欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教案>《解一元一次方程》教学方案设计

《解一元一次方程》教学方案设计

2023-06-10 08:47:14 收藏本文 下载本文

“taka”通过精心收集,向本站投稿了16篇《解一元一次方程》教学方案设计,下面小编给大家整理后的《解一元一次方程》教学方案设计,欢迎阅读与借鉴!

《解一元一次方程》教学方案设计

篇1:《解一元一次方程》教学方案设计

《解一元一次方程》教学方案设计

A卷:基础题

一、选择题

1.判断下列移项正确的是( )

A.从13-x=-5,得到13-5=x B.从-7x+3=-13x-2,得到13x+7x=-3-2

C.从2x+3=3x+4,得到2x-4=3x-3 D.从-5x-7=2x-11,得到11-7=2x-5x

2.若x=m是方程ax=5的解,则x=m也是方程( )的解

A.3ax=15 B.ax-3=-2 C.ax-0.5=- D.ax= -10

3.解方程 =1时,去分母正确的是( )

A.4x+1-10x+1=1 B.4x+2-10x-1=1

C.2(2x+1)-(10x+1)=6 D.2(2x+1)-10x+1=6

二、填空题

4.单项式- ax+1b4与9a2x-1b4是同类项,则x-2=_______.

5.已知关于x的方程2x+a=0的解比方程3x-a=0的解大5,则a=_______.

6.若关于x的一元一次方程 =1的解是x=-1,则k=______.

三、计算题

7.解一元一次方程.

(1) -7=5+x; (2) y- = y+3;

(3) (y-7)- [9-4(2-y)]=1.

四、解答题

8.利用方程变形的依据解下列方程.

(1)2x+4=-12; (2) x-2=7.

9.关于x的方程kx+2=4x+5有正整数解,求满足条件的k的正整数值.

10.蜻蜓有6条腿,蜘蛛有8条腿,现有蜘蛛,蜻蜓若干只,它们共有360条腿,且蜘蛛数是蜻蜓数的3倍,求蜻蜓,蜘蛛各有多少只?

五、思考题

11.由于0. =0.999…,当问0. 与1哪个大时?很多同学便会马上回答:“当然0. 1,因为1比0. 大0.00…1.”如果我告诉你0. =1,你相信吗?请用方程思想说明理由.

B卷:多彩题

一、提高题

1.(一题多解题)解方程:4(3x+2)-6(3-4x)=7(4x-3).

2.(巧题妙解题)解方程:x+ [x+ (x-9)]= (x-9).

二、知识交叉题

3.(科内交叉题)已知(a2-1)x2-(a+1)x+8=0是关于x的一元一次方程.

(1)求代数式199(a+x)(x-2a)+3a+4的值;

(2)求关于y的方程a│y│=x的解.

三、实际应用题

4.小彬和小明每天早晨坚持跑步,小彬每秒跑6米,小明每秒跑4米.

(1)如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?

(2)如果小彬站在百米跑道的起点处,小明站在他前面10米处,两人同时同向起跑,几秒后小彬追上小明?

四、经典中考题

5.(,重庆,3分)方程2x-6=0的解为________.

6.(2008,黑龙江,3分)如图,某商场正在热销北京奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃的价格是________元.

7.(2008,北京,5分)京津城际铁路将于208月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?

C卷:课标新型题

一、开放题

1.(条件开放题)写出一个一元一次方程,使它的解是-11,并写出解答过程.

二、阅读理解题

2.先看例子,再解类似的题目.

例:解方程│x│+1=3.

解法一:当x0时,原方程化为x+1=3,解方程,得x=2;当x0时,原方程化为-x+1=3,解方程,得x=-2.所以方程│x│+1=3的解是x=2或x=-2.

解法二:移项,得│x│=3-1,合并同类项,得│x│=2,由绝对值的意义知x=2,所以原方程的解为x=2或x=-2.

问题:用你发现的规律解方程:2│x│-3=5.(用两种方法解)

三、图表信息题

3.(表格信息题)4月18日是全国铁路第六次大提速的第一天,小明的爸爸因要出差,于是去火车站查询列车的开行时间,下面是小明的爸爸从火车站带回家的时刻表:

204月18日起次列车时刻表

始发站 发车时间 终点站 到站时间

A站 上午8:20 B站 次日12:20

小明的爸爸找出以前同一车次的时刻表如下:

次列车时刻表

始发站 发车时间 终点站 到站时间

A站 14:30 B站 第三日8:30

比较了两张时刻表后,小明的爸爸提出了如下两个问题,请你帮小明解答:

(1)提速后该次列车的运行时间比以前缩短了多少小时?

(2)若该次列车提速后的平均速度为每小时200千米,那么,该次列车原来的平均速度为多少?(结果精确到个位)

4.解关于x的方程:kx+m=(2k-1)x+4.

参考答案

A卷

一、1.C 点拨:A.-x从左边移到右边变成x,但-5从右边移到左边没有改变符号,不正确;B.-7x没有移项,不能变号,不正确;C.3移项变号了,4移项变号了,正确;D.-5x移项没变号,不正确.

拓展:(1)拓展是从方程一边移到另一边,而不是在方程的一边交换位置;

(2)移项要变号,不变号不能移项.

2.A 点拨:因为x=m是方程ax=5的解,所以am=5,再将x=m分别代入A,B,C,D中,哪个方程能化成am=5,则x=m就是哪个方程的`解.

3.C 点拨:去分母,切不可漏乘不含分母的项,不要忽视分数线的“括号”作用.

二、4.0 点拨:根据同类项的概念知x+1=2x-1,解得x=2.

5.-6 点拨:方程2x+a=0的解为x=- ,方程3x-a=0的解为x= ,由题意知- = +5,解得a=-6.

6.1 点拨:把x=-1代入,求关于k的一元一次方程.

三、7.解:(1)移项,得 -x=5+7,合并同类项,得- =12,系数化为1,得x=-24.

