环节:沟通单位“1”,归纳分数的意义

通过1个月饼这个单位“1”那么,下面5个月饼、1个月饼、不完整月饼,又该用哪个数来表示?再通过1个长方形、1米这样的长度单位、8个圆片让学生自己动手操作,感知分数和整数与单位“1”的联系,再通过不完整的月饼、长方形、1米这样的长度单位、8个圆片观察、对比,归纳出分数的意义。

第四个环节:借助分数意义,归纳分数单位

通过分数的再认识,你能利用手中的图案,涂一涂,你最想表示的一个分数。引导中还有多少个,中还有多少个,从而归纳出分数单位。

第五个环节:应用升华,深化分数的意义

练习是巩固新知的必要手段,我设计了:

1、现实生活中,分数的确很多。同学们之所以看到的不多,还是因为我们关注的视野还不够开阔。我们可以借助网络、报刊了解更丰富的世界时,你会发现,我们生活的这个世界真的离不开分数网络中分数。

2、自我检测。(用分数表示下面各图的红色部分)

3、给出分数 1/4 ,取其一份1、2、3朵,深刻理解整体有多少朵。

以上练习的安排,检测了学生对分数的理解和认知情况;也培养学生解决实际生活的能力;激发了学生更加了解分数的意义的欲望。。

第六个环节:总结升华 应用分数

引导学生畅谈自己的收获,指导学生用自己的话小结:

1、今天我们又认识了什么数?你能说说吗?

2、能不能谈一谈分数在你身边的应用呢?

四、说板书设计

结合教学内容,我分了两版进行板书,既突出了重点,也强化了难点,让学生一目了然。

篇16:五年级数学《分数的意义》说课稿

一、说教材及学情

《分数的意义》是人教版五年级下册第四单元第一课。在这一单元中,《分数的意义》十分重要,学好这部分内容,将会对后续建构真分数、假分数等概念以及学习分数基本性质、分数四则运算、分数应用题等内容奠定坚定的基础。

《分数的`意义》是在学生已经三年级上册初步认识了分数,并且知道把一个物体、一个计量单位平均分成若干份,取这样的一份或几份,可以用分数来表示的基础上进行教学的;重点是使学生理解不仅一个物体,一个计量单位可用自然数1来表示,许多物体看作的一个整体也可用自然数1来表示,通常把它叫做单位“1”,进而总结概括出分数的意义。基于学生的知识基础及对教材的编排情况,我计划安排2个课时来学习,今天着重对第一课时的教学设计进行说明, 该课的教学目标及教学重难点如下。

1、知识目标:建立单位“1”的概念,理解分数的意义,知道分数各部分的名称及意义。

2、能力目标:通过直观教学和动手操作,使学生在充分感知的基础上,理解并形成分数的概念;培养学生的实践、观察及创新能力和口头表达能力。

3、情感、态度、价值观目标:激发学生的学习兴趣,同时也感受到数学与生活的联系。

教学的重点:建立单位“1”的概念,理解分数的意义。

教学的难点:建立单位“1”的概念。

二、说教法:

《数学课程标准》指出:“数学教学,要让学生亲身经历数学知识的形成过程,也就是经历一个丰富、生动的思维过程,使学生通过数学活动,掌握基本的数学知识和技能,激发学生对数学学习的兴趣。”因此,在教学中我以学生发展为立足点,以自我探究为主线,以求异创新为宗旨,借助多媒体辅助教学,引导学生动手操作,观察辨析、自主探究,充分调动学生学习的积极性、主动性,让学生全面、全程、全心地参与到每一个教学环节中。在教与学的过程中,使学生观察、操作、口头表达等能力得以培养,使学生的创新意识得以开发与增强。在教学中主要采用了创设情境、动手操作及自主探究的教学方法,即把问、说、讲、做的权利和时间交给学生,力途为学生营造一个宽松、民主的学习氛围,充分调动学生眼、口、脑、手等多种感官参与认识活动,让孩子们真正感受到“我能行”。全课以“实践导入,唤醒已知—动手操作,创造分数—媒体演示,揭示产生”三大主线贯穿全课。

