欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 实用文>两类惯性系问题

两类惯性系问题

2022-08-04 08:38:46 收藏本文 下载本文

“Gjmmi”通过精心收集,向本站投稿了10篇两类惯性系问题,以下是小编精心整理后的两类惯性系问题,希望对大家有所帮助。

两类惯性系问题

篇1:两类惯性系问题

两类惯性系问题

对于一切参照系物理规律都相同,如何理解这句话呢?在非惯性系中物体受到一个惯性力,这说明惯性系与非惯性系是有区别的;为什么受到一个惯性力后,在非惯性系中又能运用牛顿运动定律呢?这说明惯性系与非惯性系是有联系的。

我们对惯性系是如何定义的呢?通常我们说一个物体是惯性系是指牛顿运动定律在其中成立的参照系。

对惯性系的认识有两种观点。

一种观点认为在惯性系中‘一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使他改变这种运动状态为止。’说的是牛顿第一定律。在这里牛顿运动定律成立的参照系是惯性系,不成立的参照系是非惯性系。

另一种观点认为在惯性系中‘一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使他改变这种运动状态为止。’说的不是牛顿第一定律。说的是在牛顿第一定律普适的前提下,即力是物体产生加速度的原因,物体受力时处于变速运动状态,在另一受力的物体(参照系)看来有可能‘一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种运动状态为止。’这里的(保持)静止或匀速直线运动状态是相对的,是相对于参照系而言的。(惯性独特视角)

一种观点认为惯性系与非惯性系是绝对的。惯性系中牛顿运动定律成立,非惯性系中牛顿运动定律不成立。另一种观点认为惯性系与非惯性系是对同一现象的不同描述。是物体的同一性质通过不同的物体(参照系)描述不同。这里‘物体的同一性质’指的是惯性。在惯性系中,物体由于惯性静止的'物体保持静止,匀速直线运动的物体保持匀速直线运动;在非惯性系中此物体就受到一个惯性力反向变速运动(在非惯性系看来)。

对于所有参照系,一切物理规律都相同。一种观点认为所有参照系都为惯性系。在等效原理的基础上,取消了引力,认为非惯性系是惯性系。在一定条件下,非惯性系与惯性系是等效的,但不是等同的。为了认为一切参照系都是平等的,取消了引力。

另一种观点认为所有的参照系为非惯性系,所有的参照系都是等同的。这里的非惯性系指的不是牛顿运动定律不成立。所有的参照系都是受力状态下的参照系。

我们定义牛顿运动定律成立的参照系为惯性系。自由落体系是一个很好的惯性系。我们可以根据牛顿运动定律 在其中成不成立判断一个参照系是不是惯性系。自由落体系中牛顿运动定律成立,自由落体系本身是一个加速系。这说明一个参照系是不是惯性系与参照系本身运动状态无关。惯性系本身可能是一个加速系。

一种观点认为惯性系中‘一切物体总保持匀速直线运动状态或静止状态’中的匀速直线运动状态指的是绝对的匀速直线运动状态;静止状态指的是绝对的静止状态。

另一种观点认为惯性系中‘一切物体总保持匀速直线运动状态或静止状态’中的匀速直线运动状态指的是相对的匀速直线运动状态,静止状态指的是相对的静止状态。静止指的是相对参照系的静止;匀速直线运动指的是相对于参照系的匀速直线运动。

惯性系中的静止;相对于惯性系做匀速直线运动的匀速直线运动惯性系中的静止;自由落体系是一个很好的惯性系,自由落体系中的静止。惯性系中的静止状态有可能是不同的。惯性系中指的物体保持静止状态或匀速直线运动状态有可能是不同的。

一种观点认为我们通常所说的惯性系指的是绝对惯性系;另一种观点认为我们通常所说的惯性系都是一种相对惯性系。近似惯性系是一种相对惯性系,自由落体系是一种相对惯性系。在这里我们可以说惯性系就是非惯性系。

一种观点认为所有惯性系都是一样的。另一种观点认为所有惯性系是不一样的,同时也是一样的。不一样指的是惯性系本身的运动状态有可能不一样,惯性系中的保持静止或匀速直线运动状态有可能不一样;同时也是一样的 指的是在所有惯性系中(或者称参照系,或者称非惯性系),一切物体总保持静止或匀速直线运动状态,直到有外力迫使它改变这种运动状态为止。在此之外我们可以称与惯性系不同的参照系为非惯性系。在这里的非惯性系,也有自己是惯性系的时候,不过非惯性系是惯性系的时候,描述的‘一切物体总保持静止或匀速直线运动状态’与惯性系中‘一切物体总保持静止或匀速直线运动状态’是不同的。

篇2:两类问题的最佳逼近

两类问题的最佳逼近

本文研究了矩阵方程约束下的两类最佳逼近问题.利用矩阵的奇异值分解等技术,我们导出了这两类问题的解,并说明了现实中的'许多问题是本文所研究问题的特例.

作 者:傅少川 徐成贤 FU Shao-chuan XU Cheng-xian  作者单位:傅少川,FU Shao-chuan(西安交通大学理学院,西安,710049;北京交通大学经管学院,北京,100044)

徐成贤,XU Cheng-xian(西安交通大学理学院,西安,710049)

刊 名:工程数学学报  ISTIC PKU英文刊名:CHINESE JOURNAL OF ENGINEERING MATHEMATICS 年,卷(期): 25(3) 分类号:O241.6 关键词:矩阵函数   最佳逼近  特征值  

篇3:惯性

惯性,或物质固有的性质,是一种抵抗的现象,它存在于每一物体当中,大小与该物体相当,并尽量使其保持现有的状态,不论是静止状态,或是匀速直线运动状态。一个不受任何外力(或者合外力为0)的物体将保持静止或匀速直线运动。一般是指物体不受外力作用时,保持其原有运动状态的属性。惯性现象就是物体保持原来运动状态的一种现象。