(2)去分母,得2y-3=3y+18,移项,得2y-3y=18+3,

合并同类项,得-y=21,系数化为1,得y=-21.

(3)去分母,得9(y-7)-4[9-4(2-y)]=6,

去括号,得9y-63-4(9-8+4y)=6,9y-63-36+32-16y=6.

移项,得9y-16y=6+36+63-32,合并同类项,得-7y=73.

系数化为1,得y=- .

点拨:按解一元一次方程的步骤,根据方程的特点灵活求解.移项要变号,去分母时,常数项也要乘分母的最小公倍数.

四、8.解:(1)方程两边都减去4,得2x+4-4=-12-4,2x=-16,

方程两边都除以2,得x=-8.

(2)方程两边都加上2,得 x-2+2=7+2, x=9,

方程两边都乘以3,得x=27.

点拨:解简单一元一次方程的步骤分两大步:

(1)将含有未知数一边的常数去掉;(2)将未知数的系数化为1.

9.解:移项,得kx-4x=5-2,合并同类项,得(k-4)x=3,

系数化为1,得x= ,

因为 是正整数,所以k=5或k=7.

点拨:此题用含k的代数式表示x.

10.解:设蜻蜓有x只,则蜘蛛有3x只,依据题意,得6x+83x=360,

解得x=12,则3x=312=36.

答:蜻蜓有12只,蜘蛛有36只.

点拨:本题的等量关系为:蜻蜓所有的腿数+蜘蛛所有的腿数=360.此题还可设蜘蛛有x只,列方程求解,同学们不妨试一下.

五、11.解:理由如下:设0. =x,方程两边同乘以10,得9. =10x,即9+0. =10x,所以9+x=10x,解得x=1,由此可知0. =1.

B卷

一、1.分析:此题可先去括号,再移项求解,也可先移项,合并同类项,再去括号求解.

解法一:去括号,得12x+8-18+24x=28x-21,

移项,得12x+24x-28x=-21+18-8,

合并同类项,得8x=-11,系数化为1,得x=- .

解法二:移项,得4(3x+2)+6(4x-3)-7(4x-3)=0,

合并同类项,得4(3x+2)-(4x-3)=0.

去括号,得12x+8-4x+3=0.

移项、合并同类项,得8x=-11,

系数化为1,得x=- .

点拨:此方程的解法不唯一,要看哪种解法较简便,解法二既减少了负数,又降低了计算的难度.

2.分析:此题采用传统解法较繁,由于(x-9)= (x-9),而右边也有 (x-9),故可把 (x-9)看作一个“整体”移项合并.

解:去中括号,得x+ x+ (x-9)= (x-9),

移项,得x+ x+ (x-9)- (x-9)=0,

合并同类项,得x=0,所以x=0.

点拨:把 (x-9)看作一个“整体”移项合并,能化繁为简,正是本题的妙解之处.

二、3.分析:由于所给方程是一元一次方程,

故x2项的系数a2-1=0且x项的系数-(a+1)0,

从而求得a值,进而求得原方程的解,最后将a,x的值分别代入所求式子即可.

解:由题意,得a2-1=0且-(a+1)0,所以a=1且a-1,

所以a=1.故原方程为-2x+8=0,解得x=4.

(1)将a=1,x=4代入199(a+x)(x-2a)+3a+4中,

得原式=199(1+4)(4-21)+31+4=.

(2)将a=1,x=4代入a│y│=x中,得│y│=4,解得y=4.

点拨:本题综合考查了一元一次方程的定义、解一元一次方程及代数式求值等知识.

三、4.分析:(1)实际上是异地同地相向相遇问题;

(2)实际上是异地同时同向追及问题.

解:(1)设x秒后两人相遇,依据题意,得4x+6x=100,解得x=10.

答:10秒后两人相遇.

(2)设y秒后小彬追上小明,依据题意,得4y+10=6y,解得y=5.

答:5秒后小彬能追上小明.

点拨:行程问题关键是搞清速度、时间、路程三者的关系,分清是相遇问题还是追及问题.

拓展:相遇问题一般从以下几个方面寻找等量列方程:

(1)从时间考虑,两人同时出发,相遇时两人所用时间相等;(2)从路程考虑,①沿直线运动,相向而行,相遇时两人所走路程之和=全路程.②沿圆周运动,两人由同一地点相背而行,相遇一次所走的路程的和=一周长;(3)从速度考虑,相向而行,他们的相对速度=他们的速度之和.追及问题可从以下几个方面寻找等量关系列方程:(1)从时间考虑,若同时出发,追及时两人所用时间相等;(2)从路程考虑,①直线运动,两人所走距离之差=需要赶上的距离.②圆周运动,两人所行距离之差=一周长(从同一点出发); (3)从速度考虑,两人相对速度=他们的速度之差.

四、5.x=3

点拨:2x-6=0,移项,得2x=6,系数化为1,得x=3.

6.145 点拨:设一盒福娃x元,则一枚奥运徽章的价格为(x-120)元,

所以x+(x-120)=170,解得x=145.

7.解:设这次试车时,由北京到天津的平均速度是每小时x千米,

则由天津返回北京的平均速度是每小时(x+40)千米.

依题意,得 = (x+40),解得x=200.

答:这次试车时,由北京到天津的平均速度是每小时200千米.

点拨:本题相等关系为:北京到天津的路程=天津到北京的路程.采用间接设未知数比较简单.

C卷

一、1.分析:只要写出的方程是一元一次方程,并且其解是-11即可.

解: .去分母,得3(x+1)-12=2(2x+1),

去括号,得3x+3-12=4x+2,移项,得3x-4x=2+12-3,

合并同类项,得-x=11.系数化为1,得x=-11.

拓展:此类问题答案不唯一,只要合理即可.有利于培养同学们的逆向思维及发散思维.

二、2.分析:解答此题的关键是通过阅读,正确理解解题思路,然后仿照给出的方法解答新的题目即可.

解:法一:当x0时,原方程化为2x-3=5,解得x=4;

当x0时,原方程化为-2x-3=5,解得x=-4.