三、教具、学具准备

根据教学需要,我准备了多媒体课件、学习卡和苹果图和熊猫图、一袋奶糖等。

四、教法、学法

我主要采用“提出问题”、“动手操作法”、“引导发现法”、“讲解法”、“ 游戏教学法”等引导学生认真审题、发现问题、自主探究、合作交流,最后通过动手操作、讨论、理解、归纳、总结出分数的意义。既提升了学生的自学能力、合作意识与探索精神,又充分体现了学生的主体地位和教师的主导作用。

五、说教学流程:

(一)趣味加法导入,激发兴趣。

闯关前教大家一个有趣的加法题:1+1=?(一只手加一只手等于一双手)1+1+1=?(一个父亲加一个母亲再加一个孩子等于一个幸福之家) 1+1+…+1=?(把10颗糖装进一个袋子里就是一袋糖) 共10个

通过“趣味加法”导入新课,激发了学生学习的热情,又为后面学习把多个物体看做单位一奠定基础。

(二)回顾已有知识,达到新旧知识的衔接。(闯关一)

⑴以 为例,说说分数的各部分名称。

1 …… 分 子

— …… 分数线

4 …… 分 母

⑵你能把一张长方形(或正方形)纸平分成两份吗?拿起其中的一份来,它的面积是原先那张纸的几分之几?你能用折叠的方法把它的面积变成现在的 吗?能用线段表示 吗?

⑶分数的产生:

生活中经常遇到像这样不能用整数表示的情况,于是就产生了分数。本节课我们就来研究“分数的意义”。

通过闯关一引领学生回忆已有知识,感知一个物体、一个计量单位平均分成若干份,其中的一份或几份可以用分数表示,又根据学生自己动手强调平均分,使学生在感觉好玩儿、不知不觉的动手操作中开始学习新知,调动了学生已有的认知经验,对分数单位“1”在生活中有初步感知,为后面突破难点奠定基础。

(三)动手创造分数,感知分数意义。(闯关二)

⑴老师这里有一堆苹果,如果平均分给四位同学,每位同学分得多少?

(这堆苹果的 )为何不说是多少个呢?(不知道共有多少个)如果是这一盘苹果(学生可以清楚看到是4个),每位同学分得多少个呢?(1个)你为什么这么说呢?(因为这一盘苹果共4个,平均分给四位同学就是平均分成4份,每份是1个,所以每位同学就分得1个)

师:我听明白了,你们把这4个苹果看做一个整体,平均分成4份,每位同学分得一份,就是1个,也就是这个整体的 。谁能像老师这样再说一遍?

⑵各小组选择自己喜欢的学具(8个苹果、24支彩笔),自己动手创造分数 ,并和身边的同学说一说:你把谁看作了一个整体?是怎样分的?取了其中的几分?(选两个小组的成果展示)

此环节的设计意图是让学生直观地感知许多物体组成的一个整体平均分成若干份,表示其中的一份或几份的数,都可用分数来表示,也就是初步感知分数的意义。

2、师生互动,理解意义

⑶师阐明单位“1 ”:

这三分图都是把多个物体看作一个整体,所以说一个物体、一些物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

这个整体可以用自然数1 来表示,我们通常把它叫做单位“1 ”。

⑷仔细观察这三幅图,特别是老师的苹果图和你们自己的苹果图,有何发现?(每一份的数量不同,但都可以用 来表示?)这是为什么呢?(单位“1”不同)它们的单位“1”分别是谁呢?

⑸我们还可以把什么看作一个整体?

引发学生的思考,在学生辩解、交流中,知道把这个整体平均分成4份每份就是这个整体的三分之一。此环节的设计意图是直观的帮助学生感知份数与个数的不同,从而更加深入地理解分数的意义,为概念的建立奠定了基础。

⑹把学习卡上的24颗五角星平均分一分。创造出自己喜欢的分数,想一想你是怎样得到这些分数的?把它们写在卡片上。

⑺概括分数意义:

师阐明:平均分的份数作分母,取的份数作分子。同桌分别再说一个生活中的分数,并且说一说它的意义?