目录简介认识历史辨析与区别诠释收缩展开简介

在物理学里,惯性(inertia)是物体抵抗其运动状态被改变的性质。物体的惯性可以用其质量来衡量,质量越大,惯性也越大。艾萨克・牛顿在巨著《自然哲学的数学原理》里定义惯性为: 惯性,或物质固有的力,是一种抵抗的现象,它存在于每一物体当中,大小与该物体相当,并尽量使其保持现有的状态,不论是静止状态,或是匀速直线运动状态。 更具体而言,牛顿第一定律表明,存在某些参考系,在其中,不受外力的物体都保持静止或匀速直线运动。也就是说,从某些参考系观察,假若施加于物体的合外力为零,则物体运动速度的大小与方向恒定。惯性定义为,牛顿第一定律中的物体具有保持原来运动状态的性质。满足牛顿第一定律的参考系,称为惯性参考系。稍后会有关于惯性参考系的更详细论述。 惯性原理是经典力学的基础原理。很多学者认为惯性原理就是牛顿第一定律。遵守这原理,物体会持续地以现有速度移动,除非有外力迫使改变其速度。 在地球表面,惯性时常会被摩擦力、空气阻力等等效应掩蔽,从而促使物体的移动速度变得越来越慢(通常最后会变成静止状态)。这现象误导了许多古代学者,例如,亚里斯多德认为,在宇宙里,所有物体都有其“自然位置”──处于完美状态的位置,物体会固定不动于其自然位置,只有当外力施加时,物体才会移动。

定义

惯性是一切物体的固有属性,无论是固体、液体或气体,无论物体是运动还是静止,都具有惯性。一切物体都具有惯性。 惯性定义:我们把物体保持运动状态不变的属性叫做惯性。惯性代表了物体运动状态改变的难易程度。惯性的大小只与物体的质量有关。质量大的物体运动状态相对难于改变,也就是惯性大;质量小的物体运动状态相对容易改变,也就是惯性小。 当你踢到球时,球就开始运动,这时,因为这个球自身具有惯性,它将不停的滚动,直到被外力所制止。 任何物体在任何时候都是有惯性的,它要保持原有的运动状态。

幻想

北京有个人,曾提出选一个无风的日子,乘坐气球在高空观看大地向东移动,以此来环游世界,这是否可行呢?显然不能,但这又是为什么呢?这就是惯性。当有人乘坐气球离开地球表面时,由于惯性,人和气球仍以地球自转的速度运动着。

注意

1、惯性不等同于惯性定律。惯性是物体本身的性质,而惯性定律讲的是运动和力的关系(力不是维持物体运动的原因,力是改变物体运动的原因)。 2、惯性是物体固有的一种属性,不能说“由于惯性的作用”。 3、惯性是物体固有的一种属性,不能说“获得惯性”。

认识历史

早期认知

文艺复兴之前,在西方哲学里最被广泛接受的运动理论是建立于大约 335 BC至322 BC的亚里斯多德的学说。亚里斯多德表明,假设没有“暴力”(violent force)施加,所有(在地球上的)物体最终都会停止运动,静止于其自然位置,但只要有暴力促使物体运动,物体会持续其运动状态。当抛物体被抛掷出去时,抛掷者的暴力转移到抛物体周围的空气,使这些空气流动,成为新的推动者,继续不停地促使抛物体移动。 在之后大约两千年内,亚里斯多德的运动概念广泛地被接受,只有几位著名哲学家对这概念提出质疑。例如,在第6世纪,约翰・斐劳波诺斯严厉批评亚里斯多德关于物体运动的不一致理论:亚里斯多德认为真空不可能存在,因为,在真空里,没有任何介质促使物体移动,但是,他又表示,介质的阻力与其密度成正比:假设空气的密度是水的一半,则物体通过同样路径所用掉的时间,在空气中是在水中的一半,那么,物体通过真空所用掉得时间应该更少。 斐劳波诺斯主张,介质只能阻碍抛物体的运动,不能促使抛物体移动;在真空里,没有任何介质,抛物体反而比较容易移动。斐劳波诺斯建议,促成抛物体持续运动的因素与周围介质无关,而是在运动刚开始时,加诸于抛物体的某种性质,这性质逐渐在运动时消耗殆尽。虽然这建议与当今惯性概念仍有所差异,至少它已朝着正确方向跨出基要的脚步。 但是,在那时期与之后很多年,他的想法没有得到重视,很多亚里斯多德派学者都给予强烈反对,包括汤玛斯・阿奎那(约1225年-1274年)和艾尔伯图斯・麦格努斯(约12-1280年)在内。只有奥卡姆的威廉(约1288年-1348年)反对亚里斯多德物理学。他质疑亚里斯多德所提到的运动的“推动者”到底在哪里?虽然他否定亚里斯多德公理的正确性,认为抛物体的运动不需要随时随地都有推动者伴随。但是,他也没能给出任何替代答案。

让・布里丹

在第14世纪,法国哲学家让・布里丹提出冲力说。他称呼促使物体运动的性质为冲力,这冲力是由推动者传送给物体,促使物体运动。他否定了冲力会自己消耗殆尽的想法。布里丹认为永存不朽的冲力是被空气阻力或磨擦力等等逐渐抵销,只要冲力大于阻力或磨擦力等等,物体就会继续移动。布里丹的冲力与物体密度和体积成正比;速度越大,冲力也越大;物体内部的物质越多,就能够接受越多的冲力。 从日常观察中,布里丹想出许多反例来反驳亚里斯多德的理论: 假设一个陀螺或磨石绕着固定轴旋转,请问空气怎样在这些物体的后面推动旋转? 铸模,将这铸模包在旋转物外面,不让在旋转物与铸模之间有任何空隙。这样,在旋转物与铸模之间,不会存在任何空气,请问空气怎样推动旋转? 设想一艘拖船拖曳著另一艘船,航行于风平浪静的静止大海。然后,将拖绳切断,则因为海水阻力与空气阻力,被拖的船会慢慢的停止航行。在这时候,站在甲板上、面向船前方的海员会感觉到空气对着脸面吹拂,从船前方吹向船后方,试图减慢船的航行;他不会感觉到空气对着后背吹拂,从船后方吹向船前方,试图推动船的航行。 思考石头与羽毛这两种物质,空气应该比较容易推动羽毛。但是,为什么用同样的力分别将石头与羽毛抛射出去,石头移动的距离比羽毛远了很多? 尽管与惯性的现代概念很相似,布里丹只把自己的理论视为亚里斯多德基本哲学的微小修正,坚持许多其他亚里斯多德派的观念,例如,他认为运动状态与静止状态是两种不同的状态。布里丹又主张,冲力不但适用于直线运动,也适用于圆周运动,促使物体(例如,星体)呈圆周运动。 萨克森得阿尔伯特是布里丹的学生。他将布里丹的学说广传至意大利与中欧。在牛津大学墨顿学院的思想家赫特斯柏立得威廉最先表述出平均速率定理:在同样时间间隔内,假若等速度物体的速度是等加速度物体的最初速度和最终速度的总和的一半,则此二物体移动的距离相等。这定理是自由落体定律的基础。早在伽利略・伽利莱之前,他们就已做实验证实了这定理。