法二:移项,得2│x│=8,系数化为1,得│x│=4,

所以x=4,即原方程的解为x=4或x=-4.

点拨:由于未知数x的具体值的符号不确定,

故依据绝对值的定义,分x0或x0两种情况加以讨论.

三、3.分析:分别求出该次列车提速前后的运行时间,再求差,求列车原来的平均速度,需求出A,B两站的距离.

解:(1)提速后的运行时间:24+12:20-8:20=28(小时),

提速前的运行时间:24:00-14:30+24+8:30=42(小时),

所以缩短时间:42-28=14(小时).

答:现在该次列车的运行时间比以前缩短了14小时.

(2)设列车原来的平均速度为x千米/小时,

根据题意得,8=42x,解得x=133 133.

答:列车原来的平均速度为133千米/时.

点拨:弄懂表格给出的信息,求出各段相应的时间是解答本题的关键.

4.分析:由于未知数x的系数含有字母,因此方程解的情况是由字母系数及常数项决定的.

解:化简原方程,得(k-1)x=m-4.

当k-10时,有唯一解,是x= ;

当k-1=0,且m-40时,此时原方程左边=0x=0,而右边0,故原方程无解;

当k-1=0,且m-4=0时,原方程左边=(k-1)x=0x=0,而右边=m-4=0,故不论x取何值,等式恒成立,即原方程有无数解.

合作共识:将方程,经过变形后,化为ax=b的形式,由于a,b值不确定,

故原方程的解需加以讨论.

点拨:解关于字母系数的方程,将方程化为最简形式(即ax=b),需分a0,a=0且b=0,a=0且b0三种情况加以讨论,从而确定出方程的解.

篇2:《解一元一次方程》教学反思

《解一元一次方程》教学反思

本节课是《一元一次方程》的第三节的教学内容。解含有括号的一元一次方程既是本章的重点内容也是今后学习其他方程、不等式及函数的基础。前面学生已学习了合并同类项、移项以及整式的计算中的去括号等内容,会解“ax+b=cx+d”类型的一元一次方程,本节通过去括号为解方程起承上启下作用,但去括号时,学生容易弄错,是本章的重点,初步解决实际问题是本章的难点。

在进行本节课的教学中,我利用导学案引导学生做去括号的练习题,回顾去括号及规律,再试着去做含有括号的方程,让学生体会含有括号的`方程在去括号时,与以前学的去括号的规律相同,解方程的过程也与前面学的相近,只不过多了去括号的这一步。我利用变式训强化训练,同时让学生初步感受利用方程解决实际问题。

本节课的教学中还存在一下几点不足之处:

1.语言衔接不够顺畅。

2.教师亲和力不够,不能充分调动学生的热情,课堂气氛不够活跃。

3.不能及时表扬和鼓励学生。

4.应用题的处理不够简洁。

在今后的教学中,我将努力改进自己的不足,力争取得更大的进步。

篇3:解一元一次方程课件

一、教学目标:

1、知识目标:了解一元一次方程的概念,掌握含括号的一元一次方程的解法。

2、能力目标:培养学生的运算能力与解题思路。

3、情感目标:通过主动探索,合作学习,相互交流,体会数学的严谨,感受数学的魅力,增加学习数学的兴趣。

二、教学的重点与难点:

1、重点:了解一元一次方程的.概念,解含有括号的一元一次方程的解法。

2、难点:括号前面是负号时,去括号时忘记变号。移项法则的灵活运用。

三、教学方法:

1、教 法:讲课结合法

2、学 法:看中学,讲中学,做中学

3、教学活动:讲授

四、课 型:新授课

五、课 时:第一课时

六、教学用具:彩色粉笔,小黑板,多媒体

七、教学过程

1、创设情景:

今天让我们一起做个小小的游戏,这个游戏的名字叫:猜猜你心中的她

心里想一个数

将这个数+2

将所得结果

最后+7

将所得的结果告诉老师

(抽一个同学,让他把他计算的结果告诉老师,由老师通过计算得到他最开始所想的数字。)

老师:同学们知道老师是怎样猜到的吗?

同学:不知道。

老师:那同学们想知道老师是怎样猜到的吗?这就是我们今天所要学习的内容解一元一次方程。

2、探究新知:

一元一次方程的概念:

前面我们遇到的一些方程,例如 3

老师:大家观察这些方程,它们有什么共同特征?

(提示:观察未知数的个数和未知数的次数)

(抽同学起来回答,然后再由老师概括)

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,像这样的方程叫做一元一次方程

老师:同学们从这个概念中,能找出关键的字吗?能用它来判断一个式子是否是一元一次方程吗?

再次强调特征:

(1)只含一个未知数;

(2)未知数的次数为1;

(3)是一个整式。

(注意:这几个特征必须同时满足,缺一不可)

3、例题讲解:

例1判断如下的式子是一元一次方程吗?

(写在小黑板上,让学生判断,并分别抽同学起来回答,如果不是,要说出理由)

① ② ③

④ ⑤⑥

准确答案:①③

下面我们再一起来解几个一元一次方程。

例2、解方程

(1)

解法一:解法二:

提醒:去括号的时候,如果括号外面是负号,去括号时,括号里面要变号

(提示第二种解法:先移项,再去括号。即是把 看成整体的一元一次方程的求解。)

(2)

解:

提示

1)在我们前面学过的知识中,什么知识是关于有括号的、

2)复习乘法分配律: ,强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是—号,注意去掉括号,要改变括号内的每一项的符号。

3)问同学们能不能运用这个知识来去掉这个括号,如果能该怎么去呢?抽一个同学起来回答。

4)问:去了括号的式子,又该做什么呢?我们前面见过此类的方程的,引出移项,并强调移项时注意符号的变化。此处运用了等式的性质。

5)一起回顾合并同类项的法则:未知数的系数相加。

6)系数化为1,运用了等式的性质。

(求解的每一步的时候,抽同学起来回答,该怎么进行,运用了什么知识,同学叙述,老师写,同学说完后,老师在点评,最后归纳解含括号的一元一次方程的步骤,并强 调解题格式、)

方程(1)该怎样解?由学生独立探索解法,并互相交流。

篇4:解一元一次方程课件

去括号,移项,合并同类项,系数化为1。

4、巩固练习

(1)解方程(2)当y为何值时,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)

(巩固练习,抽两个同学上黑板去完成,其余的同学在演草纸上完成,待同学们完成后给予点评。)

5、小结:和同学们一起回顾我们这节课学习了什么?