⑻生活中的分数举不胜数,选一条你喜欢的说说句中分数的意义。

此环节的设计意图是让学生进一步理解分数的意义,并从身边的生活中感知分数。

(四)反馈练习,拓展创新 (闯关三)

这一环节,教师根据学生反馈的信息及时调控教学,使学生切实掌握知识,达到训练和提高的目的。为了能使面向全体和因材施教相结合,让每一位学生获得成功,我设计下列练习:

⑴判断题:用下面的分数表示图中的阴影部分,对的打“√”,错的打“×”。

⑵选择题:

①用分数表示下面图中的阴影部分。

A A A

B B B

C C C

D D

②用分数表示下面图中不是阴影的部分。

⑶下面每个图中涂色的小正方体各占整体的几分之几?

⑷分糖块游戏:

师:分数不光出现在我们的课堂上,还经常出现在我们的生活中,请看大屏幕:①头部的高度约占身高的八分之一;②长江干流约五分之三的水体受到不同程度的污染;(只有几分之几的水体没被污染?面对这种情况,我们该如何从自身做起?同意的请举手!这时候举手的人数该用哪个分数表示?老师也举着手呢!)③死海表层的水中含盐量达到十分之三。选择你喜欢的一条说说其中分数的含义。

此题设计加深了学生对分数意义的理解,又增强了学习的趣味性,符合小学生的心理特征,同时训练学生的思维,培养了学生思维的广阔性、灵活性,并渗透保护环境意识。

生活中的分数多不胜数,有时在你的脚下,有时又在你的眼前,老师的口袋里就有许多分数,(从口袋里掏出9颗糖)前边的同学数一数一共有多少颗。老师想把这些糖分给大家,但是有个条件,你必须拿对我所说的分数,否则空手而归,“望糖兴叹”。(一位女同学先来拿走三分之一,一位男同学也拿走剩下的三分之一。)老师最公平!男女同学分别拿走三分之一!(同学们嚷嚷“不公平!”)师反问:都是单位一的三分之一,为何又不公平呢?(女同学拿了3颗糖,男同学只拿了2颗糖)、谁在更清楚地说一说?(女同学拿时单位一是9颗糖,男同学拿时单位一是6颗糖)结论:单位一不同时每一份中的颗数也不同。(女同学回到座位,只留男同学在讲台)现在再请一位女同学来拿走剩下的二分之一,咦:为何三分之一和二分之一都是两颗糖呢?(男同学那的三分之一是把6颗糖看做单位一,平均分成3份,每份有2颗;而这位女同学拿的二分之一是把4颗糖看做单位一,平均分成2份,每份也有2颗,所以……)现在再换一种方法,你自己先说一个分数,再拿走和这个分数对应的糖。问什么都拿走了?还可以用那个分数表示全部?我口袋里还有很多糖,这是其中的十分之一,你能猜出我口袋里现在有多少颗糖吗?

此题进一步强化了分数的意义,

(五)全课小结,揭示课题

“这节课,我们一起学习了分数的意义,对分数有了进一步的认识,关于分数还有很多很多的知识哪!同学们课下继续去学习、去探究吧!”教师将学生的学习兴趣延伸到了下节课。

(六)布置作业:

P63练习十一1——4题填在课本上。

六、媒体演示:

借助媒体演示,其目的就是创造一种宽松、愉悦的氛围感受数学文化。整个教学过程教师所起到的作用就是引导、点拨,学生是在一种自主、自动的时间和空间中,通过自己的思考,达到学习目标的。实现了先进教育思想与现代教育技术的有机融合。

七、说板书设计:

我的板书设计清晰明朗、形象直观,通过板书引领学生回忆整节课所学知识,学生通过这一环节可以将整个学习过程进行回顾、按一定的线索梳理新知,形成整体印象,便于知识的理解和记忆。

【数学五年级约数和倍数意义说课稿】相关文章:

1.五年级数学《约数和倍数》教学反思

2.公五年级数学《约数和倍数的意义》教学设计

3.人教版约数和倍数教学设计

4.约数与倍数教案反思

5.五年级数学《倍数》练习题

6.五年级数学因数和倍数教案格式

7.小学数学因数倍数说课稿

8.人教版因数和倍数说课稿

9.《因数和倍数》五年级数学评课稿

10.五年级数学下册《倍数和因数》教学反思

下载word文档
《数学五年级约数和倍数意义说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部