尼克尔・奥里斯姆

尼克尔・奥里斯姆又将他们的研究结果加以发挥,他创立了用曲线图来解释运动定律的方法,并且用几何方法证明平均速度定理。奥里斯姆于1377年发表的著作《天地通论》提出,当自由落体在加速时,其重量并没有增加,而是冲力增加。假设,挖掘一条直线隧道,从地球表面的A点,穿过地心,挖掘到地球表面的B点,然后将一个重物落入这隧道,则它会从A点,经过地心,移动到B点,就好像单摆从一边摇摆到另外一边。但是,从地心到B点的路途中,它是呈升起状态,而重量只能造成物体掉落,因此冲力与重量不同。 这些研究发展逐渐地侵蚀了学者们对于亚里斯多德物理学的信心。在伽利略发表惯性原理之前不久,于1585年,意大利物理学者乔望尼・本尼得棣将越加成熟的冲力说限制为只能适用于直线运动: 本尼得棣特别举出甩石机弦的例子,当旋转甩石机弦时,其皮袋内的石头,由于被其皮绳约束,原本的直线运动被迫变为圆周运动;但若将石头扔出,脱离皮绳的约束,则石头会呈直线运动,而其直线轨迹会正切圆周于扔出点。

尼古拉・哥白尼

尼古拉・哥白尼于1543年发表著作《天体运行论》,主张地球(与处于其表面的所有物体)从未停止不动,而是持续地绕着太阳做公转。面对这崭新的理论,亚里斯多德式的地心说──地球是宇宙的中心,因此绝对地固定不动──显得漏洞百出、难以招架。在发表著作之前,哥白尼为了证实自己的理论,早已于1530年就完成了观测行星轨道运动的实验。

开普勒

德国天文学者开普勒,在从16至16分三阶段发表的著作《哥白尼天文学概要》里,最先提出术语“惯性”,拉丁语为“懒惰”的意思,与当今的诠释不太一样。开普勒以对于运动变化的抗拒来定义惯性,这仍旧是根据亚里斯多德的静止状态为自然状态的前提。一直要等到后来伽利略的研究与牛顿将静止与运动统一于同一原理,术语惯性才能应用于当今其所赋有的概念。

伽利略

惯性原理是伽利略在1632年出版的《关于托勒密和哥白尼两大世界体系的对话》书中发表的,它是作为捍卫日心说的基本论点而提出来的。 根据亚里士多德的物理学,保持物体以匀速运动的'是力的持久作用。但是伽利略的实验结果证明物体在引力的持久影响下并不以匀速运动,而是相反地每次经过一定时间之后,在速度上就有所增加。物体在任何一点上都继续保有其速度并且被引力加剧。如果引力能够截断,物体将仍旧以它在那一点上所获得的速度继续运动下去。伽利略在金属球在斜面滚动的实验中观察到,金属球以匀速继续滚过一片光滑的平桌面。从以上这些观察结果就得到了惯性原理。这个原理阐明物体只要不受到外力的作用,就会保持其原来的静止状态或匀速运动状态不变。 他主张,施加外力改变的是物体的速度而不是位置;维持物体速度不变,不需要任何外力。为了证实他的主张,伽利略做了一个思想实验。如右图所示,让静止的小球从点A滚下斜面AB,滚到最底端后,小球又会滚上斜面BC,假设两块斜面都非常的平滑、摩擦系数极小,而且空气阻力微弱,以至于可以忽略不计,则小球会滚到与点A同高度的点C;假设斜面是BD、BE或BF,小球也同样地会滚到与点A同高度的位置。只不过斜面越长,往上滚的时候,单位时间内速度的减少量会变得越小。假设斜面逐渐延长,最后变成水平面BH,则基于“连续性原则”该小球“本应当”回到与点A同高度的位置,然而由于事实上BH是水平的,小球永远不可能滚到先前的高度,而速度的减少量将变成0,因此小球会不停地呈匀速直线运动。伽利略总结,假若不碰到任何阻碍,那么运动中的物体会持续地做匀速直线运动。他将此称为惯性定律。 这理论刚被提出时并不被其他学者接受,因为当时大多数学者不了解摩擦力与空气阻力的本质,不过伽利略的实验以可靠的事实为基础,经过抽象思维,抓住主要因素,忽略次要因素,更深刻地反应了自然规律。 值得注意的是,后来,伽利略从惯性定律推论,假若没有任何外在参考比较,则绝对无法分辨物体是静止不动还是移动。这观察后来成为爱因斯坦发展狭义相对论的基础。 伽利略的惯性原理是近代科学的起点,它摧毁了反对哥白尼的所谓缺乏地球运动的直接证据的借口。

笛卡尔

笛卡尔等人又在伽利略研究的基础上进行了更深入的研究,他认为:如果运动物体,不受任何力的作用,不仅速度大小不变,而且运动方向也不会变,将沿原来的方向匀速运动下去.

