欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 说课稿>五年级数学《最大公因数》的说课稿

五年级数学《最大公因数》的说课稿

2024-01-10 08:17:30 收藏本文 下载本文

“小蕾”通过精心收集,向本站投稿了14篇五年级数学《最大公因数》的说课稿,下面是小编为大家整理后的五年级数学《最大公因数》的说课稿,仅供参考,大家一起来看看吧。

五年级数学《最大公因数》的说课稿

篇1:小学五年级数学说课稿《最大公因数》

小学五年级数学说课稿《最大公因数》

尊敬的各位评委、各位老师:

大家好!今天,我说课的内容是人教版义务教育课程标准实验教材五年级数学下册第四单元第79—81页的《最大公因数》,主要包括以下六方面内容,

第一方面:教材分析

本节课是在学生已经理解和掌握因数的含义以及其的特点的基础上进行教学的。这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和分数四则计算的基础。对于学生的后续学习和发展,具有举足轻重的作用。

根据 《新课标》“以人为本”的教育教学理念、教材的编排特点及学生的实际情况,力求达到以下三维目标:

1、知识与技能:理解和掌握公因数和最大公因数的意义,并能正确找出两个数的公因数与最大公因数;

2、过程与方法:经历概念的形成过程和找最大公因数的方法,渗透集合思想,体验解决问题策略的多样化。

3、情感态度与价值观:培养学生的合作意识与探究精神,养成良好的学习习惯。

本节课的教学重点为:理解和掌握公因数和最大公因数的意义;难点为:能正确找出两个数的公因数和最大公因数。

第二方面:教法设想

基于以上对教材的认识和高年级学生思维活跃、求知欲强、善于表达的特点,我设计把“启发诱导”、“情景教学”、“实验操作”、“愉快教学”等多种教学方法融会贯通。力求让学生们在和谐愉快的氛围中主动探索新知,意在把抽象的概念教学变得具体化、形象化、生动化。同时,也让孩子们享受到成功的喜悦。

第三方面:学法指导

《新课标》指出:有效的教学活动不能单纯地依靠模仿和记忆,自主探究与合作交流是学习数学的重要方式。为了让学生经历概念的'形成过程,探索找最大公因数的方法。我设计了让学生在半独立的状态下进行自主探究、合作交流。这种学法的指导意在体现学生的主体地位和教师的主导作用。

第四方面:教学程序

依据教材特点、小学生认知规律和发展水平,我设计了以下五个教学环节:

(一)、第一个环节是“激发兴趣、导入新课”

新课伊始,用游戏引入,意在激发学生的学习兴趣,复习旧知,同时也为新知识的学习做好铺垫。

8名学生每人都拿着一张数字卡片。听口令,手中的卡片是16的因数的同学快速跑到左边集合。待全体同学确认了是否正确后,再听口令,手中的卡片是12的因数的同学快速跑到右边集合。结果有一部分学生立即从左边跑到了右边。从而引发矛盾,“你们是16的因数,现在怎么却又跑到12的因数里面了呢?”从而导入课题——“因数和最大公因数”。

(二)第二个环节是“创设情景、抽象概念”

公因数和最大公因数的意义是本节课的重点。在这一环节中,首先通过铺方砖创设情境,激发学生的学习兴趣,让学生感知、感悟数学与生活的密切联系,增强学生的应用意识,

然后,让学生动手在方格纸上画一画或者用学具摆一摆,在动手操作的过程中,经历数学概念形成的过程。

通过动手操作,小组合作、探讨交流,学生们发现,可以用边长1分米的地砖铺地,也可以用边长2分米的方砖铺地,还可以用边长4分米的地砖铺地。进而引导学生总结出:要使所用的正方形地砖都是整块的,地砖的边长必须既是16的因数,又是12的因数。所以地砖的边长可以是 1 dm、2 dm、4 dm,最大是 4 dm。

学生在操作探索中解决了生活中的实际问题,并初步建立了公因数和最大公因数的概念的表象。

最后,利用集合圈帮助学生抽象出公因数和最大公因数的意义。意在让学生能够更加直观的理解概念,同时也渗透了集合思想。

对于概念的描述,课程标准虽然只要求会找出两个数的公因数和最大公因数,但是在总结、归纳、抽象概念时,应考虑从更广泛的角度上描述。不说两个数而是说几个数公有的因数叫做这几个数的公因数,其中最大的一个公因数叫做这几个数的最大公因数。

(三)第三个环节是“自主探究、突破难点”

找两个数的最大公因数是本节课的难点。在学生理解和掌握公因数和最大公因数的意义的基础上,这部分教学我大胆放手,为学生创设大量的时间和空间,让学生们自学探究。学生可能会找出以下几种方法:

一是分别找出18和27的因数,再找出它们的公因数和最大公因数;二是先找18的因数,再从中找27的因数,进而找出它们的最大公因数;三是先找27的因数,再从中找出18的因数,进而找出它们的最大公因数。通过比较三种方法,让学生感受哪种方法比较简捷。如果有个别学生提出可以用分解质因数的方法找出最大公因数,在时间允许的情况下,可以一起探讨。如果时间不足,应该对发现这方法的同学特别提出表扬和鼓励,并提议其他学生课后可以根据教材第81页的“你知道吗”小知识了解一下这种方法,下节课再一起探讨。本环节中,鼓励学生尝试多种角度思考问题,体现了解决问题策略的多样化,并在学生感悟、理解的基础上,由学生进行方法的最优化。

(四)第四个环节是“学以致用、体验成功”

《新课程标准》要求巩固练习要体现层次性和科学性原则。

我首先安排了基础练习,练习十五第1题,以帮助学生进一步理解、掌握公因数和最大公因数的意义。

其次是发展性练习。教材第81页“做一做”题目。

让学生通过观察、讨论,发现如下规律:

①成倍数关系的两个数的最大公因数,就是这两个数中较小的数。②1和其它非0自然数的最大公因数是1。③两个连续自然数(0除外)的最大公因数是1。

最后是提高练习。教材第83页第7、8题。学生用本节课所学的知识解决现实生活中的实际问题,让学生深刻感受到,数学知识来源于生活,而又应用于生活。

练习的设计从认识到理解,再到拓展应用,逐层加深,意在扎实学生的基础知识,又培养学生解决问题的能力。

篇2:五年级数学《最大公因数》的说课稿

关于五年级数学《最大公因数》的说课稿

您现在正在阅读的《找最大公因数》说课稿文章内容由收集!本站将为您提供更多的精品教学资源!《找最大公因数》说课稿各位评委老师您们上午好!我任教的科目是小学数学。我的抽签号是13号。我今天说课的题目是《找最大公因数》。下面我将从教材、教法和学法、教学过程及板书设计等这几个方面来对本课进行说明。

一、说教材

《找最大公因数》是北师大版小学数学五年级上册第三单元《分数》中的内容。本课时是在学生找一个数的因数基础上学习的。同时又为以后学习约分打下基础。教材中直接呈现了找出公因数的一般方法:先用想乘法算式的方法,分别找12、18的因数,再找公因数和最大公因数。在此基础上,引出公因数和最大公因数。教材采用的集合的方式呈现探索的过程。

二、说目标

根据教材编写特点,我确定如下教学目标:

1、探索找两个公因数的方法,能准确地找出两个数的公因数和最大公因数。

2、让学生经历找两个数的公因数的方法,理解公因数和最大公因数的意义。

三、说教学重、难点

新课标鼓励学生通过思考、讨论交流,经历探索的过程。

因此确定教学重点为探索找两个数的公因数的方法。

难点为用多种方法正确地找出两个数的公因数和最大公因数。

四、说教学方法和学法

《新课程标准》指出:有效的教学活动不能单纯地依靠模仿与记忆。自主探索与合作交流是学习数学的重要方式,而本节课学生对因数已经有了初步的认识,在教法与学法上,可以让学生在半独立的状态下进行自主学习、交流探索。而教师在交流过程中,主要是引导、组织学生归纳找最大公因数的方法,让学生在经历体验、探索中去归纳、总结找最大公因数的方法。这也是体现学生的主体地位和教师的主导作用。

五、说教学设计

《新课程标准》强调从学生的生活经验和已有的知识出发,让学生亲身经历自主探索、合作交流、归纳总结的过程。根据这一理念,我设计了如下教学环节:

第一环节:

( 一)、复习导入,学习新知

因为学生已经很熟练找出一个数的因数,因此,我利用学生已有的知识、经验进行导入新知。(导入这一环节准备用时3分钟)

1、师:同学们,我们已学过找一个数的因数,如果老师现在给你一个数,你能很快找出它的因数吗?

