欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 实用文>暖通节能设计要点之室内设计计算温度的取值问题

暖通节能设计要点之室内设计计算温度的取值问题

2024-08-27 08:07:39 收藏本文 下载本文

“baixin”通过精心收集,向本站投稿了8篇暖通节能设计要点之室内设计计算温度的取值问题,下面是小编整理后的暖通节能设计要点之室内设计计算温度的取值问题,欢迎您阅读,希望对您有所帮助。

暖通节能设计要点之室内设计计算温度的取值问题

篇1:暖通节能设计要点之室内设计计算温度的取值问题

暖通节能设计要点之室内设计计算温度的取值问题:

n1.在冬季供暖工况下,室内计算温度每降低1℃,能耗可减少5%~10%左右;

n2.在夏季供冷工况下,室内计算温度每升高1℃,能耗可减少8%~10%左右,

n3.为了节省能源,应避免冬季采用过高的室内计算温度,夏季采用过低的室内计算温度,

国家标准《公共建筑节能设计标准》GB50189-第3.0.1条对典型民用建筑室内采暖与空调室内设计计算温度的取值标准进行了规定,办公室、居住等建筑的冬季采暖不宜高于20℃,公共建筑一般房间的夏季空调不宜低于25℃。

n4.对于实施分户热计量对流采暖的住宅建筑,室内计算温度应按相应的设计标准提高2℃;

n5.对于计算全面地面辐射供暖系统,室内计算温度的取值可按相应的设计标准降低2℃,或将计算耗热量乘以0.9~0.95的修正系数(寒冷地区乘以0.9,严寒地区乘以0.95)。

篇2:暖通节能设计要点之冷热负荷的计算

n2.目前,有些设计人员,在施工图设计阶段,往往不加区别地将设计手册或技术措施中提供给方案设计和初步设计时估算冷热负荷用的单位建筑面积冷、热负荷指标,直接用来作为确定施工图设计阶段空调与采暖冷、热负荷的依据。由于负荷估算偏大,导致了冷热源设备装机容量偏大、水泵配置偏大、末端设备偏大、管道直径偏大的“四大”现象。其结果是工程的初投资增高,运行费用和能耗增大,给国家和投资方造成巨大损失。

篇3:暖通节能设计要点之采暖系统的设计

暖通节能设计要点之采暖系统的设计:

采暖系统设计得合理,采暖系统才能具备节能运行的功能,无论是住宅还是公建,合理设计节能采暖系统的主要原则有:一是采暖系统应能保证对各个房间(楼梯间除外)的室内温度能进行独立调控;二是便于实现分户或分室(区)热量(费)分摊的功能;三是管路系统简单、管材消耗量少、节省初投资。因此,对所有民用建筑室内热水集中采暖系统的设计都要满足上述三个原则的要求。

(1)新建住宅热水集中采暖系统应采用共用立管、分户独立循环的系统,常用的采暖系统形式如下:

1) 下供下回(下分式)水平双管系统。

2) 上供上回(上分式)水平双管系统。

3) 下供下回(下分式)全带跨越管或装设分配阀(H阀)的水平单管系统。

4) 放射双管式(章鱼式)系统。

5) 低温热水地面辐射供暖系统。

(2)公共建筑的集中采暖系统管路宜按南、北向分环布置,常用的采暖系统形式如下:

1) 上供下回垂直双管系统。一般用于四层及四层以下的建筑。

2) 下供下回垂直双管系统。一般用于四层及四层以下的建筑。

3) 上供下回全带跨越管(或装置H分配阀)的垂直单管系统。一般用于五层及五层以上建筑。立管所带层数不宜大于十二层。

4) 上供下回垂直单双管系统。一般用于十二层以上的建筑,也可应用于四层以上的建筑。组成单双管系统的每一级双管系统不应超过四层。

5) 水平双管系统。该系统一般用于低层大空间采暖建筑(如汽车库、大餐厅等)。各环路负荷应尽可能均衡,各环路管径应不大于DN25。

6) 水平单管系统。一般用于低层大空间采暖建筑,当需要单独调节散热器散热量时,应采用全带跨越管(或装置H分配阀)的水平单管系统,否则可采用水平串联式系统。

7) 低温热水地面辐射供暖系统。公共建筑中的高大空间如大堂、候车(机)厅、展厅等处,宜采用辐射供暖方式,或采用辐射供暖作为补充。当与散热器系统合用时,应注意其对水温和水压的不同要求,必要时应分开设置。

8) 高层建筑竖向分区供暖系统。适用于系统静水高度超过50m、或外网供水压力低于系统静水压力、或超过散热器的承压能力的采暖系统。低区系统的高度取决于室外热网的压力和散热器的承压能力,可能情况下应尽可能利用外网压力,降低高区负荷。当热媒为低温热水时,宜采用板式换热器进行换热。