牛顿

而被现代社会所普遍认知的惯性原理,来自于牛顿的《自然哲学的数学原理》(Mathematical Principles of Natural Philosophy, 1687),定义如下: 惯性定律就是牛顿第一定律。 一切物体都将一直处于静止或者匀速直线运动状态,直到出现施加其上的力改变它的运动状态为止。 写出牛顿第一定律后,牛顿开始描述他所观察到的各种物体的自然运动。像飞箭、飞石一类的抛体,假若不被空气的阻力抗拒,不被引力吸引坠落,它们会速度不变地持续运动。像陀螺一类的旋转体,假若不受到地面的摩擦力损耗,它们会永久不息地旋转。像行星、彗星一类的星体,在阻力较小的太空中移动,会更长久地维持它们的运动轨道。在这里,牛顿并没有提到牛顿第一定律与惯性参考系之间的关系,他所专注的问题是,为什么在一般观察中,运动中的物体最终会停止运动? 他认为原因是有空气阻力、地面摩擦力等等作用于物体。假若这些力不存在,则运动中的物体会永远不停的做匀速运动。这想法是很重要的突破,需要极为仔细的洞察力与丰富的想像力才能达成。 牛顿的惯性原理是经典物理学的基础之一,并且对惯性原理的理解也随着现代物理学的发展而出现了改变。牛顿说:“我只是站在巨人的肩膀上!”

马赫

马赫对牛顿的惯性概念做了重要的补充,认为惯性来源于物体与宇宙其余部分的相互作用。(不仅仅是物体本身的质量决定的)。

爱因斯坦及相对论

对于惯性认识的一个重要进展是惯性与能量的关系。 阿尔伯特・爱因斯坦于19在论文《论动体的电动力学》里提出的狭义相对论,这是一个崭新的物理理论,是建立于伽利略与牛顿研究出来的惯性与惯性参考系。它统一了力学理论和电磁学理论,带来了时空观的根本变革。爱因斯坦随后证明质能关系,E=mc?,一定的质量对应于一定的能量,反之一定的能量对应一定的质量。 在这里,能量包括了能量的各种形式,突破了上面把某一种形式的能量与惯性联系起来的认识。这样,惯性是能量的属性,能量具有惯性(质量),任何惯性质量都应归因于能量。作为物理学基本概念和物质的量的质量概念退居次要的地位,如今在近代物理中能量、动量等概念要比质量、力等概念要重要得多。 尽管这划时代的理论实际地改变了许多牛顿概念,像质量、能量、距离,那时后,爱因斯坦的惯性概念与牛顿的原本概念丝毫没有任何差异。实际而言,整个理论是建立于牛顿的惯性定义。但这也使得狭义相对论的相对性原理只能应用于惯性参考系。在这种参考系里,不受外力的物体,必定保持其静止或匀速直线运动状态。 为了处理这局限,爱因斯坦于19发表论文《广义相对论的基础》提出广义相对论。这理论能够应用于非惯性参考系。但是,为了达到这目的,爱因斯坦发觉,他必需使用到弯曲时空的新概念,而不是传统的牛顿力的概念,来重新定义几个基础概念(例如引力)。 因为这重新定义,爱因斯坦还以测地误差重新定义了惯性的概念,这又引起一些微妙但重要的结果。根据广义相对论,当处理大尺寸问题时,不能使用与倚赖传统牛顿惯性。幸运地,对于足够小的时空区域,狭义相对论仍旧适用,惯性的内涵与工作仍旧与经典模型相同。 狭义相对论的另一个深奥的结果是,能量与质量不是互不相干的物理属性,而是可互相转换的。这崭新关系也给予惯性概念新的内涵。狭义相对论的逻辑结果是,假若质量遵守惯性原理,则能量必也遵守惯性原理。对于很多状况,这理论大大地拓宽了惯性的定义,能够应用于物质与能量。 能量具有惯性拓宽了对于惯性的认识,也拓宽了对于能量的认识。它带来的重大实用价值就是核能的释放。在裂变反应中,裂变产物的静质量小于裂变前物质的静质量,质量亏损释放出大量裂变能;在聚变反应中,聚变产物的净质量小于聚变前物质的净质量,质量亏损释放出大量的聚变能。它也使得人们很好地认识许多物理现象,包括涉及物质的全部质量与能量转化的正反粒子对的产生和湮没过程。 我们知道,惯性质量是物体惯性的量度,反映物体对加速度的阻抗,而引力质量是物体引力属性的量度,反映物体产生和承受引力的能力。它们显然是物质的两种完全不同的属性,描述物质两种不同性质的量是否严格相等是一个问题,惯性质量和引力质量相等是一条严格的定律。原来牛顿力学中无法说明的惯性质量与引力质量相等不再是游离于物理学之外的一个普遍事实,而是成为意义得大的广义相对论的基石。爱因斯坦找到了这块基石,并由此发展了广义相对论,这实在是爱因斯坦独具慧眼、超群绝伦的伟大贡献。惯性这个问题已经成为困扰现代物理学者的难题,虽然拥有伟人牛顿经典理论。但在科技时代出现许许多多的现象用以前的理论是无法解释的。使用曾经的经典无法解释的。也是现代物理的奠基人爱因斯坦留个我们后人的问题。爱因斯坦无法解释惯性,所以无奈的把相对论分成广义的和狭义的。他的人生一直被这个问题困扰还是没有答案。

辨析与区别

与“第一定律”的区别

“惯性”与“惯性定律”不是同一概念,不能混为一谈。它们的区别:惯性是一切物体固有的属性,是不依外界(作用力)条件而改变,它始终伴随物体而存在。牛顿第一定律则是研究物体在不受外力作用时如何运动的问题,是一条运动定律,它指出了“物体保持匀速直线运动状态或静止状态”的原因。而惯性是“物体具有保持原来的匀速直线运动状态或静止状态”的特性;两者完全不同。为何牛顿第一定律又叫惯性定律,是因为定律中所描述的现象是物体的惯性的一个方面的表现,当物体受到外力作用(合外力不为零)时,物体不可能保持匀速直线运动状态或静止状态,但物体力图保持原有运动状态不变的性质(惯性)仍旧表现出来。

与“力”的区别

“惯性”与“力”不是同一概念,“子弹离开枪口后还会继续向前运动”,“水平道路上运动着的汽车关闭发动机后还要向前运动”这些都是惯性。惯性与力的区别: ①物理意义不同;惯性是指物体具有保持静止状态或匀速直线运动状态的性质;而力是指物体对物体的作用。惯性是物体本身的属性,始终具有这种性质,它与外界条件无关;力则只有物体与物体发生相互作用时才有,离开了物体就无所谓力。 ②构成的要素不同:惯性只有大小,没有方向和作用点,而大小也没有具体数值,无单位;力是由大小,方向和作用点三要素构成,它的大小有具体的数值,单位是牛。 ③惯性是保持物体运动状态不变的性质;力作用则是改变物体的运动状态。 ④惯性的大小只与物体的质量有关,而力的大小跟许多因素有关(视力的种类而定)。