篇5: 解一元一次方程教案

3.3解一元一次方程(二)(第4课时)

一、教学目标

知识与技能

1、会根据实际问题中的数量关系列方程解决问题。

2、熟练掌握一元一次方程的解法。

过程与方法

培养学生的数学建模能力,以及分析问题解、决问题的能力。

情感态度与价值观

1、通过问题的`解决,培养学生解决问题的能力。

2、通过开放性问题的设计,培养学生的创新能力和挑战自我的意识,增强学生的学习兴趣。

二、重点难点

重点

根据题意,分析各类问题中的等量关系,熟练的列方程解应用题。

难点弄清题意,用列方程解决实际问题。

三、学情分析

学生在上一节课已经学习了一元一次方程的解法,对于学生来说解方程已不是问题了,本节课是以上一节课为基础,用方程来解决实际问题,只要学生读懂题意,建立数学模型,用一元一次方程会解决就行了。

四、教学过程设计

教学

环节问题设计师生活动备注情境创设

讨论交流:按怎样的解题步骤解方程才最简便?由此你能得到怎样的启发。

创设问题情境,引起学生学习的兴趣。

学生动手解方程

自主探究

问题一:

一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是,乙每天的工作效率是,两人合作3天完成的工作量是,此时剩余的工作量是。

问题二:

某项工作,甲单独做需要4小时,乙单独做需要6小时,如果甲先做30分钟,然后甲、乙合作,问甲、乙合作还需要多久才能完成全部工作?

问题三:

整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加两人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同。

篇6: 解一元一次方程教案

一、学习目标

1.知道解一元一次方程的去分母步骤,并能熟练地解一元一次方程。

2.通过讨论、探索解一元一次方程的一般步骤和容易产生的问题,培养学生观察、归纳和概括能力。

二、重点:

解一元一次方程中去分母的方法;培养学生自己发现问题、解决问题的能力。

难点:去分母法则的正确运用。

三、学习过程:

(一)、复习导入

1、解方程:(1);(2)2(x-2)-(4x-1)=3(1-x)

2、回顾:解一元一次方程的一般步骤及每一步的依据

3、(只列不解)为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树_____棵。

(二)学生自学p99--100

根据等式性质,方程两边同乘以,得

即得不含分母的方程:4x-3x=960

X=960

像这样在方程两边同时乘以,去掉分数的分母的变形过程叫做。依据是

(三)例题:

例1解方程:

解:去分母,得依据

去括号,得依据

移项,得依据

合并同类项,得依据

系数化为1,得依据

注意:1)、分数线具有

2)、不含分母的.项也要乘以(即不要漏乘)

讨论:小明是个“小马虎”下面是他做的题目,我们看看对不对?如果不对,请帮他改正。

(1)方程去分母,得

(2)方程去分母,得

(3)方程去分母,得

(4)方程去分母,得

通过这几节课的学习,你能归纳小结一下解一元一次方程的一般步骤吗?

解一元一次方程的一般步骤是:

1.依据;

2.依据;

3.依据;

4.化成的形式;依据;

5.两边同除以未知数的系数,得到方程的解;依据;

练一练:见P101练习解下列方程:(1)(2)

(3)思考:如何求方程

小明的解法:解:去百分号,得同学看看有没有异议?

四、小结:

谈谈这节课有什么收获以及解带有分母的一元一次方程要注意的一些问题。

五、课堂检测:

1、去分母时,在方程的左右两边同时乘以各个分母的_____________,从而去掉分母,去分母时,每一项都要乘,不要漏乘,特别是不含分母的项,注意含分母的项约去分母分子必须加括号,由于分数线具有

2、解方程(1)2x+5=5x-7(2)4-3(2-x)=5x(3)=3x-1

(4)=+1(5)

六、作业

P102:3,10.

篇7: 解一元一次方程教案

一、目标:

知识目标:能熟练地求解数字系数的一元一次方程( 不含去括号、去分母)。

过程方法目标:经历和体会解一元一次方程中“转化”的思想方法。

情感态度目标:在数学活动中获得成功的喜悦,增强自信心和意志力,激发学习兴趣。

二、重难点:

重点:学会解一元一次方程

难点:移项

三、学情分析:

知识背景:学生已学过用等式的性质来解一元一次方程。

能力背景:能比较熟练地用等式的性质来解一元一次方程。

预测目标:能熟练地用移项的方法来解一元一次方 程。

四、教学过程:

(一)创设情景

一头半岁蓝鲸的体 重是22t,90天后的体重是30.1t,蓝鲸的体重平均每天增加多少?

(二)实践探索,揭示新知

1.例2.解方程: 看谁算得又快:

解:方程的`两边同时加上 得 解: 6x ? 2=10

移项得 6x =10+2

即 合并同类项得

化系数为1得

大家看一下有什么规律可寻?可以讨论

2 .移项的概念: 根据等式的基本性质方程中的某些项改变符号后,可以从方程的一边移到另一边 ,这样的 变形叫做移项。

看谁做得又快又准确!千万不要忘记移项要变号。

3.解方程:3x+3 =12,

4.例3解方程: 例4解方程 :

2x=5x-21 x- 3=4-

5.观察并思考:

①移项有什么特点?

②移项后的化简包括哪些

(三)尝试应用 ,反馈矫正

1.下列解方程对吗?