生回答师板出12的因数:1、2、3、4、6、12

2、师:你们真棒!照这样的方法,你能很快写出18的全部因数吗?

生独立写并汇报18的因数:1、2、3、6、9、18。

3、师:那么准,那你们看看它们的因数你发现了什么?请大家找一找,在12和18的因数中有没有相同的因数?相同的因数有几个?

生同位交流,共同找出:1、2、3、6。

师:像这样即是12的因数,又是18的因数,我们就说这些数是12和18的公因数。此时师板书出集合图形。

4、师:中间这一区域有什么特征?应该填什么数?

生独立思考后分小组讨论。

生汇报:中间所填的数应该即是12的因数又是18的因数。

5:师:在这些公因数里面,哪个数最大?生:6最大。

6:师:对,6在这两个数的公因数里面是最大的,那么我们就说6是12和18的最大公因数。

师:这就是我们这节课要学习的内容找最大公因数。

师板书课题:找最大公因数

(这一环节的设计,让学生探索找两个数的公因数的最大公因数的方法。并且能很快地找出来。同时这也就突破了教学重点:让学生理解公因数和最大公因数。)

这一层次的设计我准备用时12分钟。

(二)、尝试练习,合作探究

您现在正在阅读的.《找最大公因数》说课稿文章内容由收集!本站将为您提供更多的精品教学资源!《找最大公因数》说课稿在做书45页练一练中的1、2两题:

(1)利用因数关系找最大公因数

师:请大家把书翻到第三45页,独立完成第1小题。

8的因数有:1、2、4、8。

16的因数有:1、2、4、8、16。

8和16的公因数有:1、2、4、8。

8和16的最大公因数是:8

师引导学生观察:8和16之间是什么关系?与它们的最大公因数有什么关系?

学生随着老师的问题提出来就独立的思考观察,然后在小组内自行解决。

(让学生们自己去探索,去发现,并在小组内得到发展,对后进生来说也是一个促进。)

生汇报:8是16的因数,所以8和16的最大公因数是8。

然后师放手给学生,鼓励学生自己小结;如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数,并及时出一些这方面的题练习,如:4和12,28和7,54和8

(2)利用互质数关系找最大公因数

师:请大家独立完成第二题。

生汇报5的因数有:1、5。

7的因数有:1、7

5和7的最大公因数是:1

师同上一样引导学生独立观察5和7之间是什么关系?与他们的最大公因数有什么关系?

分小组讨论汇报。

生:5和7是质数,所以5和7的最大公因数是1。

引导生小结:像这样只有公因数1的两个数叫互质数。如果两个数是互质数,那么他们的公因数只有1。

练习:4和5,11和7,8和9

(3)、整理找最大公因数的方法

师:今天我们学习了哪些方法找最大公因数?

生:列举法,用因数关系找,用互质数关系找

师:我们在做题时要观察给出的数字的特征,运用不同的方法去找出它们的最大公因数。

(教师在讲解找最大公因数时,不仅要告诉学生具体的方法,更重要的是将这些单独的内容联系起来,给出学生统一的解题步骤,这样学生才有章可循。)

这一环节的设计我也准备用时15分钟。

(三)、巩固练习,体验成功

完成书第46页的3、4、5题。可以让学生独立完成,师巡视指导。在巡视的过程中对于后进生要特别的指导点拨。

巩固练习准备用时8分钟。

第四环节:全课小结

用2分种对本节课的知识进行归纳总结。

五、说板书设计

我本节课的板书设计力图全面而简明的将本课的内容传递给学生,便于学生理解和记忆。

各位评委老师,我仅从教材、教法、学法、及教学过程、板书设计等几个方面对本课进行说明。这只是我预设的一种方案,但是课堂千变万化的生成效果,最终还要和学生、课堂相结合。

篇3:数学《最大公因数》的说课稿

人教版数学《最大公因数》的说课稿

您现在正在阅读的人教版数学《最大公因数》说课稿文章内容由收集!本站将为您提供更多的精品教学资源!人教版数学《最大公因数》说课稿各位领导、各位老师:你们好!

今天,我说课的题目是《最大公因数》,这是人教版义务教育课程标准实验教科书数学五年级下册第四单元7981页的内容。

一、教材分析和学情分析

(出示课件)这部分教材是建立在学生已经掌握因数、倍数的含义及其特点的基础上来学习。通过本节课学习,为学生以后学习约分和分数四则运算奠定基础。

二、教学目标

(出示课件)根据《新课标》要求:数学教学应以学生发展为本,培养能力为重。因此,我制定如下教学目标:

1、理解公因数和最大公因数的意义。会求两个数的公因数和最大公因数。

2、通过解决实际问题,初步了解公因数和最大公因数在现实生活中的应用。

3、培养学生的抽象概括能力和解决问题的能力。

三、教学重难点

依据教学目标,我确定了这节课教学的重点和难点是:理解公因数和最大公因数的意义。会求两个数的最大公因数。

四、教法、学法

根据教学目标及重难点,结合本节课实际,我采用的教学方法有:引导自学法、尝试探究法等等。相应地,指导学生采用自学探究、合作交流等方法来学习。

五、教具、学具

为了便于学生更好地进行操作,我要求学生准备长方形方格纸等教具。

六、教学流程

根据新课标理念,结合教材特点和学生实际情况,这节课我安排了玩一玩看一看做一做议一议练一练五个教学步骤来进行。这样设计符合教研室倡导的学导练三三教学原则,符合新课标提出的自学探究、合作交流等新的学习形式,也体现出蔡林森教授所创新的洋思教学方法。突出了课堂教学以学生为主体,教师为主导,训练思维为主线,实现高效课堂为主要目的的教学方式。

(一)玩一玩

这一步骤,我采用游戏的方式来完成。

学号是16的因数,这些同学请起立。

学号是12的因数,这些同学请起立。

哪些同学站起来2次?为什么?

学生回答后顺势进行鼓励:嗯,同学们可真聪明。有关因数的知识还有很多呢?,你们愿意继续来学习它吗?

(新课开始,用游戏引入,激发学生的学习兴趣。既复习了旧知,又为学习新知做好铺垫。)

(二)、看一看:

这一步骤,我出示自学了提示,让学生自学。

自学提示:

自学课本80页的内容。思考下面的问题。

16和12的因数分别有哪些?

哪些是16和12独有的因数,

哪些是16和12公有的因数?

什么叫公因数?最大公因数?

6分钟后检测。

(这样,学生带着问题来自学、探究。体现出学生可持续能力的培养。体现出学生良好学习习惯的养练。)

独有公有 最大

16的因数:1,2,4,8,168,16

12的因数:1,2,3,4,6,123,6,12

可以看出:1、2、4这三个数是16和12公有的因数,所以说:1、2、4这三个数是16和12的公因数。

2、议一议:学生再看1、2、4这三个数,你想说点什么?(学生知道了1是最小的公因数,4是最大的公因数)

板书:4是最大的公因数.

(三)、做一做:

学生自学完毕,请程度偏下的两位同学上台板演。其余学生在答题卡上完成。这一步能检查出学生自学的效果。体现出学生的尝试探究,体现出科学的学习态度。

1、填一填:

(1)10 和15的公因数有:

(2)14和49的公因数有:()

您现在正在阅读的人教版数学《最大公因数》说课稿文章内容由收集!本站将为您提供更多的精品教学资源!人教版数学《最大公因数》说课稿(四)、议一议:

1、初议:做对的同学说一说你为什么要这样做?

做错的同学对照课本找错因,找不出错因的同学让别的同学帮忙改正。

2、设疑:15和12的最大公因数是3,对吗?

2是4和16的最大公因数吗?

6和9的最大公因数是几?

3、运用:现在,你会求两个数的最大公因数了吗?