与“速度”的区别

惯性大小与物体运动的快慢无关。“汽车行驶越快,其惯性越大”是不正确的。运动快的汽车难刹车是因为运动速度越快,物体的运动状态越难改变。可见惯性大小与运动状态并无关系。惯性大小只与物体质量有关。

惯性维护平衡与作用造成变化的辩证关系

时效波先生在论述“生命的产生”时,提出了惯性维护平衡与作用造成变化的辩证关系:“物质是运动的,运动的物质有保持其原有平衡状态的属性,即惯性。这里提到的惯性是广义的概念,不仅指宏观物体,构成宏观物体、维系着微观结构形态运动着的分子、原子、电子同样具有惯性。物质是运动的,运动的物质之间是相互联系、相互作用的。物质在相互作用的过程中,会发生物质、能量的运动转化,原有的平衡状态(宏观的运动状态、微观的结构形态)就会被改变或打破,形成具有新的运动状态和结构形态的物质。运动的物质有保持原有平衡状态的属性,而运动物质间的相互作用又时刻破坏着平衡,惯性维护平衡与作用造成变化成了物质最基本属性的矛盾,正是这一矛盾推动着物质的运动变化和发展演化。无机物在物质间的相互作用中,只能被动地接受宏观的、微观的冲击和破坏,改变其原有的运动状态和结构形态。如被海水冲刷和风吹日晒的礁石会移动位置和逐渐破碎。原始生命则能为维护自身的平衡状态作出反应,主动地吸收利用物质能量(新陈代谢)来维护有机体的结构形态不受破坏,以维持其原有性能,获得生存。事实上,由碳水化合物构成的蛋白质分子就已经能有选择地从外界吸收营养物并排出分解物,不断与环境中的某些物质进行代谢。” 物体的惯性和外力作用这一对矛盾的对立统一,形成了宏观物体的形形色色的各种复杂的运动。如果没有外力,物体也就没有复杂多样的运动形式;如果没有惯性,物体的运动状态改变不需要力的作用。只有当我们理解了惯性与外力作用的辨证关系,就不难解释惯性现象。例如“锤子松了,把锤把的一端在物体上撞几下,锤头就能紧套在锤柄上”这是因为锤与柄原来都向下运动,柄撞在物体上受到阻力作用,改变了它的运动状态,就停止了运动,锤头没受阻力仍保持原来运动状态,继续向下运动,这样锤头就紧套在锤柄上了。

类别

不受外力的时候,一切物体总保持匀速直线运动状态或静止状态。 这里的静止和匀速直线运动指的是绝对静止和绝对匀速直线运动。就是说惯性定律是相对于绝对静止系说的。不是相对于相对静止说的,也不是相对于绝对匀速直线运动系说的。惯性定律的适用范围是所有的物体,是一切物体。所有物体的运动都是起源于静止,起源于绝对静止,是相对于绝对静止说的。正因为惯性定律的适用范围是所有的物体,所以物体受力后才会产生加速度,由于所有的物体都是受力的,所以所有的物体都是变速的,这是物体不受力时符合惯性定律,受力时符合牛顿第二定律和第三定律的原因。 我们通常说的惯性指的是物体相对于参考系的惯性,即物体不受外力的时候具有保持与参考系相互静止或匀速直线运动的性质。因此不同惯性系所有的惯性是不同的。在惯性系中物体由于惯性保持静止,在另一个匀速直线运动惯性系看来,就是物体由于惯性保持匀速直线运动状态。静止的物体怎么会匀速直线运动呢?原来在不同的惯性系看来惯性指的可能不同。由于所有的都是受力的,变速运动,那么所谓的惯性系就是在这里的选择,是圆的物体都可以是惯性系,任意选择一个物体都可以是惯性系。

诠释

质量与惯性

惯性的定性定义为物体抵抗动量改变的性质。将这定义加以定量延伸为物体抵抗动量改变的度量,就可以用来做数学计算。这度量称为惯性质量,简称为质量。所以,质量表示物质的数量,同时,质量也是物体惯性的度量。 动量方程表达物体的动量p与质量m、速度v之间的关系: p=mv 但是,牛顿第二定律方程也可以表达物体的作用力F与质量(惯性质量)m、加速度a之间的关系: F=ma 按照这方程,给定作用力,则质量越大,加速度越小。由动量方程与牛顿方程给出的质量相同。因为,假若质量与时间、速度无关,则牛顿方程可以从动量方程推导出来。 这样,质量是物体惯性的度量,即物体抵抗被加速的度量。物体惯性这词语的含意,已从原本含意──维持动量的倾向,改变为物体抵抗动量改变的度量。

引力质量与惯性质量

引力质量与惯性质量之间的唯一差别是测量方法。 将未知质量的物体与已知质量的物体分别感受到的引力做测量比较,就可以得到未知物体的引力质量。通常,可以使用天平来做测量。这方法的优点是,不论在什么地方,在什么星球,都可以用天平来做测量,因为对于任意物体,引力场都一样。只要引力场不改变,天平会测量出可信的引力质量。但是,在超质量星体附近,例如,黑洞或中子星,就不能采用这种方法,因为在这区域里,引力场的梯度太过陡峭,在天平的左右两个托盘位置的引力场差异量太大,超过允许误差范围。在失重环境,也不能采用这种方法,因为天平不能做任何比较。 施加已知作用力于未知质量的物体,测量产生的加速度,然后应用牛顿第二定律方程,就可以得到惯性质量,其误差只限制于测量的准确度。当处于自由落体状况时,使用这方法,坐在一种特别座椅,称为物体质量测表,就可以测量出失重航天员的惯性质量。 值得注意的是,实验者尚未找出,引力质量与惯性质量,两者之间有什么差异。实验者已完成许多实验,检验两者的实验数值,但是差异都在实验误差边限之内。爱因斯坦在创建广义相对论时,从引力质量与惯性质量相等的事实,得到很大的启示。他假设引力质量与惯性质量相同,引力所产生的加速度是时空连续统内的斜度所造成的结果,就好像圆球以螺旋线样式滚下一个倒圆锥。