(1)3x+5=4 7=x-5

解: 3x+ 5 =4 解:7=x-5

移项得: 3x =4+5 移项得:-x= 5+7

合并同类项得 3x =9 合并同类项得 -x= 12

化系数为1得 x =3 化系数为1得 x = -12

2解方程

(1). 10x+1=9 (2) 2—3x =4-2x;

(四)归纳小结

1.今天学习了什么?有什么新的简便的写法?

2.要注意什么?

3. 解方程的 一般步骤是什么?

4.. (1) 移项实际上 是对方程两边进行 , 使用的是

(2)系数 化为 1 实际上是对方程两边进行 , 使用的是 。

(3)移项的作用是什么?

(五)作业

1.课堂作业:课本习题4.2第二题

2.家作:评价手册4.2第二课时

篇8: 解一元一次方程教案

第一课时

教学目的

1.了解一元一次方程的概念。

2.掌握含有括号的一元一次方程的解法。

重点、难点

1.重点:解含有括号的一元一次方程的解法。

2.难点:括号前面是负号时,去括号时忘记变号。

教学过程

一、复习提问

1.解下列方程:

(1)5x-2=8 (2)5+2x=4x

2.去括号法则是什么?“移项”要注意什么?

二、新授

一元一次方程的概念

如44x+64=328 3+x=(45+x) y-5=2y+l 问:它们有什么共同特征?

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。

例1.判断下列哪些是一元一次方程

x= 3x-2 x-=-l

5x2-3x+1=0 2x+y=l-3y =5

例2.解方程(1)-2(x-1)=4

(2)3(x-2)+1=x-(2x-1)

强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。

补充:解方程3x-[3(x+1)-(1+4)]=l

说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

三、巩固练习

教科书第9页,练习,l、2、3。

四、小结

学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。

五、作业

1.教科书第12页习题6.2,2第l题。

第二课时

教学目的

掌握去分母解方程的方法,体会到转化的思想。对于求解较复杂的方程,注意培养学生自觉反思求解的.过程和自觉检验方程的解是否正确的良好习惯。

重点、难点

1、重点:掌握去分母解方程的方法。

2、难点:求各分母的最小公倍数,去分母时,有时要添括号。

教学过程

一、复习提问

1.去括号和添括号法则。

2.求几个数的最小公倍数的方法。

二、新授

例1:解方程(见课本)

解一元一次方程有哪些步骤?

一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。

补充例:解方程 (x+15)=- (x-7)

三、巩固练习

教科书第10页,练习1、2。

四、小结

1.解一元一次方程有哪些步骤?

2.掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。

五、作业

教科书第13页习题6.2,2第2题。

第三课时

教学目的

使学生灵活应用解方程的一般步骤,提高综合解题能力。

重点、难点

1、重点:灵活应用解题步骤。

2、难点:在“灵活”二字上下功夫。

教学过程 :

一、一、复习

1、一元一次方程的解题步骤。

2、分数的基本性质。

二、新授

例1.解方程(见课本)

分析:此方程的分母是小数,如果能把各分母化为整数,那么就可以用前面学过的方法求解了。那么怎样化简呢?引导学生分析,并求出方程的解。交流体会。

例2.解方程(见课本)

例3:已知公式V=中,V=120、D=100、∏=3.14,求n的值。(保留整数)

分析:在公式中,V、D、∏都已知,只要把它们的值代入公式,就可以得到关于n的一元一次方程。

三、巩固练习。

根据公式V=V0+at,填写下列表中的空格。

VV0at02848314155476137

四、小结。

若方程的分母是小数,应先利用分数的性质,把分子、分母同时扩大若干倍,此时分子要作为一个整体,需要补上括号,注意不是去分母,不能把方程其余的项也扩大若干倍。

五、作业 。

篇9: 解一元一次方程教案

教学目标

1.掌握解一元一次方程的一般步骤。

2.会根据一元一次方程的特点灵活处理解方程的步骤,化为ax=b(a≠0)的形式。

教学重、难点

重点:掌握解一元一次方程的基本方法.

难点:正确运用去分母、去括号、移项等方法,灵活解一元一次方程.

教学过程

一激情引趣,导入新课

1解方程:4x-3(20-x)=6x-7(9-x)

思考:解一元一次方程时,去括号要注意什么?移项要注意什么?

2求下列各数的.最少公倍数:(1)12,24,36(2)18,16,24

二合作交流,探究新知

1动脑筋:

一件工作,甲单独做需要15天完成,乙单独做需要12天完成,现在甲先单独做1天,接着乙又单独做4天,剩下的工作由甲、乙两人合做,问合做多少天可以完成全部工作任务?

(先独立做,做完后交流做法,认真听出同学意见,老师点评)

通过这个问题,请你归纳解一元一次方程有哪些步骤?

先去____,后去_____,再_____、_______得到标准形式ax=b(a≠0),最后两边同除以______的系数。

考考你:

下面各题中的去分母对吗?如不对,请改正。

(1)去分母得5x-2x+3=2(2)去分母得2x-(2x+1)=6

(3)去分母得4(3x+1)+25x=80

2尝试练习(注意养成口算经验的好习惯)

解方程:

3比一比,看谁算得准(注意养成口算经验的好习惯)

解方程:(1),(2)

三应用迁移,巩固提高

1化繁为简

例1解方程:

2化为一元一次方程求解

例2若关于x的一元一次方程的解是x=-1,则k的值是

AB1CD0

3实践应用

例3学校准备组织教师和优秀学生去大洪山春游,其中教师22名现有甲乙两家旅行社,两家定价相同,但优惠方式不同,甲旅行社表示教师免费,学生按八折收费,乙旅行社表示教师和学生一律按七五折收费,学校领导经过核算后认为甲乙两家旅行社收费一样,请你算出有多少名学生参加春游。

四冲刺奥赛,培养智力

例4解方程:

五课堂练习巩固提高解方程

六反思小结拓展提高

解一元一次方程的一般步骤是什么?要注意什么?