请用你喜欢的方式求出18和27的最大公因数。

学生的方法可能有:

A、找对应因数

B、从18的因数中找27的因数

或者从27的因数中找18的因数

C、排序法

D、短除法

E、分解法

总之:不论采用哪种方法,我们都要:先找出它们的`因数,

再找出它们独有的和公有的因数,然后找出在公有的因数中,谁最大?

4、总结;这节课,我们学了什么?

根据学生回答板书课题:最大公因数

(整个议一议环节,体现了生生互动、师生互动。体现了以学定教。)

(五)练一练:

(为了检测学生的学习情况,我进行了分层训练。第一层:基本性练习。第二层:综合性练习。第三层:发展性练习。实现层层深入,由浅入深。使学生深刻体会到数学来源于生活,并为生活服务的道理。)

(出示课件)第一层:基本性练习

1、把下面的数填到合适的位置。

1,2,3,4,6,9,12,18,

12的因数:

18的因数:

12和18的公因数:

2、填一填:

8的因数:

16的因数:

8和16的公因数:

8和16的最大公因数:

(出示课件)第二层:综合性练习

3、说出下列各数的公因数和最大公因数

5和11 8和9 5和8

4和89和3 28和7

通过练习,你发现了什么?

(出示课件)第三层:发展性练习

4、看例1:现在,你知道可以选择边长是几分米的地砖吗?边长最大是几分米?今后,在装修、铺地砖时,遇到此类问题,你知道该怎样解决了吗?如果你是工程师,你会选用边长是几分米的地砖吗?为什么?

七、板书设计:

这节课,我的板书设计科学、醒目、美观,便于学生直观理解。

八、反思:

回顾这节课,学生通过自学,理解公因数和最大公因数的意义,但要求出两个数的最大公因数是本节课教学的难点。因此,教学时,我鼓励学生运用多种方法,让学生在感悟、理解的基础上,总结出求最大公因数的方法。顺利完成了本节课的教学任务。

篇4:数学《找最大公因数》说课稿

数学《找最大公因数》说课稿

一、说教材:

教材的地位及其作用

学习本课之前,本册教材已经安排了认识因数和找一个数的所有因数,这些内容与本节课紧密相联,是学习本课的铺垫和基础。同时,找最大公因数又是约分的基础,而约分又是分数四则运算的重要基础,因此,理解和掌握最大公因数就显得尤为重要。由此可见,本课在分数运算中起着承前启后、举足轻重的作用。

教材编写者编写本节课时,贯彻数学课程标准(版)的理念,非常注意促使学生经历观察、操作、比较、讨论、归纳等学习活动,在“找最大公因数”的过程中发展抽象概括的能力,培养学生的实践能力和创新意识,帮助学生实现可持续发展发挥。

这里分析本节课在教材中的地位和作用,同时也是我们确定教学目标和教学重点的一项重要依据。

学情分析:

学习本课之前,五年级学生已经认识了倍数和因数,能找出100以内某个自然数的所有因数;积累了一定的观察、操作、归纳等数学活动经验,具备了初步的抽象概括能力。但是,这个年龄阶段的学生处于从具体的形象思维向抽象逻辑思维过渡的阶段,他们的数学学习一个重要特点是:探索发现和抽象概括的过程中需要具体的、形象的数学例证作支撑;同时他们在进行数学概括时往往不够完整,在数学表达上往往不够严谨,这些都需要精心的引导。

以上学情,是我们确定教学目标和教学重点、难点以及确定教法、学法的一项重要依据。

教学目标:

1、在解决问题的过程中理解公因数和最大公因数的意义,探索找公因数的方法,会正确找出两个数的公因数与最大公因数。

2、渗透集合思想,体验解决问题策略的多样性。

3、培养学生分析、归纳等思维能力,激发学生自主学习、积极探索的热情,培养合作交流的良好习惯。

教学重、难点:

教学重点:能理解公因数和最大公因数的意义,探索找公因数的方法。

教学难点:能正确找出两个数的公因数与最大公因数。

教材处理:

教材首先呈现了找公因数的一般方法:先用想乘法算式的方式分别找12和18的因数,再让学生将这些因数填入两个相交的集合圈中,引导学生重点思考的问题是:两个集合相交的部分填哪些因数?在此基础上,引出公因数与最大公因数的概念。教材用集合的方式呈现思路,让学生经历知识的形成过程,引发学生的数学思考。

教材在练一练中,呈现了两组找因数、公因数和最大公因数的练习,一组是8和16,另一组是5和7。第一组是两个数存在倍数关系找最大公因数;第二组是找互质数的最大公因数。我在教学这两种特殊情况时,给出更多的数字,安排了三对数,第一组4和8,16和32,6和24,每对都存在倍数关系,先让学生找一找公因数和最大公因数,然后观察最大公因数,发现每组的最大公因规律。第二组安排了三对数3和7,8和9,15和16,都存在互质的关系,也先让学生找一找公因数和最大公因数,然后观察、发现每组的最大公因数都是1,然后现去想一想,每组数都有些什么特点,从而概括这两种特殊情况组找最大公因数的方法。

二、说方法

教法、学法选择:

依据《数学课程标准(版)》,数学教学活动要注重把四基目标有机结合,整体实现;要重视学生在学习活动中的主体地位,我对本节课主要选用了探究性学习方式。同样的,依据《数学课程标准(2011版)》,为了使学生主体地位和教师的主导作用达到和谐统一,我还选用了启发式的教学方式。

教学手段:

我使用了现代信息技术,以手段多样化,促进学生的探索研究。主要使用了四种教学手段:

1、学具操作:合理的使用学具能促进学生的亲身经历与体验,帮助学习建立数学建模。

2、白板运用:恰当的演示,给课堂带来清晰的层次感,体现教师的主导作用和引导方式。强大的.电子白板可以更好的辅助教师和学生之间的互动。

3、实物展示台:有利于反馈的时效性,使反馈的受益面更大,让个别学生生成有代表性、典型意义的学习资源面向全体

4、课堂板书:必要的板书有利于实现学生的思维与教学过程同步,有助于学生更好地把握教学内容的脉络。

三、说过程

一、复习导入。(复习找因数的方法)

回忆旧知识,又是为向新知识的延升做好铺垫。

让学生找出12的所有因数。并说说是怎样找的?找因数的时候需要注意些什么?

(白板上出示1、2、3、4、5、6、7、8、9、10、12、15、18、20数字和集合圈1)

让学生将12的因数拖入集合圈中,回忆找因数的方法。怎么找因数才能又快又有顺序?

用乘法算式,有序、不易遗漏

二、探究

探究1:认识公因数。

再找一找18的所有因数,并出示集合圈2,让学生将18的所有因数拖入集合圈2中。

9、18

学生可能会拖入9、18,还有其它的因数?能不能想想办法,用两个集合圈,即能表示12的所有因数,又能表示18的所有因数?

移动集合圈。展示交集动态的过程。

师:左边的集合圈填的是什么?(12的因数)右边的集合圈填的是什么?(18的因数)中间的圈里是?(即是12的因数也是18的因数)。

那我们可以给他取个名字?(公因数)

我们可以将4放到中间的集合圈中吗?为什么?

根据学生的回答,小结:即是12的因数也是18的因数,我们就称他为12和18的公因数。

巩固练习。

你学会了找两个数的公因数了吗?试一试吧。

找6和9的公因数 找30和45的公因数

探究2:认识最大公因数和最小公因数

如果请你找出12和18的最大公因数,你会觉得是哪一个数字呢?

巩固练习。

在前次练习的基础上,找6和9;30和45的最大公因数。

我们学会了找最大公因数,那同学们能找出这三组数的最小公因数吗?你有什么发现?

所有数的最小公因数都是“1”。

探究3:找特殊数组的最大公因数。

找出下面每组数的最大公因数。

1、4和8 16和32 6和24

2、3和7 8和9 15和16

做完后分小组相互交流,从中你能发现些什么?

每组的两个数有些什么特点,和他们的最大公因数有什么关系?是不是有这些特点的两个数,它们的最大公因数都有这些规律呢?分小组验证。

反馈得出结论:两个数是倍数关系的,较大的数是两个数的最大公因数。

两个数只有公因数1时,他们的最大公因数为1。

三、练习反馈:

有两根小棒,长分别是12厘米,18厘米,要把它们截成同样长的小棒,不许剩余,每根小棒最长有多少厘米?