9)高层建筑直连供暖系统。当热网供水压力不能满足系统运行要求、或者热网静水压力低于系统静水高度,并且热网供水温度较低时,宜采用直连供暖技术使建筑采暖系统与外网直接连接,

高层直连供暖技术由加压泵组和压力隔断的专利技术构成,第一代的压力隔断产品为断流器和阻旋器,系统为开式运行;第二代的压力隔断产品为阻断器,系统闭式运行,安装高度不受限制。

(3)在选配供热系统的热水循环泵时,应计算循环水泵的耗电输热比(EHR),并应标注在施工图的设计说明中。EHR值应符合下式要求:

EHR = N/Qη

EHR ≤ A(20.4+αΣL)/Δt

式中:N - 水泵在设计工况点的轴功率,kW;

Q - 建筑供热负荷,kW ;

η- 电机和传动部分的效率,按表1选取;

Δt - 设计供回水温度差,℃,按照设计要求选取;

A - 与热负荷有关的计算系数,按表1选取;

ΣL - 室外主干线(包括供回水管)总长度,m;

a- 与ΣL有关的计算系数,按如下选取或计算:

当ΣL≤400m时,a = 0.0115;

当400<ΣL<1000m时,

a = 0.003833 + 3.067/ΣL;

当ΣL≥1000m时,a = 0.0069。

表1电机和传动效率及EHR计算系数

热负荷Q(kW)

≥2000

电机和传动部分的效率η

直联方式

0.88

0.9

联轴器连接方式

0.87

0.89

计算系数A

0.00556

0.005

篇4:暖通节能设计要点之室温调控

暖通节能设计要点之室温调控:

(1)散热器热水集中采暖系统,室温的调控是通过散热器恒温控制阀(简称恒温阀)来实现的,大量恒温阀应用实践表明,使用恒温阀平均可节省能源15%~30%。

为满足室温单独调控和节能的要求,热水集中采暖系统的每组(或每个房间)散热器的进水支管上应设置自力式恒温阀。垂直或水平双管系统的每组散热器供水支管上,应设置高阻力的自力式两通恒温阀;全带跨越管的垂直或水平单管系统每组散热器供水支管上均应设置自力式恒温阀,一种方式为采用低阻力三通恒温阀,跨越管与散热器支管以及立管同径,另一种方式是在散热器供水支管上设置低阻力两通阀,两通阀前设跨越管,跨越管口径较相应立管口径小1号,两种方式不宜在一个采暖系统内同时存在;垂直单双管系统的每组散热器供水支管上,应设置高阻力的自力式两通恒温阀。

(2)低温热水地面辐射供暖系统,室温的调控是通过设置在每一分支环路的远传型自力式恒温阀或有线电动式恒温控制阀以及无线电子式恒温控制阀(也可在各房间加热管上设置自力式恒温阀)来实现的,

各种室内恒温控制阀的温控器应设置在能正确反映房间温度的位置,且应安装在避开阳光直射和有发热设备且距地面1.4m处的内墙面上。

(3)风机盘管加新风空调系统,室内温度的调控一般是通过在室内安装风机盘管温控器来实现的。温控器带有温度设定旋钮、风机三档转速转换开关及制冷与供热模式转换开关,分别用于调节室内温度设定值、控制送入房间的风量及供冷和供热的转换;另外,在风机盘管回水管道上安装电动两通(调节)阀,以控制通过盘管的水量。

新风机组送风温度的控制,是通过安装在送风管道上的温度传感器检测送风温度信号,并传输至温度控制器,控制器自动调节安装在表冷器回水管道的电动调节阀的开度,以调节通过表冷器盘管的水量,从而实现控制送风温度恒定于设定值。

(4)全空气空调系统,室温的调控一般是通过在回风管道安装温度传感器,检测回风温度信号,并传输至控制器。控制器根据温度信号自动调节安装在表冷器回水管上的电动调节阀开度,控制回风温度恒定于设定值。

另外,控制器可同时检测室外新风温度、送风温度、过滤网压差状态、风机运行状态以及风机故障状态;过渡季节,控制器可根据室内、外焓(温度)差,自动调节新、回风比例,最大程度利用室外新风,达到节能效果。

篇5:暖通节能设计要点之通风系统的设计

(2)有人员长期停留且不设置集中新风、排风系统的空调房间或空调建筑(如一些设置分体式或多联机空调系统的房间或建筑),宜在各空调区(房间)分别安装带热回收功能的双向换气装置(新风换气机)。

(3)排风热回收装置的选用,应按以下原则确定:

1)排风热回收装置(全热和显热)的额定热回收效率不应低于60%;

2)冬季也需要除湿的空调系统,应采用显热回收装置;