作业:p1198,9

篇10: 解一元一次方程教案

一。教学目标:

1。知识目标:了解一元一次方程的概念,掌握含括号的一元一次方程的解法。

2。能力目标:培养学生的运算能力与解题思路。

3。情感目标:通过主动探索,合作学习,相互交流,体会数学的严谨,感受数学的魅力,增加学习数学的兴趣。

二。教学的重点与难点:

1。重点:了解一元一次方程的概念,解含有括号的一元一次方程的解法。

2。难点:括号前面是负号时,去括号时忘记变号。移项法则的灵活运用。

三。教学方法:

1。教 法:讲课结合法

2。学 法:看中学,讲中学,做中学

3。教学活动:讲授

四。课 型:新授课

五。课 时:第一课时

六。教学用具:彩色粉笔,小黑板,多媒体

七。教学过程

1。创设情景:

今天让我们一起做个小小的游戏,这个游戏的名字叫:猜猜你心中的她

心里想一个数

将这个数+2

将所得结果

最后+7

将所得的结果告诉老师

(抽一个同学,让他把他计算的结果告诉老师,由老师通过计算得到他最开始所想的数字。)

老师:同学们知道老师是怎样猜到的吗?

同学:不知道。

老师:那同学们想知道老师是怎样猜到的吗?这就是我们今天所要学习的内容解一元一次方程。

2。探究新知:

一元一次方程的概念:

前面我们遇到的一些方程,例如 3

老师:大家观察这些方程,它们有什么共同特征?

(提示:观察未知数的个数和未知数的次数。)

(抽同学起来回答,然后再由老师概括。)

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,像这样的方程叫做一元一次方程。

老师:同学们从这个概念中,能找出关键的字吗?能用它来判断一个式子是否是一元一次方程吗?

再次强调特征:

(1)只含一个未知数;

(2)未知数的次数为1;

(3)是一个整式。

(注意:这几个特征必须同时满足,缺一不可。)

3。例题讲解:

例1判断如下的式子是一元一次方程吗?

(写在小黑板上,让学生判断,并分别抽同学起来回答,如果不是,要说出理由。)

① ② ③

④ ⑤⑥

准确答案:①③

下面我们再一起来解几个一元一次方程。

例2。解方程

(1)

解法一:解法二:

提醒:去括号的时候,如果括号外面是负号,去括号时,括号里面要变号

(提示第二种解法:先移项,再去括号。即是把 看成整体的一元一次方程的求解。)

(2)

解:

提示

1)。在我们前面学过的知识中,什么知识是关于有括号的。

2)。复习乘法分配律: ,强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是—号,注意去掉括号,要改变括号内的每一项的符号。

3)。问同学们能不能运用这个知识来去掉这个括号,如果能该怎么去呢?抽一个同学起来回答。

4)。问:去了括号的式子,又该做什么呢?我们前面见过此类的方程的,引出移项,并强调移项时注意符号的变化。此处运用了等式的性质。

5)。一起回顾合并同类项的`法则:未知数的系数相加。

6)。系数化为1,运用了等式的性质。

(求解的每一步的时候,抽同学起来回答,该怎么进行,运用了什么知识,同学叙述,老师写,同学说完后,老师在点评,最后归纳解含括号的一元一次方程的步骤,并强 调解题格式。)

方程(1)该怎样解?由学生独立探索解法,并互相交流。

解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1。

4。巩固练习

(1)解方程(2)当y为何值时,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)

(巩固练习,抽两个同学上黑板去完成,其余的同学在演草纸上完成,待同学们完成后给予点评。)

5小结:和同学们一起回顾我们这节课学习了什么?

解一元一次方程

概念

含括号的一元一次方程的解法的解法

作业:1。P12 。1

2。预习下一节课的内容,

3。复习此节课的内容,并完成一下两道思考题。

思考:(1) 解方程: 。

说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

(2) 该怎么求解?

篇11: 解一元一次方程教案

解一元一次方程

【教学任务分析】教学目标知识技能

1.用一元一次方程解决“数字型”问题;

2.能熟练的通过合并,移项解一元一次方程;

3.进一步学习、体会用一元一次方程解决实际问题.

过程

方法通过学生自主探究,师生共同研讨,体验将实际问题转化成数学问题,学会探索数列中的规律,建立等量关系并加以解决,同时进一步渗透化归思想.

情感

态度经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力,体会数学对实践的指导意义.

重点建立一元一次方程解决实际问题的模型.

难点探索并发现实际问题中的等量关系,并列出方程.

【教学环节安排】

环节教学问题设计教学活动设计

入牵线搭桥,解下列方程:

(1)-5x+5=-6x;(2);

(3)0.5x+0.7=1.9x;

总结解“ax+b=cx+d”类型的一元一次方程的步骤方法.

引出问题即课本例3

问:你能利用所学知识解决有关数列的问题吗?教师:出示题目,提出要求.

学生:独立完成,根据讲评核对、自我评价,了解掌握情况.

探究一:数字问题

例3有一列数,按一定规律排列成1,-3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?

【分析】1.引导学生观察这列数有什么规律?

①数值变化规律?②符号变化规律?

结论:后面一个数是前一个数的-3倍.

2.怎样求出这三个数?

①设三个相邻数中的第一个数为x,那么其它两个数怎么表示?

②列出方程:根据三个数的`和是-1701列出方程.

③解略

变式:你能设其它的数列方程解出吗?试一试.比比较哪种设法简单.

探究二:百分比问题(习题3.2第8题)

【问题】某乡改种玉米为种优质杂粮后,今年农民人均收入比去年提高20%.今年人均收入比去年的1.5倍少1200元.这个乡去年农民人均收入是多少元?

【分析】①若设这个乡去年农民人均收入是x元,今年人均收入比去年提高20%,那么今年的收入是_________元;

②因为今年的人均收入比去年的1.5倍少1200元,所以今年的收入又可以表示为_________元.

③根据“表示同一个量的两个式子相等”可以列出方程为________________________.

解答略教师:引导学生分析.

2.本例是有关数列的数学问题,题要求出三个未知数,这需要学生观察发现它们的排列规律,问题具有一定的挑战性,能激发学生学习探索规律类型的问题.