师:看到这个问题,你会怎么想?这里有几个关键字:同样长,不许有剩余,最长多少?遇到这样的问题其实是让我们求什么呢?

四、归纳总结

1、这节课我们学到了那些知识?

2、我们是运用什么方法获得这些知识的?

(不但让学生谈知识技能方面的收获,还着重让学生谈谈了学习方法、情感态度方面的收获,再一次激起良好的情绪体验。)

篇5:五年级数学《公因数和最大公因数》教学设计

苏教版五年级数学《公因数和最大公因数》教学设计

教学过程:

一、创设生活情境

1、电脑显示:小红家卫生间是长方形,如右图,小红爸爸准备装修卫生间,要在地面上铺正方形地面砖,要选边长为几分米(整数)的地面砖,才能不用锯分就能整齐地铺满地面砖呢?

学生说出:用边长1分米的正方形地面砖铺地。 12分米

师:怎么铺?会多出来吗? 18分米

学生说出:每行铺18快,铺12行,不会多出来。

师:有没有其它铺的方法?

学生说出:我用边长2 分米的正方形地面砖铺。

师:怎么铺?

学生说出:每行铺9快,铺6行。

师:有没有其它铺的方法?

学生说出:我用边长3分米的正方形地面砖铺,每行6块,铺4行,也正好。

学生还可能说出:用边长4分米的正方形地面砖铺地。

让学生小组讨论:按要求能不能铺?让学生明确要锯分铺了。

师:还有其它铺的方法吗?

让学生说出:还可以用边长6分米的正方形铺地,每行3块,铺2行。

师:哦,原来小红家卫生间有这么多的铺法?

小红爸爸要铺得快一点,那一种铺法最好?

[设计意图:课始,创设生活情境,将学生有然地带入求知的情境中去,通过设疑,让学生从这些生活情境中提出问题。创设这样的情境,一是调动学生的学习兴趣、感受到数学与生活的密切联系;二是初步培养学生提出问题、解决问题的能力。这样既激发了学生探求知识的.欲望,同时又为后面解决问题提供了学习的目标。]

二、引导自主探索

1、自主探索、形成概念

师:那我还要问一问,你们是怎么想出可以用边长是1、2、3、6分米的正方形地面砖铺呢?

让学生说出:①1、2、3、6都是18的因数,又都是12的因数

②1、2、3、6是18和12的公有的因数

师:18的因数和12的因数有几个?能举完吗?

让学生说出:能,只有4个,个数是有限的

师:我们可以把这4个数叫做18和12的公因数,最大的一个是几?

师:谁给它起个名字?

由此引出最大公因数的概念。

[设计意图:在教学中,不仅要求学生掌握抽象的数学结论,更应注意学生的“发现“意识,引导学生参与探讨知识的形成过程,尽可能挖掘学生潜能,能让学生通过努力,自己解决问题,形成概念。]

2、观察发现、探索方法

出示例4:8和12的公因数有那些?最大公因数是几?

师:你能用那些方法解决这个问题?小组讨论;

让小组代表逐一汇报:

方法1:8的因数:1、2、4、8 ; 12的因数:1、2、3、4、6、12

8和12的公因数有:1、2、4;最大的公因数是4

方法2:先找8的因数,再从8的因数中找出12的因数

8的因数:1、2、4、8其中1、2、4也是12的因数

8和12的公因数有:1、2、4;最大的公因数是4

方法3:把8和12用几个素数的乘积来表示:8=2×2×2 ;12=2×2×3

8和12的公因数有:1、2、4;最大的公因数是2×2=4

……

师:还可以用下面的图来表示:

[设计意图:德国教育家第斯多惠指出:“一个坏的教师奉送真理,一个好的教师则教人发现真理。”在教学中,在引导学生探索问题的过程中,利用观察、发现、设问步步深入地引导学生逼近结论、求索方法。通过说思考过程、师生讨论,让学生的推理才能得以充分发挥,真正驾驭学习,成为学习的主人,为学生的自主探索发现、创新增添活力。]

篇6:五年级数学《最大公因数》评课稿

五年级数学《最大公因数》评课稿

在晚自习上,我观看了王XX老师讲授的《最大公因数》这堂录像课。王老师这节课,听后给人的感觉是“很扎实”,每一个教学环节都很到位,教师让学生在课堂中动脑、动手、动口,在合作中学习,在活动中学习。本节课教学重点突出,课堂气氛和谐融洽,教学过程清晰流畅,各个教学环节衔接自然,学生思维活跃,参与面广。在整个教学过程中,教师只是一个情境的创设者、知识的引导者、活动的组织者,而参与、体验、主动获得知识的是学生自己,真正体现了“学生是学习的主体”这一教学思想。教师将“知识与技能”、“过程与方法”、“情感态度与价值观”三维目标有机结合,关注了学生的全面发展。

一、教学目标到位,教学重点突出、难点设置合理。

本节课主要目标是:掌握求两个数的最大公因数的方法,理解公因数中最大公因数是谁。王老师通过地面铺砖的这种生活情景,让学生从这些生活情景中发现问题,并提出疑惑,这样调动了学生兴趣,感受数学与生活的密切关系,还培养学生分析问题和解决问题的能力。本节课重点让学生理解公因数和最大公因数的意义,难点是如何找两个数的公因数及最大公因数。王老师这节课首先以列举法来引导学生找公因数,随后,又用集合图的方式反映12和16的公因数各有哪些,然后让学生观察发现12和16的公因数中最大公因数是谁,通过一系列媒体资源的展示,逐一解决了每个问题,大大加深了学生对公因数和最大公因数的印象。他鼓励学生运用多种方法,让学生在感悟、理解的基础上,总结出求最大公因数的方法。顺利完成了本节课的教学任务。

二、教学程序中,作到分层递进,由扶到放,让学生主动探索,获取知识。

(1〕培养学生自主探索,形成概念。

王老师这节课通过铺地砖的事例要求学生掌握抽象的数学结论,引导学生参与探讨知识形成过程,尽可能的挖掘出学生的潜能,让学生通过讨论,交流努力出解决问题,形成概念。

〔2〕让学生发现问题,探索出方法。

王老师整节课是通过课件演示,采用了列举法,集合法,这两种方式教学12和16的公因数有哪些,其中最大公因数是几,利用这种方式教学,让学生自己去观察,去发现,为学生自主探索,发现,创新增添了活力。

〔3〕练习层次分明,巩固新知

练习的设计,能让学生更好的巩固新知,并能在此基础上有所提高和拓展。尤其是通过游戏巩固了学习知识,也极大地调动了他们学习数学的兴趣!帮助学生进一步理解因数和公因数的联系和区别。

巩固练习做到了有趣、有益、有层、有度。

三、教学手段多样化,多媒体课件运用灵活

1、导入设计巧妙

教材是落实课程标准理念的重要载体,也是教师进行课堂教学的主要依据。教师只有“创造性地教”,学生才能“创造性地学”。教师在课堂教学过程中进行的教学活动,并不是对教材的简单复制,而是教师对教材的二度开发,是一种再开发、再创造的活动过程,这也是教师参与课程开发的主要形式。本节课王老师把数学知识设置在具体情境之中,最大公因数的概念,是用铺地砖的问题引出的。课堂上,王老师运用多媒体动态呈现王叔叔家用地砖铺贮藏室地面的现实情境,请同学们帮助王叔叔选择地砖。学生在帮助王叔叔选择地砖的活动中,通过动手操作,发现正方形地砖的边长与长方形地面的长、宽之间的关系;通过讨论交流,抽象出公因数、最大公因数概念。教学概念的教学与解决实际问题结合在一起,自然揭示了教学与现实世界的联系。学生在获取数学知识的过程中,切实体会到了数学来源于生活,服务于生活,体会到了数学与生活的密切联系。