3)根据卫生要求新风与排风不应直接接触的系统,应采用显热回收装置;

4)其余热回收系统,宜采用全热回收装置;

(4)汽车库有条件时应尽量采用自然通风方式,否则,应设置机械排风、自然进风系统或机械送排风系统。汽车库的通风系统,宜根据使用情况对通风机设置定时启停(台数)控制或根据车库内的CO浓度进行自动运行控制。

篇6:暖通节能设计要点之空调冷却水系统的设计

暖通节能设计要点之空调冷却水系统的设计:

n(1)冷却塔应布置在环境清洁、气流通畅、通风良好、远离高温的地方,以确保其冷却效率,

n(2)多台冷却塔并联使用时,冷却塔之间应设连通管 或共用连通水槽,以避免各台冷却塔补水和溢水不均匀,造成浪费,

工程

连通管的管径宜比总回水管的管径放大一号,且与各塔出水管的连接应为管顶平接。冷却塔的自来水总进水管上应设置水表。

n(3)冷却塔的总供、回水管之间,宜设旁通管并装电动两通调节阀或采三通调节阀调节控制,保证冷却水混合温度满足冷水机组对冷却水低温保护要求;并宜采用出水温度控制风机启停或变频调速控制,达到节电目的。

篇7:暖通节能设计要点之空调冷冻水系统的设计

暖通节能设计要点之空调冷冻水系统的设计:

n国家标准《采暖通风与空气调节设计规范》GB 50019-的第6.4.11条规定:“设置2台或2台以上冷水机组和循环水泵的空气调节水系统,应能适应负荷变化改变系统流量,并宜按照本规范第8.5.6条的要求,设置相应的自控设施 ”,目前,常用的空调冷冻水系统有以下几种形式:

n(1)一次泵定流量系统。系统较小或各环路负荷特性或压力损失相差不大时,宜采用负荷侧变流量、冷源侧定流量的一次泵定流量系统,如图1所示。采用一次泵定流量泵系统时,应按下列要求设计:

n1) 风机盘管的回水管上应设置浮点式电热阀,也可采用传统的电动两通阀(对房间温度控制要求不高时)或电动两通调节阀(对房间温度控制要求较高时)。前者与后两者相比,具有控制精度高、运行稳定性强、无噪声、体积小等优点;新风机组、组合式空调器的回水管上,应设置动态平衡电动调节阀或电动两通调节阀。前者只受房间温度设定控制,不受外网压力波动的影响,比后者具有更好的调节特性和更长的使用寿命。

n2) 应在总供回水管之间设旁通管及由压差控制的旁通电动调节阀,旁通管管径应按 1台冷水机组的冷冻水流量确定。

n3) 冷水机组和冷冻水循环泵之间宜采用一一对应的连接方式。当采用方式连接困难时,可采用共用集管连接,但此时应在每台冷水机组的入口或出口水管道上设置电动隔断阀,并应与对应的冷水机组和水泵连锁开关。

n4) 应密切与电器专业配合,做好自动控制设计,使系统能够根据空调负荷的变化,自动控制冷水机组及循环水泵的运行台数。

(2)一次泵变流量系统。具有较大空调水泵节能潜力的大型系统,在确保设备的适应性、控制方案和运行管理的可靠性的前提下,可采用冷源侧和负荷侧均变流量的一次泵变流量系统,且一次泵为变频调速泵,如图2所示。采用一次变流量泵系统时,应按下列要求设计:

n1) 末端装置的回水管上应设置“慢开/慢关”型的浮点式电热阀或电动两通调节阀,且多台末端设备的启停时间宜错开。

n2) 应选择蒸发器流量许可变化范围大,最小流量尽可能低的冷水机组,如离心机30%~130%,螺杆机45%~120%,最小流量宜小于50%。

n3) 应选择蒸发器许可流量变化率大的冷水机组,每分钟许可变化率宜大于30%。

n4) 冷水机组和水泵台数可不对应设置,其启停分别独立控制,水泵转速一般由最不利环路的末端压差变化来控制。

n5) 冷水机组和水泵应采用共用集管的连接方式,并应在每台冷水机组的入口或出口水管道上设置与对应的冷水机组连锁开关电动隔断阀。

n6) 应在总供回水管之间设旁通管及由流量或压差控制的旁通电动调节阀,旁通管管径应按单台冷水机组的最小允许冷冻水流量确定。

n7) 1台冷水机组仍可采用一次泵变流量系统。

(3)二次泵变流量系统。系统较大、阻力较高,且各环路负荷特性或阻力特性相差悬殊(差额大于50 kPa,相当于输送距离100m或送回管道长度在200m左右)时,应采用在冷源侧和负荷侧分别设置一级泵和二级泵的二次泵变流量系统,且一级泵为定流量运行,二级泵宜采用变频调速泵,如图3所示,