学生:观察、讨论、阐述自己的发现,并互相交流.

根据分析列出方程并解出,求出所求三个数.

备注:寻找数的排列规律是难点,可让学生小组内讨论发现、解决.

变换设法,列出方程,比较优劣、阐述发现和体会.

教师:出示题目,引导学生,让学生尝试分析,多鼓励.

学生:根据引导思考、回答、阐述自己的观点和认识.

根据共同的分析,列出方程并解出,

(说明:此题目数以百分比、增长率问题可根据实际情况安排,若没时间,可在习题课上处理)

尝试应用

1、填空

(1)有个三位数,个位上的数字是a,十位上的数字是b,百位上的数字是c,则这个三位数是:_______________.

(2)有一数列,按一定规律排成1,-2,3,2,-4,6,3,-6,9,接下来的三个数为_____________________.

(3)三个连续偶数,设第一个为2x,那么第二个为_______,第三个为______,它们的和是__________;若设中间的一个为x,那么第一个为_____,第三个为______,它们的和是__________.

2.一个三位数,三个数位上的数字的和为17,百位上的数字比十位上的数字大7,个位上的数字是十位上数字的3倍,你能求出这个三位数吗?这是最经常出现的一类数字问题:引导学生分析已知各位上的数字,怎么表示这个数,理解为什么不能表示成cba?这是解决这类问题的基础.

通过(3)题理解连续数的表示法,并感受怎么表示最简单.

通过2题让学生理解怎么设?以及怎么设简单(舍都有联系的一个),并感受用未知数表示多个未知量,顺藤摸瓜,从而列出方程的顺向思维方式.

教师:结合完成题目,汇总讲解,重点在于解法.

成果

展示1.通过本节所学你有哪些收获?

2.谈谈你掌握的方法和学习的感受,以及你对应用方程解决问题的体会.学生自我阐述,教师评价鼓励、补充总结.

补偿提高1.有一数列,按一定规律排成0,2,6,12,20,30,…,则第8个数为______,第n个数为_____.

2.下面给出的是20xx年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,圈出的三个数的和不可能是( ).

A.69B.54C.27D.40

通过练习,掌握数字问题的分类及不同解法,巩固、体会用方程解决问题的思路和思维方式,学会用方程解决问题.

题目设置是对前面学生所出现的问题进行针对性的补偿和补充,也可对学有余力的学生拓展提高.

根据学生完成情况灵活设置问题.

作业

设计作业:

必做题:课本4、5、第94页6题.

选做题:同步探究.教师布置作业,并提出要求.

学生课下独立完成,延续课堂.

授课教师:

20xx年10月31日

篇12:《解一元一次方程移项》教学反思

在《一元一次方程》“移项”一课教学中,整体设计过程是这样的:先利用等式的性质来解方程,从而引出移项的概念,然后让学生利用移项的方法来解方程,当然是第一次接触这部分内容,所以在方程的解法选择上都是移项后,合并同类项。与前一节内容相比较,可感受到这种解法简单。讲解完成后给出随堂练习2个方程:

(1)-4y-1=3y-8

(2)0.5n-3=1.5n+2让学生动手去做,仔细观察学生练习过程,出现了不少问题。

课后总结一下,大致有以下几种比较常见的情况:

①含未知数的项不知道如何处理;

②移项没有变号

③没有移动的项也改变了符号。

出现以上情况,主要是在教学设计中没有把本节课困难想到,总以为这节课很简单,没有困难,学生应该很轻松解决问题,以致于课后作业中也出现两大问题。

第一:解题中部分同学仍采用原来的等式性质解题,

第二:移项的符号不改变是一个大问题。这一节课后给我的反思是:备课中细致环节还不够准确,课堂上反馈练习太少,另外在新教材教学中,教学有时还要借鉴老教材的一些好方法,这样长补短更好地提高课堂教学效果。

篇13:解一元一次方程的教学反思

解一元一次方程的教学反思

本节课是在学习了去括号解一元一次方程的基础上学习的,它与前面所学的知识之间有着紧密的联系,学生在学习本节课之后会初步了解了“去分母”解一元一次方程的一般步骤以及数学化归思想。因此本节内容的教学首先复习等式的基本性质以及前面所学解方程的方法,然后通过古埃及问题引出新的方程类型。通过探索这种类型(系数是分数)的方程解法,掌握“去分母”解一元一次方程,体会数学的化归思想。

本节课的设计思路依然是从实际问题(古埃及问题和丟番图墓志铭)出发,引导学生观察、自主学习,积极探究,合作交流,总结提高。抓住“等式的基本性质”这根主线,层层设问,步步紧逼引导学生观察方程的特点以及要实施的转化,对比不同的解法,使学生感受“去分母”转化为整数系数解法的简洁,明白去分母的必要性与可行性,从而激发学生探索“去分母”方法的热情。让学生在谈论、合作、交流的过程中掌握方法。在通过学生的巩固练习,老师的点拨,学生的归纳,使学生的能力得到提高,因此本节课采取的是学生合作探究,教师差异点拨的'教学方法。

这节课学生大多能仔细观察,积极思考,认真学习,合作探究气氛融洽,同学们都能够倾听、思考、理解别人的想法,也能积极表达自己的想法。课堂作业都能及时完成。作业质量较好,基本达到了预定的教学目标。

上完这节课后,我觉得给学生合作交流的时间还不够充分,在激励语言上运用的不到位,对调动学生的积极性有影响。从引入到举例的过渡不够顺畅,这里应该先对去分母的方法有一个很好的总结,然后进入例题解法探求。

今后要多加提炼,积累知识,多听课,提高教学水平,从而提高教学质量。

篇14:《解一元一次方程移项》教学反思

在上这节课时,我采用了这样的流程:先利用等式的性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程,当然今天是第一次接触这部分内容,所以在方程的选择上,都是移项后,同类项的合并比较简单,与前一节内容相比较,可轻易感受到这种解法的简洁性;讲解完成后,进一步给出了练一练的几个方程,让学生动手去做。