2、给学生提供了充分的探索空间

数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的.过程。本节课教师能够“以学论教”,在探索新知中采用了自主探究、合作交流的学习方式,突出了学生的主体地位。学生通过动手“摆一摆”“画一画”,发现了可以选择边长是1dm、2dm、4dm的正方形地砖。接着,各小组围绕这几种可选择的地砖的边长与长形地面的长、宽之间的关系展开讨论。学生凭借已有的知识,很快发现:1、2、4是16的因数,也是12的因数。在这个基础上,王老师请学生用简洁的话说一说“1、2、4是16和12的什么数”,由学生抽象出公因数、最大公因数的概念。最后用集合圈形式的展示,让学生懂得了,公因数和最大公因还可以用不同的形式来表示。然后,返回帮王叔叔选择地砖的问题,进而制造认知冲突,引导学生自己想办法解决问题。教师在这里的充分放手,给学生提供了充分的探索空间。这样安排教学过程,可以让学生经历发现问题、独立思考、合作探究、解决问题、主动获得新知识的过程。

评课稿四、通过教学,学生既获得了数学概念,也获得了数学方法

学生在解决问题的过程中获得了感悟,就能为抽象出概念提供感性认识基础。这节课的内容学生掌握的非常好。由学生自己建构了公因数和最大公因数的概念,使公因数、最大公因数这两个抽象的概念,变得非常具体、直观,学生摸得着,看得见。从而增强了感知事实、建立概念的效果。学生是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识,也充分体现了教师驾驭教材,调控学生的能力。

篇7:五年级数学《公因数和最大公因数》教学反思

五年级数学《公因数和最大公因数》教学反思

教学 例3时先用边长6厘米和4厘米的正方形纸片,分别铺长18厘米、宽12厘米的长方形,教师选择正方形纸片铺长方形的活动教学公因数,是因为这一活动能吸引学生发现和提出问题,能引导学生思考。学生用同两张正方形纸片分别铺一个不同的长方形,面对出现的两种结果,会发现“为什么有时正好铺满、有时不能”,“什么时候正好铺满、什么时候不能”这些有研究价值的问题。他们沿着长方形的边铺正方形纸片,就会想到正好铺满与不能正好铺满的原因可能和边长有关,于是产生进一步研究长方形边长和正方形边长关系的愿望。分析长方形的长、宽和正方形边长之间的关系,按学生的认知规律,设计成两个层次: 第一个层次联系铺的过程与结果,从长方形的长、宽除以正方形的边长没有余数和有余数的层面上,体会正好铺满与不能正好铺满的原因。第二个层次根据边长6厘米的正方形正好铺满长18厘米、宽12厘米的长方形、而边长4厘米的正方形不能正好铺满长18厘米、宽12厘米的长方形的经验,联想边长几厘米的正方形还能正好铺满长18厘米、宽12厘米的长方形。先找到这些正方形,把它们边长从小到大排列,知道这样的正方形的个数是有限的。再用“既是12的因数,又是18的因数”概括地描述这些正方形边长的特征。显然,前一层次形象思维的成分较大,思考难度较小,对后一层次的抽象认识有重要的`支持作用。

反思:突出概念的内涵、外延,让学生准确理解概念。

我用“既是……又是……”的描述,让学生理解“公有”的意思。例3先联系用边长1、2、3、6厘米的正方形正好能铺满长18厘米、宽12厘米的长方形纸片的现象,从长方形的长、宽分别除以正方形边长都没有余数,得出正方形的边长“既是12的因数,又是18的因数”,一方面概括了这些正方形边长的特点,另一方面让学生体会“既是……又是……”的意思。然后进一步概括 “1、2、3、6既是12的因数,又是18的因数,它们是12和18的公因数”,形成公因数的概念。

由于知识的迁移,学生很容易想到用集合图直观形象地显示公因数的含义。第27页把8的因数和12的因数分别写到两个集合圈里,这两个集合圈有一部分重叠,在重叠部分里写的数既是8的因数,也是12的因数,是8和12的公因数。先观察这个集合图,再填写第28页的集合图,学生能进一步体会公因数的含义。概念的外延是指这个概念包括的一切对象。

运用数学概念,让学生探索找两个数的最大公因数的方法。

例4教学求两个数的最大公因数,出现了两种解决问题的方法。学生有的先分别写出8和12的因数,再找出它们的公因数和最大公因数。有的在8的因数里找12的因数,这样操作比较方便,但容易遗漏。我有意引导学生选择第一种。练习五的第3题就是这种方法的应用。

充分利用教育资源,自制课件,协助教学。

限于操作的局部性,我认真制作了实用的课件,让直观、清晰的页面直接辅助我教学,学生表现积极,课堂气氛比较活跃,提问、释疑、解惑,练习的热情很高。

本课设计目的是使学生学习公因数、最大公因数的意义,并学会找两个数的最大公因数的方法,从整节课学生表现情况和课后作业反馈来看,学生对本部分知识知识掌握较好,学习积极并具有热情,就实效性讲很令人满意。

篇8:五年级数学《最大公因数》评课稿

五年级数学《最大公因数》评课稿

一、教学目标到位,教学重点突出、难点设置合理。

本节课主要目标是:掌握求两个数的最大公因数的方法,理解公因数中最大公因数是谁。王老师通过地面铺砖的这种生活情景,让学生从这些生活情景中发现问题,并提出疑惑,这样调动了学生兴趣,感受数学与生活的密切关系,还培养学生分析问题和解决问题的能力。本节课重点让学生理解公因数和最大公因数的意义,难点是如何找两个数的公因数及最大公因数。王老师这节课首先以列举法来引导学生找公因数,随后,又用集合图的方式反映12和16的公因数各有哪些,然后让学生观察发现12和16的公因数中最大公因数是谁,通过一系列媒体资源的展示,逐一解决了每个问题,大大加深了学生对公因数和最大公因数的印象。他鼓励学生运用多种方法,让学生在感悟、理解的基础上,总结出求最大公因数的方法。顺利完成了本节课的教学任务。

二、教学程序中,作到分层递进,由扶到放,让学生主动探索,获取知识。

(1〕培养学生自主探索,形成概念。

王老师这节课通过铺地砖的事例要求学生掌握抽象的数学结论,引导学生参与探讨知识形成过程,尽可能的挖掘出学生的潜能,让学生通过讨论,交流努力出解决问题,形成概念。

〔2〕让学生发现问题,探索出方法。

王老师整节课是通过课件演示,采用了列举法,集合法,这两种方式教学12和16的公因数有哪些,其中最大公因数是几,利用这种方式教学,让学生自己去观察,去发现,为学生自主探索,发现,创新增添了活力。

〔3〕练习层次分明,巩固新知

练习的设计,能让学生更好的巩固新知,并能在此基础上有所提高和拓展。尤其是通过游戏巩固了学习知识,也极大地调动了他们学习数学的兴趣!帮助学生进一步理解因数和公因数的联系和区别。

巩固练习做到了有趣、有益、有层、有度。

三、教学手段多样化,多媒体课件运用灵活

1、导入设计巧妙

教材是落实课程标准理念的重要载体,也是教师进行课堂教学的主要依据。教师只有“创造性地教”,学生才能“创造性地学”。教师在课堂教学过程中进行的教学活动,并不是对教材的简单复制,而是教师对教材的二度开发,是一种再开发、再创造的活动过程,这也是教师参与课程开发的主要形式。本节课王老师把数学知识设置在具体情境之中,最大公因数的概念,是用铺地砖的问题引出的。课堂上,王老师运用多媒体动态呈现王叔叔家用地砖铺贮藏室地面的现实情境,请同学们帮助王叔叔选择地砖。学生在帮助王叔叔选择地砖的活动中,通过动手操作,发现正方形地砖的边长与长方形地面的长、宽之间的关系;通过讨论交流,抽象出公因数、最大公因数概念。教学概念的教学与解决实际问题结合在一起,自然揭示了教学与现实世界的联系。学生在获取数学知识的过程中,切实体会到了数学来源于生活,服务于生活,体会到了数学与生活的密切联系。