惯性参考系

当描述物体运动时,只有相对于特定的参考系,才能确实显示出其物理行为。假若选择了不适当的参考系,则相关的运动定律可能会比较复杂,在惯性参考系中,力学定律表现出的形式最为简单。从惯性参考系观察,任何呈匀速直线运动的参考系,也都是惯性参考系,否则是“非惯性参考系”。换句话说,牛顿定律满足伽利略不变性,即在所有惯性参考系里,牛顿定律都保持不变。 选择以固定星体来近似惯性参考系,这方法的误差相当微小。例如,地球绕着太阳的公转所产生的离心力,比太阳绕着银河系中心的公转所产生的离心力,要大三千万倍。所以,在研究太阳系中星体的运动时,太阳是一个很好的惯性参考系。地球也可以视为惯性参考系。由于地球自转而产生的加速度在地球表面为0.034m・ s。重力加速度大约为自转加速度的288倍。由于地球绕着太阳公转而产生的加速度为0.006m・ s,更为微小。所以,可以忽略地球的自转和公转加速度。 假设处于地球参考系的观察者A,观察到一辆火车呈匀速直线运动,则附着于此火车的参考系(火车参考系)也是惯性参考系。假设在火车车厢内,有一个圆球从高处掉落下来,处于火车参考系的观察者B,所观察到的圆球轨迹,就如同当这火车固定不动时,这圆球会垂直掉落下来一样。从地球参考系观察,在掉落之前,圆球与火车的移动速度与方向相同,圆球的惯性保证,朝着火车移动方向,圆球与火车的移动速度相等。注意到在这里,是惯性而不是质量给出这保证。 每一个惯性参考系里的观察者,都会观察到所有物理行为都遵守同样的物理定律。从一个惯性参考系,可以简单又直觉明显地变换(伽利略变换)到另外一个惯性参考系。这样,处于地球参考系的观测者A能够推论,火车参考系的观察者B会观察到,在火车车厢内掉落的圆球,会垂直掉落下来。 对于非惯性参考系而言,由于参考系的加速度不等于零,物体会感受到虚设力。假设火车正在加速度中,则火车参考系的观察者B会观察到,圆球不会垂直地掉落,而会偏改方向,这是因为朝着火车移动方向,圆球与火车的移动速度不相等。 再举一个例子,假设将地球自转纳入考量,地球每24小时会自转一周,旋转的地球参考系是非惯性参考系。从北极发设一枚导弹,对准南方位于赤道的某点P,则从地球参考系观察,由于感受到科里奥利力,这枚导弹会偏离点P。但是,从太阳参考系观察,由于地球的自转,点P位置有所改变,所以没有准确抵达点P。

篇4:小升初数学准备两类问题总结

小升初数学两类问题总结

一、行程问题

很多学生和家长都觉得行程问题很重要,也比较难,其实行程问题是小升初考试中的基础,它的难度并不高,这类题考察的是基础和应变能力。所谓的火车过桥、流水行船等问题都可以包括在内。

行程,顾名思义就是行走的路程,他的基本公式估计很多家长都有所了解。路程=速度*时间,我们要做的就是找到2点:1、这道题给了我们什么?2、这道题让我们求什么?(这个方法在绝大部分应用题中都适用)

一般情况下题目想要给你的东西不会直接给你,这些就是考察学生读题的能力。从题目中提取关键线索,最好是在读题的过程中,把其中的关键点画出来,孩子们大部分都做过许多的题了,所以他们还是能分辨出那些是关键点的。当画出以后,那些隐藏的线索自然会浮出水面,孩子们在解题时会更得心应手了。

行程问题,如果提取到关键因素后仍没有思路?建议学生把提取到的东西画成图。这样可以更直观的看到题眼。另外行程问题中绝大部分可以用方程解答更为方便,方程的用法很多孩子都会,但很多孩子不喜欢,觉得慢。可我看了很多孩子的卷子,他们用计算解得题,就算答案是对的,也很难拿到满分,缺少关键步骤,文字描述等等的问题。

另外用方程做时当未知数设出来之后,孩子所画出的图像会更为直观,更好做一些。用方程做题有这两点需要注意:1,你为什么设它?(找题目中各个量的关系)2,你打算怎么列等式?(找题目中的不变量,或者能求出的变量)

二、工程问题

工程问题在很多杯赛、模考中都出现了它的身影,不少孩子觉得比较难,其实是把问题想复杂了。

工程就是一个人或者几个人,在多少时间内做完了一件事,基本公式是,效率*时间=(总任务量),很多题把总任务量视作为1,不过并没有在题目中直接说,需要孩子在下面写出来“设.......为单位1”。

这类题初看是很难,可以把它分开来看,谁在多少时间完成了多少事,谁(效率),多少时间(时间),多少事(任务量),只要孩子再读题时把这3要素提出来,这道题并不难。另外,工程问题也是很适合方程的题目,大部分工程题总任务量是不变的,这点可以用来列等式,时间,效率这两点因情况设未知数。不过具体问题具体分析,根据题目的变化把方程列好、解对,这道题就可以拿到满分了。

在这里想说一下,方程是一个可以拿满分的方法,而计算是另一个可以拿分的方法。方程如果你从一开始就错了,可能这道题你是0分,计算如果你不会,你随心去写,有可能有一步两步写对,就可以拿到一两分。小升初的应用题并不难,如果孩子基础还可以的话,建议在这段时间接触下方程,能多拿一分是一分。如果孩子特别不喜欢方程,或者方程不太好的话,还是保持就好了。