由于这节课是同课异构,我发现第一位老师上完课,学生做题过程大致有以下几种比较常见的情况:

①含未知数的项不知道如何处理;

②移项没有变号;

③没移动的项也改变了符号;(①、②两种情况出现最多);针对以上情况,我在上课时,先让有困难的学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。

再让学生总结注意点,教师进行点拨。最后对解一元一次方程的一般步骤进行了小结,通过小结教师能很好地看出学生的知识形成和掌握情况。

作为本堂课的难点,也就是解方程过程中的移项变号问题,我认为:虽然教师的主导作用发挥出来了,但学生的主体作用没有得到很好的发挥,移项变号的法则不应是让学生记住其概念,而应是让学生在探究中去理解和掌握,在课堂上应让学生有足够的时间去讨论,去练习,教师有针对性的给学生中出现的错误予以纠正,这样才能达到事半功倍的效果,才能真正掌握好这一知识点。因此,在以后的教学中,首先在备课这一环节上,备课就是备学生,要充分朝学生方面考虑,有针对性地对教学重点和难点设计题型;同时在教学过程中要留有一定的时间让学生充分地探讨和交流,发挥学生学习的主观能动作用;再者,要有针对性地布置适量的练习,让其巩固,这样才能达到预期的教学效果。我想:对于本堂课存在的问题在以后的教学中要及时的进行解决,认真反思自己的教学方法和手段,及时反馈学生学习的信息,注重课堂教学效果。

篇15:《解一元一次方程移项》教学反思

一、设计

1、复习回顾:什么叫一元一次方程?解方程就是最终将方程转化为什么形式?

2、让学生尝试解这两个方程:(1)x+2x+4x=140;(2)x+4=-6

3、学生做好后先分析第一个方程,左边做了什么变形?这样做起什么作用?再分析第二个方程,根据等式性质1由x+4=-6变形为x=-6-4发现数据怎么变化的?从而归纳出利用移项、合并同类项等方法解一元一次方程。

4、学生练习巩固、反馈。

5、最后小结收获与运用合并、移项的注意点。

二、反思

1、本堂课是在利用等式的性质的基础上归纳解一元一次方程的常规步骤,使解题更趋合理、简洁。因此在设计复习题时有意为后面做铺垫,一题多用。

2、合并同类项起到化简的作用,把含有未知数x的项合并成一项,从而达到把方程转化为ax=b的形式,其中a、b是常数;移项使方程中含未知数x的项归到方程的同一边(一般在左边),不含x的项即常数项归到方程的另一边(右边),这样就可以通过合并把方程转化为ax=b的形式,其中a、b是常数;再将系数化为1,从而得到方程的解x=m,m为常数。整个过程体现了化归的数学思想。

3、在练习的过程中始终让学生铭记要移项首先要变号(变号移项),并知道它的依据,加深对变号的理解。

4、本堂课如果前面能更紧一些,最后有足够的时间让学生自主小结就更好了。

篇16:《解一元一次方程去括号》教学反思

这一节课的教学,是继续讨论如何解方程的问题,它包括两方面的内容:①重点讨论解方程中的“去括号”,②根据实际问题列方程。

因为解方程的过程就是不断地对方程进行化简的过程,只有找准了方程的特点,运用相应的方法,就能使相对繁一点的方程向x=a形式转化。所以在讲学稿设计上,首先给出学生熟悉的三个方程,让学生根据方程的结构,想到解题的方法,以达到复习和巩固前面学过解方程的三个步骤,让学生进一步明白解方程的步骤是逐渐发展的,后面的步骤是在前面步骤的基础上发展而成,步骤数量在逐渐增加,那么今天是否又要学习新的步骤呢?一个悬念,使学生达到温故而知新。

接下来出现一个有括号的方程,大胆放手让学生去探索、猜想各种方法,去尝试各种解题的途径,启发学生在化归思想影响下想到要去括号。那么去括号的依据是什么呢?去括号时特别要注意的又能什么呢?当学生通过一定数量的练习后,去括号解方程的一些问题(错误)出现了,主要的有两点,

①括号外面的系数漏乘括号里面的项,

②去括号时该变号的没变号。

教学片段:学生对去括号知识只会背法则不会运用。

师:3x-7(x-1)=3+2(x-3)怎样去括号?

生1:根据去括号法则,括号外是正号,去括号内各项不变号,括号外是分数,括号内各项变号,结果是:3x-7x+1=3+2x-6

师:如果括号前有分数怎样去括号?

生2:根据乘法的分配律去括号,这题去括号是3x-7x-7=3+2x-3

生3:根据乘法分配律,同号得正,异号得负,这道题去括号是:3x-7x+7=3+2x-6。师:正确。

师:怎样移项。

生:把未知的项移到方程左边,已知项移到方程右边,结果是:3x-7x+2x=3-6+7

师:移项要注意什么?

生:变号,这题移项为3x-7x-2x=3-6-7

师:怎样合并?

生:系数相合并:2x=-10 x=-5

这一片段中,生只会背法则不会用法则,有的根据乘法分配律,数字不同括号内各项相乘,有的符号出错,再有移项不变号,合并计算比较差,教师针对这一问题,虽然作强调,但落实还不够。

在今后的教学中,一是要深钻大钢和教材,精心设计每一节课,二是要注意教学课的特点,注重教学的基本技能和技巧,再一个对于简单的教学内容让生自己自学完成任务,教师个别指导,对于较难一点的内容首先让学生自主探究发现问题,有不懂的问题,教师再作指导,让学生养成动手动脑的习惯。

【《解一元一次方程》教学方案设计】相关文章:

1.解一元一次方程教案

2.解一元一次方程练习题

3.一元一次方程教学设计

4.教学方案设计

5.七年级一元一次方程

6.一元一次方程说课稿

7.一元一次方程练习题

8.一元一次方程教案

9.《一元一次方程的解法》的教学反思

10.欢庆教学方案设计

下载word文档
《《解一元一次方程》教学方案设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部