2、给学生提供了充分的探索空间

数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程。本节课教师能够“以学论教”,在探索新知中采用了自主探究、合作交流的学习方式,突出了学生的主体地位。学生通过动手“摆一摆”“画一画”,发现了可以选择边长是1dm、2dm、4dm的正方形地砖。接着,各小组围绕这几种可选择的地砖的边长与长形地面的长、宽之间的关系展开讨论。学生凭借已有的.知识,很快发现:1、2、4是16的因数,也是12的因数。在这个基础上,王老师请学生用简洁的话说一说“1、2、4是16和12的什么数”,由学生抽象出公因数、最大公因数的概念。最后用集合圈形式的展示,让学生懂得了,公因数和最大公因还可以用不同的形式来表示。然后,返回帮王叔叔选择地砖的问题,进而制造认知冲突,引导学生自己想办法解决问题。教师在这里的充分放手,给学生提供了充分的探索空间。这样安排教学过程,可以让学生经历发现问题、独立思考、合作探究、解决问题、主动获得新知识的过程。

四、通过教学,学生既获得了数学概念,也获得了数学方法

学生在解决问题的过程中获得了感悟,就能为抽象出概念提供感性认识基础。这节课的内容学生掌握的非常好。由学生自己建构了公因数和最大公因数的概念,使公因数、最大公因数这两个抽象的概念,变得非常具体、直观,学生摸得着,看得见。从而增强了感知事实、建立概念的效果。学生是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识,也充分体现了教师驾驭教材,调控学生的能力。

篇9:数学五年级上册最大公因数的教案

数学五年级上册最大公因数的教案

北师大版小学五年级上册数学教案,依据教材文章选择优质教学设计及优质教案,为你提供全方位的优秀教案。

教学内容:

课本P81的学习内容和练习十五的练习。

教学目标:

1、使学生加深对公因数和最大公因数意义的理解,掌握求两个数最大公因数的方法。

2、能在练习的过程中发现求两数最大公因数的两种特殊情况。

3、体现算法的多样化和个性化,培养学生独立思考和合作学习的能力。

教学重点:

掌握找两个数的最大公因数的方法

教学难点:

掌握两种特殊情况下求两个数最大公因数的方法。

教学过程:

一、激趣引入

师:同学们还记得什么是公因数,什么是最大公因数吗?请你根据已知的信息,快速找出15和20的公因数与最大公因数。

15的因数:1,3,5,15

20的因数:1,2,4,5,10,20

15和20的公因数有( ),最大公因数是( )。

(指名口答加课件订正)

师:在接下来要学习的分数计算和一些解决实际问题中,我们经常要用到最大公因数的知识。所以今天我们就一起来学习怎样求最大公因数。

(板书:求最大公因数)。

二、交流展示

1、小组交流预习成果,初步归纳求最大公因数的方法。

师:昨天同学们都进行了预习,你们找到求最大公因数的方法了吗?请在小组内交流一下。

2、预习成果展示,掌握求最大公因数的方法。

师:请一位同学来汇报一下你是怎样求18和27的最大公因数的?

生:可以先分别找出18和27的因数,再找出它们的公因数,其中最大的就是最大公因数。

18的因数:1,2,3,6,9,18

27的因数:1,3,9,27

18和27的最大公因数是9。

师:这种方法先写出两个数的因数,再找出它们的公有因数,其中最大的就是最大公因数。所以我们在写出两个数的因数后,应该写上这样一句话:18和27最大公因数是9。

3、交流互动,感受求最大公因数方法的多样性。

除了这种方法,同学们还会其他方法吗?请同学拿着学案纸上台投影展示汇报。

预设

(1)课本第二种

18的因数:1,2,3,6,9,18

其中1、3、9也是27的因数,所以1、3、9是18和27的公因数,9是它们的最大公因数。

师:这种方法先找出18的因数,再看这些因数中谁是27的因数,那它们就是18和27的公因数,最大的一个自然就是最大公因数。能够先找18的因数,能不能先找27的因数呢?(能)

师:(指着这种方法)我们只是想找出它们的最大公因数,大家动脑筋思考一下,这种方法还能不能更简化和优化一些?(引导学生发现,写出18或27的因数后,从大到小看谁是另一个数的因数,满足的第一个就是最大公因数)

(2)其它的方法

分解质因数法和短除法根据实际情况灵活处理。

三、质疑点拨。

1、预习评价,纠错巩固。

师:通过刚才的学习,你掌握了求最公因数的方法了吗?老师在课前收集了几份预习作业,你能发现这些练习的错误或做得不够好的地方吗?(投影展示典型错例。)

2、阅读课本,提出质疑。

师:现在请同学们再阅读课本和反思刚才的学习过程,还有什么疑问吗?(课前了解学案再做预设)

3、方法归纳,点拨提升。

其实两个数的公因数和它们的最大公因数之间也存在某种关系,你发现了吗?(多请几个学生来汇报他们的答案,并引导学生观察例2的板书,以及学案上多个例子,发现公因数是最大公因数的因数。)

师:所有公因数都是最大公因数的因数。我们可以利用这个发现快速地检验自己是否找对了公因数和最大公因数。(让学生用例题和学案上1,2个例子来试试怎样检验)

师:回顾刚才大家介绍的多种求最大公因数的方法,其中这种做法(指着黑板)直接根据最大公因数的定义来找,属于基本方法,每个同学都应该理解和掌握。在这种方法基础上,同学们可以选择自己喜欢和擅长的方法去求最大公因数。

四、练习提高。

师:现在老师马上考考大家,你有信心做对吗?

1、求下面每组数的最大公因数。

15和12 30和45

2、找有倍数关系的两个数、互质数关系两个数的'最大公因数的规律。

师:看来大家掌握得都不错,都能做对。老师要提高难度,不仅要做对,还要找出规律。请完成课本P81做一做,完成后在小组里订正和说一说自己的发现。

4和8 16和32 1和7 8和9

(1)汇报最大公因数答案。

(2)说一说自己的发现。(多请几个学生说说发现,逐渐归纳成结论)

师:当两数成倍数关系时,较小的数就是它们的最大公因数。当两数只有公因数1时(也就是大家在预习时在你知道吗里面了解到的互质数),它们的最大公因数也是1。

(3)教师小结

师:像这样能够直接看出最大公因数的,就不用再从头去找公因数了,也就是不用写出计算过程,直接写出谁和谁的最大公因数是几就可以了。你们掌握了找最大公因数的两种特殊情况了吗?请迅速完成课本82页第3题,直接填写在书上。

3、选出正确答案的编号填在横线上。

(1)9和16的最大公因数是_____________。

A。1 B。3 C。4 D。9

(2)16和48的最大公因数是_____________。

A。4 B。6 C。8 D。16

(3)甲数是乙数的倍数,甲、乙两数的最大公因数是_____________。

A。1 B。甲数 C。乙数 D。甲、乙两数的积

师:看来直接找两个数的最大公因数并不能难倒大家,现在老师看看大家能不能运用知识来解决一些问题。

4、写出下列各分数分子和分母的最大公因数。

( ) ( ) ( ) ( )

篇10:小学五年级数学下册《最大公因数》教案

一 教学内容

最大公因数(二)

教材第81 页的内容。

二 教学目标

1 .通过教学,使学生加深对公因数和最大公因数意义的理解,掌握找两个数最大公因数的方法。

2 .培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。

三 重点难点

掌握找两个数最大公因数的方法。

四 教具准备

投影。

五 教学过程

(一)导入

提问:什么叫公因数?什么叫最大公因数?

(二)教学实施

1 .出示例2。怎样求18 和27 的最大公因数?

(l)学生先独立思考,用自己想到的方法试着找出18 和27 的最大公因数。

(2)小组讨论,互相启发,再在全班交流。

先分别写出18 和27 的因数,再圈出公有的因数,从中找到最大公因数。

方法二:先找出18 的因数:① ,2 ,③ ,6 ,⑨ ,18

再看18 的因数中有哪些是27 的因数,再看哪个最大。

方法三:先写出27 的因数,再看27 的因数中哪些是18 的因数。从中找出最大的。

27 的因数:① ,③ ,⑨ ,27

方法四:先写出18 的因数:1 , 2 , 3 , 6 , 9 , 18 。从大到小依次看18 的因数是不是27 的因数,9 是27 的因数,所以9 是18 和27 的最大公因数。

2 .引导学生看教材第81 页的“你知道吗”,指导学生自学用分解质因数的方法,找两个数的最大公因数。

24 和36 的最大公因数=2×2×3=12 。

指出:两个数所有公有质因数的积,就是这两个数的最大公因数。

3 .完成教材第81 页的“做一做”。

学生先独立完成,独立观察,每组数有什么特点,再进行交流。小结:求两个数的最大公因数有哪些特殊情况?