小升初家长们的作用

1. 扮演好双重“学生”角色

小升初的很多知识可能超出了孩子们的认知范围,许多解题方法和学校老师教的有差别,这是就需要家长陪同孩子一起学习,一起克服困难,一起当老师的学生。

课后复习的时间,建议孩子给家长讲课,让家长来当学生,这样既有利于学生巩固、理解所学知识,也能锻炼孩子的自信心。所以,此时家长还要孩子的学生。

2. 扮演好助教角色

老师授课不可能关注到每个学生,那么自己孩子的问题更需要家长去及时发现,并反馈给老师,及时和授课老师沟通,因此家长还要扮演好助教的角色。

怎么样学好数学

1、 教孩子有选择性和针对性的做题

2、 注重家长的学习与交流

3、 把弱项变成强项的辅导法则

4、 勇于参加奥数比赛

各种杯赛与小升初的关系

一直以来,几乎所有家长和部分老师都认为”参加各种比赛,小升初才能取得好成绩”,这种认识确实是有一定原因的。归纳起来,有以下四点:

1、杯赛为小升初提供了试题

2、杯赛为小升初提供了筹码

3、杯赛为小升初提供了经验

4、杯赛增强了学生的自信心

小升初备考计划

小升初作为应试升学,却缺乏应试升学应有的复习备考环节应有的复习备考环节!要想在小升初中脱颖而出,六年级进行综合复习、真题模拟很重要!

分数百分数、工程问题、比和比例……又该何时学习呢?备战小升初,必须超前学习!具体如下:

1、 四升五暑假 模块化教学,学习小升初必考知识点

2、 五升六暑假 完成全部知识点学习

3、 六年级秋季 九大专题,综合复习重要知识点

4、 六年级寒假 完成全部专题复习

5、 六年级春季 综合模拟,提升应试能力

篇5:两类英文简历

两类英文简历模板

April 13,

P.O. Box 36

BIIT University

Beijing,China 100000

Dear Sir/Madam:

Are you searching for a telecommunications manager with expertise in project management and team leadership?

I specialize in creating and implementing high-performance strategies that directly impact growth and profitability of large telecommunications companies. In addition to my knowledge of business processes, I also offer proficiency in telecom software development and cutting-edge technologies.

I am relocating to Shenzhen and would be interested in opportunities with your firm. Currently, I serve as manager for BIT Company‘s Information Industry Division. Briefly, some of my accomplishments include:

Developed a tool to track and forecast price,quantity,and revenue, which enables client to monitor business performance

Implemented a customized end-to-end testing process and SQL database

My business acumen, technical expertise, and leadership capabilities have contributed to a number of successful projects. The enclosed resume outlines my credentials and accomplishments in greater detail. I would welcome an opportunity to meet with you for a personal interview.

Sincerely,

Gu Bin

篇6:惯性和什么 和什么无关

惯性与什么有关

一、惯性大小只和质量有关,和速度没有关系。

二、物体保持原来静止状态或匀速直线运动状态的性质叫惯性。惯性是一切物体的固有属性,惯性是客观存在的`,与物体的运动状态、受力与否无关。

三、惯性定义:我们把物体保持运动状态不变的属性叫做惯性。惯性代表了物体运动状态改变的难易程度。惯性的大小只与物体的质量有关。质量大的物体运动状态相对难于改变,也就是惯性大;质量小的物体运动状态相对容易改变,也就是惯性小。

惯性的例子

飞镖脱手后继续运动;

小狗抖动身体,甩掉毛上的水(洗衣机甩干);

汽车发动机的飞轮提供非做功冲程的动力;

足球在空中飞行;

纸飞机离开手以后继续飞行;

跳远时利用助跑,使自己跳得更远;

车启动时,人会向后靠;停止时,向前;向左转,人向右;向右转,人向左(事实上,人一直是相对于地面向前运动,只是因为汽车方向的改变,而使人看起来位置也在变);

紧急刹车时,人会向前倾;

用“拍打法”除去衣服上的灰尘;

用铁锨往锅炉里投煤;

走路的时脚被树枝等绊住。由于脚下遇到阻力,立即停止运动,而上身则由于惯性继续向前运动,所以会向前倾倒;

洒水枪,水离开枪后还能继续运动;

投掷铅球时,铅球离开手后继续运动。

篇7:惯性物理教案

(一)教学目的

1、知道什么是惯性,认识一切物体都有惯性。

2、会用物体的惯性解释惯性现象,培养学生的语言表述能力。

3、通过惯性现象,向学生进行交通安全教育。

(二)教具

惯性球、惯性小车和木块。

(三)教学过程

一、复习提问

牛顿第一定律的内容是什么?

二、惯性

教师:从牛顿第一定律知道,任何物体都具有保持静止状态或保持匀速直线运动状态的性质,这种性质叫做惯性。也可以说物体有保持运动状态不变的性质叫惯性。牛顿第一定律也叫惯性定律。

我国以前有人用“动者恒动,静者恒静”来表述物体的惯性。这句话可以做如下解释。物体具有保持原有的运动状态不变的性质。物体运动时要保持运动状态不变;物体静止时要保持静止状态不变。恒是永久的意思,即原有的运动状态会永久保持,直到有力的作用才能使它的运动状态改变。

这里提出了一切物体都有惯性,物体在任何情况下都有惯性。

三、惯性现象

教师:一切物体都有惯性。下面我们做几个表现物体具有惯性的有趣实验。

1、惯性小球实验

我们把一个小球稳稳地放在小木片上,用弹簧片迅速地把小木片弹出去,注意观察发生的现象。

(演示)

小木片弹出去后,小球落在了原处。

大家都知道这是由于小球有惯性。但是如何用简单明了的语言解释这个现象呢?

我们用惯性解释物理现象,必须抓住惯性的`实质。惯性的实质是物体有保持原有的运动状态不变的性质,所以我们必须认清物体原有的运动状态。以小球为例,木片被弹出去之前,小球处于静止状态。小球由于有惯性,还应保持原有的静止状态,所以小球落在原处。简言之,物体原来是什么状态,由于有惯性,它要保持什么状态,这是解释惯性现象的关键。

2、钢笔帽的惯性实验。

教师示范:拿一个小纸条放在桌边上,在纸条上压一个立着放的钢笔帽,将纸条迅速抽出,钢笔帽不倒。

(学生操作)

教师提问:请大家解释当纸条抽出时,笔帽为什么不倒?