采用二次泵变流量系统时,应按下列要求设计:

1) 末端装置的回水管上应设置水量控制阀,具体设置方法应符合4(1)中第1)条的要求。

n2) 冷热源侧和负荷侧的供回水共用集管(或分集水器)之间应设旁通管,旁通管管径应按 1台冷水机组的冷冻水流量确定,旁通管上不应设置因何阀门。

n3) 一级泵与冷水机组之间的连接方式及运行台数的控制,应符合4(1)中第3)、4)条的要求。

n4) 应根据系统的供回水压差控制二级泵的转速和运行台数,控制调节循环水量适应空调负荷的变化。系统压差测点宜设在最不利环路干管靠近末端处。

n(4)两管制及四管制系统。根据建筑物的具体情况,在满足舒适性要求的前提下,合理地设计负荷侧空调水系统的制式,既可减少空调系统设备和管道的初投资,又能降低空调水系统的运行能耗。负荷侧空调水系统的制式,应按下列要求设计:

n1) 不存在同时供冷和供热,只要求按季节进行供冷和供热转换的空调系统,应采用两管制水系统。

n2) 当建筑物内有些空调区需全年供冷水,有些空调区则冷、热水定期交替供应时,宜采用分区两管制水系统。

n3) 对于全年运行中冷、热工况频繁交替转换或需要同时使用的空调系统,宜采用四管制水系统。

n(5)“一泵到顶”系统。空调冷冻水系统的静水压力不大于1.0MPa时,竖向不宜分区,宜采取水泵吸入式的“一泵到顶”系统,以减少由于分区而增大土建与设备的一次投资和电耗,并方便设备与系统的运行管理。

n(6)空调冷(热)水系统的输送能效比(ER)应按下式计算,

且不应大于表2 中的规定值 。

ER= 0.002342 H/(ΔT·η)

式中:HD水泵设计扬程,m;

ΔTD供回水温差,℃;

ηD水泵在设计工作点的效率,%。

n表2   空调冷热水系统的最大输送能效比(ER)

管 道类 型

两管制热水管道

四管制热水管道

空调冷水管道

严寒地区

寒冷地区/夏热冬冷地区

夏热冬暖地区

ER

0.00433

0.00577

0.00865

0.00673

0.0241

注:两管制热水管道系统中的输送能效比值,不适用于采用直燃式冷热水机组 作为热源的空调热水系统。

篇8:暖通节能设计要点之采暖与空调水系统的补水及定压设计

暖通节能设计要点之采暖与空调水系统的补水及定压设计:

n(1)采暖和空调冷(热)水系统小时泄漏量是确定系统补水量、补水管管径、补水泵流量、水处理设备和补水箱容量的依据,应根据空调系统的规模和不同系统形式按系统水容量进行计算,而不应根据系统循环水量进行计算,二者相差很大,如依后者为计算依据,必然会造成补水量计算偏大,进而带来了补水管、补水泵、软水设备、补水箱的选型偏大,结果造成设备的一次投资高且运行不节能。

n(2)空调冷(热)水系统的水容量可参照表3估算,室外管线较长时取较大值。

表3 空调水系统的单位水容量(L/m2建筑面积)

空气调节方式

全空气系统

水/空气系统

供冷和采用换热器供暖时

0.40~0.55

0.70~1.30

热水锅炉供暖时

1.25~2.00

1.20~1.90

n(3)采暖与空调冷冻(热)水系统的小时泄漏量,宜按系统水容量的1%计算;系统小时补水量取系统水容量的2%,即系统小时泄漏量的2倍;补水泵流量宜取系统小时补水量的2.5~5倍,即系统水容量的5%~10%,

n(4)闭式采暖与空调冷冻(热)水系统的补水定压点宜设在循环水泵的吸入口处。采暖系统定压点的最低压力应使系统最高点的压力大于大气压力10KPa,空调冷冻(热)定压点的最低压力应使系统最高点的压力大于大气压力5KPa。补水泵的扬程应保证补水压力比系统补水定压点的压力高30~50 KPa。空调水系统宜采用高位膨胀水箱定压,该方式具有安全、可靠、消耗电力相对较少、初投资低等优点。

【暖通节能设计要点之室内设计计算温度的取值问题】相关文章:

1.暖通节能设计要点之采暖系统的设计

2.节能设计理念在建筑环境与暖通工程中的应用论文

3.基于文体学法要点与问题策略的练习设计

4.intel未来教案设计核心之框架问题的设计转载

5.列方程解加减乘除计算问题 教案教学设计(人教新课标五年级上册)

下载word文档
《暖通节能设计要点之室内设计计算温度的取值问题.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

暖通节能设计要点之室内设计计算温度的取值问题相关文章
最新推荐
猜你喜欢
  • 返回顶部