( 1 )当两个数成倍数关系时,较小的数就是它们的最大公因数。

( 2 )当两个数只有公因数1 时,它们的最大公因数也是1 。

篇11:小学五年级数学下册《最大公因数》教案

一 教学内容

最大公因数(二)

教材第82 、83 页练习十五的第2 一9 题。

二 教学目标

1 .培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。

2 .培养学生抽象、概括的能力。

三 重点难点

掌握找两个数最大公因数的方法。

四 教具准备

投影。

五 教学过程

1 .完成教材第82 页练习十五的第2 题。

学生先独立完成,然后集体交流找最大公因数的经验,并将这8 组数分为三类。

2 .完成教材第82 页练习十五的第3 一5 题。

学生独立填在课本上,集体交流。

3 .完成教材第83 页练习十五的第6 题。

学生独立填写,集体交流,体会两个数的最大公因数是1 的几种情况。

4 .完成教材第83 页练习十五的第7 一11 题。

学生独立审题,理解题意,然后试着解答,集体交流。

5 .指导学生阅读教材第83 页的“你知道吗”。

请学生试着举例。提问:互质的两个数必须都是质数吗?你能举出两个合数互质的例子吗?

(四)思维训练

1 .某服装厂的甲车间有42 人,乙车间有48 人。为了开展竞赛,把两个车间的工人分成人数相等的小组。每组最多有多少人?

2 .有一个长方体,长70 厘米,宽50 厘米,高45 厘米。如果要切成同样大的小正方体,这些小正方体的棱长最大可以是多少厘米?

3 .把一块长8 分米、宽6 分米的铁皮切割成同样大小的正方形铁皮,如果没有剩余,正方形个数又要最少,那么可以切割成多少块?

(五)课堂小结

通过本节课的学习,主要掌握了找两个数的最大公因数的方法。找两个数的最大公因数,可以先分别写出这两个数的因数,再圈出相同的因数,从中找到最大公因数;也可以先找到一个数的因数,再从大到小,看看哪个数是另一个数的因数,从而找到最大公因数。

小学五年级数学下册《最大公因数》教学反思

《数学课程标准》指出:“学生是学习的主人,教师是教学学习的组织者、引导者与合作者。”本课是在学生掌握了因数、倍数、找因数的基础上进行教学的,通过找公因数的过程,让学生懂得找公因数的基本方法。在此基础上,引出公因数和最大公因数的概念,为了加深理解,可以进一步引导学生观察、分析、讨论,让学生明确找两个数公因数的方法,并对找有有特征的数字的最大公因数的特殊方法有所体验。

以往数学公因数的概念,通常是直接找出两个自然数的因数,然后让学生发现有的因数是两个数公有,从而揭示公因数和最大公因数的概念。本单元教材注意以直观的操作活动,让学生经历公因数和最大公因数概念的形成过程。这样安排有两点好处:一是学生通过操作活动,能体会公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。在这节课上,让学生按要求自主操作,发现用边长1分米、2分米、4分米的正方形正好铺满长 16分米,宽12分米的长方形贮藏室地面。在发现结果的同时,还引导学生联系除法算式进行思考,对直观操作活动有了初步抽象。在此基础上,引导学生思考 1、2、4这些数和16、12的关系,这时揭示公因数和最大公因数的概念,突出概念的内涵是“即是……又是……”即“公有”,并在此基础上,借助直观的集合图显示公因数的意义。实实在在让学生经历了概念的形成过程,效果较好。

看过“小学五年级数学下册《最大公因数》教案 ”的还看了:

篇12:《最大公因数》说课稿

一、说教材

1、教材简析

最大公因数这部分内容是在学生掌握了因数概念的基础上进行教学的,主要是为学习约分做准备。按照《新课程标准》的要求,教材中只出现求两个数的公因数和最大公因数。

2、教学目标

结合教材所处的地位和学生实际,我制定了以下教学目标:

知识目标:让学生在自学的过程中理解公因数和最大公因数的意义,探索找公因数的方法,会正确找出两个数的公因数与最大公因数。

能力目标:能根据两个数的不同关系灵活地求两个数的最大公因数。渗透集合思想,体验解决问题策略的多样化。

情感目标:利用课件,让孩子结合在生活经验,体会成功解决问题的快乐,体会数学与人类的密切联系,感受数学与日常生活的关系。通过动手能力的培养,体验“生活中处处有数学,处处用数学”的理念。

3、教学重、难点:据以上的目标,我确定了本课的教学重点是让学生在自学的过程中理解公因数和最大公因数的意义,探索找公因数的方法,会正确找出两个数的公因数与最大公因数。

二、设计理念

在概念教学中,注重问题情境的创设,充分地发挥情境的作用,发挥学生的合作探究学习。由“求”转变为“找”两个数的公因数,体现方法多样化。材料准备了自制课件,方格纸。

三、说教学流程

结合教材、教学目标及学生的实际,按照“先学后教当堂训练”教学要求,我设计了下面五环节:

1、复习导入: 本节课的教学是学生掌握了因数的基础上进行的,因此,我出示两个数让学生说出它的所有因数。(3、6、8、12),怎样找一个数的因数?

2、教学新课 :只有明确了学习目的,学生才能更好的去自主完成本节课的学习任务,因而在学习新课之前我首先把学习目标出示给学生,让他们明确本节课的学习任务。

3、出示自学提示:为了帮助学生更好的自学,在给出目标后,我又帮助学生拟定了两个学习的提示,让学生学有所依,学而得法,从而培养学生的自学能力。

4、自主探究,汇报交流:

在学习“公因数,最大公因数”的概念,探究求两个数的最大公因数的方法时,让学生为24分米宽,36分米长储藏室铺上正方形地砖,怎么样铺的满而没有剩余,让学生自己小组合作学习,并在遇到困难时在小组群体中自由自在地交流,无拘无束地讨论,独立思考、相互学习。在讨论与交流中,思维呈开放的态势,不同见解、不同观点相互碰撞、相互引发、相互点燃,在汇报交流中强化对比,选出合适方法,从而实现个人与他人、小组与全班的全程对话。例二是让学生结合教学目标进行一一合作讨论,8和12的共有的因数和最大公因数是那些?学生交流后回答,教师评议。最后小结出什么是公因数,什么是最大公因数?并进行小结。

5、教师的教:教师在引导学生汇报时结合本节课的特点进行相机教学,对重难点问题反复讲,让学生理解。

四、练习应用。

在学生的练习中,教师巡视指导,发现问题及时解决,对表现好的给予肯定。

五、布置作业。

课本练习五中的第1、2题。

篇13:《最大公因数》说课稿

这一节课的教学内容是新课程人教版小学数学五年级下册,第四单元分数的意义和性质里面的最大公因数。本节课的教学目标是:

1、理解两个数的公因数以及最大公因数的概念;

2、能够灵活运用列举法求两个数的公因数以及最大公因数,学会用多于一种的列举法找出两个数的最大公因数;

3、培养有序思考的思维习惯,灵活运用知识解决问题的能力;

4、培养合作交流的学习习惯,严谨细心的学习态度。

教学的重点是理解两个数的公因数以及最大公因数的概念,学会用列举法找出两个数的最大公因数。教学的难点是灵活运用多于一种的列举法找出两个数的最大公因数。

这节课的设计我分为三个主要部分:分别是引入、理解新知和理解运用。在引入的教学部分,我设计了解密码锁的环节,分别让学生找出18与20的所有因数,再找出它们共同的因数。这样除了可以复习找出一个数因数的方法以外,还进行了对新知识两个数的公因数的铺垫,为后面的概念教学起到启发的作用。

在理解概念的教学部分,我最主要的设计是让学生亲自动手操作,感受两个数的公因数在实际生活中的应用。让他们根据已知的条件,把边长4厘米与边长6厘米的正方形分别铺在长18厘米,宽12厘米的长方形上面,要选择出合适的正方形。通过这些操作进行比较分析,从具体形象方面去感受理解什么是两个数的公因数这个概念。接着再通过相关的提问与沟通,把两个数的公因数这个概念的内涵和本质梳理清晰,使学生从概念的定义上明确什么是两个数的公因数和最大公因数,促进了概念从形象到抽象的过程。其中,学生们还通过与别人的合作、交流,逐渐学会用合适的语言把概念表达清楚。

在理解运用的教学部分,我把重点放在让学生用不同的列举法求出两个数的最大公因数上,引导学生应用两个数的最大公因数这个概念,运用多于一种的方法灵活有效率地找出两个数的最大公因数。在全部学生都能够理解最基本方法的基础上,通过学生之间的互相交流讨论,发掘出效率更高、更快找出两个数最大公因数的方法,并且让学生通过比较练习逐渐学会选择合适的方法,优化解决问题的方案,为后面约分的学习奠定基础。

在整节课的教学过程中,学生之间的合作交流、互动学习是关键,因此,有效的小组合作活动与有效的教学有密切联系,必须在学生进行小组活动的时候提供必要的指引与点拨,关注活动的情况。同时,充分利用学生在发表意见时的有效生成,梳理并引导理解,也是达到教学目标的重要资源。

篇14:最大公因数说课稿

第一方面:教材分析

本节课是在学生已经理解和掌握因数的含义以及其的特点的基础上进行教学的。这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和分数四则计算的基础。对于学生的后续学习和发展,具有举足轻重的作用。

根据《新课标》“以人为本”的教育教学理念、教材的编排特点及学生的实际情况,力求达到以下三维目标:

1、知识与技能:理解和掌握公因数和最大公因数的意义,并能正确找出两个数的公因数与最大公因数;

2、过程与方法:经历概念的形成过程和找最大公因数的方法,渗透集合思想,体验解决问题策略的多样化。

3、情感态度与价值观:培养学生的合作意识与探究精神,养成良好的学习习惯。

本节课的教学重点为:理解和掌握公因数和最大公因数的意义;

难点为:能正确找出两个数的公因数和最大公因数。

第二方面:教法设想

基于以上对教材的认识和高年级学生思维活跃、求知欲强、善于表达的特点,我设计把“启发诱导”、“情景教学”、“实验操作”、“愉快教学”等多种教学方法融会贯通。力求让学生们在和谐愉快的氛围中主动探索新知,意在把抽象的概念教学变得具体化、形象化、生动化。同时,也让孩子们享受到成功的喜悦。

第三方面:学法指导

《新课标》指出:有效的教学活动不能单纯地依靠模仿和记忆,自主探究与合作交流是学习数学的重要方式。为了让学生经历概念的形成过程,探索找最大公因数的方法。我设计了让学生在半独立的状态下进行自主探究、合作交流。这种学法的指导意在体现学生的主体地位和教师的主导作用。

第四方面:教学程序

依据教材特点、小学生认知规律和发展水平,我设计了以下五个教学环节:

(一)、第一个环节是“激发兴趣、导入新课”

新课伊始,用游戏引入,意在激发学生的学习兴趣,复习旧知,同时也为新知识的学习做好铺垫。

8名学生每人都拿着一张数字卡片。听口令,手中的卡片是16的因数的同学快速跑到左边集合。待全体同学确认了是否正确后,再听口令,手中的卡片是12的因数的同学快速跑到右边集合。结果有一部分学生立即从左边跑到了右边。从而引发矛盾,“你们是16的因数,现在怎么却又跑到12的因数里面了呢?”从而导入课题——“因数和最大公因数”。

(二)第二个环节是“创设情景、抽象概念”

公因数和最大公因数的意义是本节课的重点。在这一环节中,首先通过铺方砖创设情境,激发学生的学习兴趣,让学生感知、感悟数学与生活的密切联系,增强学生的应用意识。

然后,让学生动手在方格纸上画一画或者用学具摆一摆,在动手操作的过程中,经历数学概念形成的过程。

通过动手操作,小组合作、探讨交流,学生们发现,可以用边长1分米的地砖铺地,也可以用边长2分米的方砖铺地,还可以用边长4分米的地砖铺地。进而引导学生总结出:要使所用的正方形地砖都是整块的,地砖的边长必须既是16的因数,又是12的因数。所以地砖的边长可以是1 dm、2 dm、4 dm,最大是4 dm。

学生在操作探索中解决了生活中的实际问题,并初步建立了公因数和最大公因数的概念的表象。

最后,利用集合圈帮助学生抽象出公因数和最大公因数的意义。意在让学生能够更加直观的理解概念,同时也渗透了集合思想。

对于概念的描述,课程标准虽然只要求会找出两个数的公因数和最大公因数,但是在总结、归纳、抽象概念时,应考虑从更广泛的角度上描述。不说两个数而是说几个数公有的因数叫做这几个数的公因数,其中最大的一个公因数叫做这几个数的最大公因数。

(三)第三个环节是“自主探究、突破难点”

找两个数的最大公因数是本节课的难点。在学生理解和掌握公因数和最大公因数的意义的基础上,这部分教学我大胆放手,为学生创设大量的时间和空间,让学生们自学探究。学生可能会找出以下几种方法:

一是分别找出18和27的因数,再找出它们的公因数和最大公因数;

二是先找18的因数,再从中找27的因数,进而找出它们的最大公因数;

三是先找27的因数,再从中找出18的因数,进而找出它们的最大公因数。

通过比较三种方法,让学生感受哪种方法比较简捷。

如果有个别学生提出可以用分解质因数的方法找出最大公因数,在时间允许的情况下,可以一起探讨。

如果时间不足,应该对发现这方法的同学特别提出表扬和鼓励,并提议其他学生课后可以根据教材第81页的“你知道吗”小知识了解一下这种方法,下节课再一起探讨。

本环节中,鼓励学生尝试多种角度思考问题,体现了解决问题策略的多样化,并在学生感悟、理解的基础上,由学生进行方法的最优化。

(四)第四个环节是“学以致用、体验成功”

《新课程标准》要求巩固练习要体现层次性和科学性原则。

我首先安排了基础练习,练习十五第1题,以帮助学生进一步理解、掌握公因数和最大公因数的意义。

其次是发展性练习。教材第81页“做一做”题目。

让学生通过观察、讨论,发现如下规律:

①成倍数关系的两个数的最大公因数,就是这两个数中较小的数。

②1和其它非0自然数的最大公因数是1。

③两个连续自然数(0除外)的最大公因数是1。

最后是提高练习。教材第83页第7、8题。学生用本节课所学的知识解决现实生活中的实际问题,让学生深刻感受到,数学知识来源于生活,而又应用于生活。

练习的设计从认识到理解,再到拓展应用,逐层加深,意在扎实学生的基础知识,又培养学生解决问题的能力。

(五)第五个环节是“自我评价、大胆质疑”

本课结束时,我抛出最后一个问题:在今天的学习中,你有什么收获?还有什么困惑?你对自己今天的学习做个评价好吗?

让学生自主回顾归纳所学知识内容,重构认知,也为进一步学习新知识扫除了障碍。

第五方面:板书设计

板书设计是重要的教学辅助手段,也是课堂教学中必不可缺少的重要组成部分。

我的板书简明扼要地呈现了本节课的教学内容,是学生获取知识的思路图。

公因数和最大公因数

18的因数:1 、2 、3、6 、9 、18

27的因数:1 、3 、9 、27

18的因数:1 、2 、3 、6 、9 、18

27的因数:1 、3 、9 、27

第六方面:预设的教学效果。

本节课遵循“以人为本”的教育教学理念,力求让学生们在愉快的氛围中主动的探索新知,发展学生的思维,让学生们享受到成功的喜悦,以最大限度的提高课堂效率。

以上是我对本节课的一些设想,还有待于在实践中去完善,如有不当之处,敬请各位评委予以批评指正。

【五年级数学《最大公因数》的说课稿】相关文章:

1.数学公因数和最大公因数教学反思

2.最大公因数教学设计

3.《最大公因数》的教案

4.最大公因数课件资料

5.找最大公因数课件

6.找最大公因数教学反思

7.人教版最大公因数的教学设计

8.公倍数和公因数说课稿

9.人教版五年级数学说课稿

10.求两个数的最大公因数教学反思

下载word文档
《五年级数学《最大公因数》的说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部