(学生回答,教师讲评)

钢笔帽是静止的。当纸条迅速抽出时,由于笔帽有惯性,还要保持静止状态,所以笔帽不倒。

3、刹车时的惯性现象

教师:我们在小车上立一个木块,使小车和木块一起运动,小车突然停住时会发生什么现象?

(演示,并请学生解释,教师讲评)

教师:刹车前木块和小车一起运动。刹车时,木块底部和小车都停住了,但是由于有惯性,木块上部还要保持向前运动,所以木块向前倾倒。

这个实验再现了汽车紧急刹车时乘客向前倒这一普遍现象。

4、汽车起动发生的惯性现象

教师:请大家解释汽车起动时乘客为什么向后倾倒?

(学生回答:教师讲评)

四、学生练习

1、章后习题1

(教师讲评从略)

2、章后习题4

(教师讲评从略)

3、习题3

(教师讲评从略)

4、习题2

(学生答)

教师:飞机投掷物体前,被投掷物跟飞机一起运动。投掷物离开飞机后由于惯性仍要向前保持匀速直线运动。可是被投掷物受重力作用,它向前运动的同时还要向下落,物体的实际下落轨道是一抛物线。所以必须提前投掷。

飞机速度越大,高度越大,提前量也应该越大。飞机投弹也遵循这个规律。

5、节后练习4

(学生答)

教师:跳远运动员起跳前经过了一段距离的助跑,踏跳时具有较大的水平向前的速度。由于人有惯性,踏跳后还要向前继续用较大的速度运动,这样可以跳的更远些。事实证明,跳远运动员都是短跑好手就是这个道理。

五、学生阅读“汽车刹车之后”

(学生阅读五分钟)

教师:从阅读材料可知,汽车的停车距离等于反应距离和制动距离之和。如果你是一位汽车司机,应该注意怎样防止发生交通事故?

(学生回答)

教师:车速不能太快,十次事故九次快。驾驶车辆应该精神集中,这样叮以缩短反应时间和减小反应距离。司机应保证汽车的刹车机件的性能良好,缩短制动距离。下雪、下雨天尤其应减速慢行。

我们同学骑自行车也应如此。不骑快车、精神集中、车闸要灵。

六、作业

复习课文。

注:教材选用人教版九年义务教育初中物理第一册。

篇8:惯性物理教案

教学要求:

1.知道什么是惯性.

2.会用惯性知识解释简单的有关现象.

教具:课本图9-3的实验器材.

学生实验器材:5个火柴盒,直尺.

教学过程:

一、复习前节知识

1.原来静止的物体,不受外力时将保持什么状态?

2.原来运动的物体,不受外力时将保持什么状态?

二、进行新课

1.惯性

(1)什么是惯性.从牛顿第一定律知道,原来静止的物体,不受外力时将保持静止状态;原来运动的物体,不受外力时将以原来的速度大小做匀速直线运动.也就是说,物体在不受外力时,有保持原来的运动状态不变的性质.这种性质叫做惯性.

(2)用“惰性”比喻“惯性”.我们也可以通俗地用物体有一种“习惯性”或叫“惰性”来理解“惯性”.就是说,一切物体都有一种“惰性”,这种“惰性”的表现就是不愿意改变原来的运动状态.只要不受到外界力的作用,它就保持原来的运动状态.除非有外力作用于它,才能迫使它改变原来的运动状态.

2.惯性现象

物体表现出惯性的现象很多.下面我们来做几个实验.

(1)让学生把5个火柴盒摞起来,用火柴盒代替课本图9-2中的棋子.然后像图中那样用尺迅速打击下部的火柴盒,观察上面的火柴盒落在何处.

引导学生分析实验现象:火柴盒原来的状态(静止),由于惯性,它要保持静止状态,所以落回原处.

让学生自己分析课本引言图0-2鸡蛋掉入杯中的现象.

(2)演示课本图9-3甲.

引导学生分析讨论木块为什么向后倒:木块原来的状态(静止),下部突然向前运动,上部由于惯性仍保持静止,所以向后倒.

(3)把木块平放在小车上,在小车和木块间涂点滑石粉(或撒点小米粒),像图9-3那样做实验.让学生注意观察小车遇到障碍物突然停止时,木块怎样运动.

引导学生分析讨论,木块为什么向前滑出?木块原来随小车一起向前运动,小车突然停止,木块由于惯性仍向前运动,所以向前滑出.

(4)看课本图9-4漫画.回答:汽车急刹车时,乘客倒向何方?分析讨论:为什么向前倒?

(5)讨论:①汽车突然开动时,乘客倒向何方?为什么?

②汽车遇到紧急情况刹车时,为什么不能立即停止而还要往前运动一段距离?

3.惯性的应用

拍打衣服可除去灰尘.

使劲甩手可把手上的水甩掉.

撞击可以使锤头、斧头紧套在把上.

摩托车飞跃断桥.

宇航员走出飞船后,仍能与飞船“并肩”前进,不会落在飞船后面.

4.讨论本节后面“想想议议”中的问题.

三、布置作业

1.阅读课文.

2.完成本节后练习题2、3、4.

3.阅读章后的“汽车刹车之后”

篇9:惯性系定义

惯性系和非惯性系的区别

区别惯性系和非惯性系,简单的看,就是是否符合牛顿运动定律。简单的来说在研究地面上的运动来说,一般静止的'或者匀速直线运动状态的可以作为惯性参考系。而相对于地面存在加速度的运动物体可以理解为非惯性系。

篇10:惯性诗歌

惯性诗歌

公路上

很多的脖子在四处骚动

挠醒着晨花之眼

骚动的中心,是个黑洞

也不全黑,几滩血,划开几道尖锐的胶痕

很多的机车部件杂呈,飘荡

飘荡的冰色与脖子的火焰,形成对面

每一滩血都对应着小心的定义

黑黑的胶痕灼烧忏悔的心声

刺鼻,剜心,但于时己晚

有些灵魂,很短地走完了人生旅程

教室里,灯火通明

书声琅琅,两个空位还没有撤离

一位是高三的,在一楼,是男孩。

一位是高一的,是女孩,在三楼。

那一夜,有人听到了刺耳的'刹车与碰撞声

这世界,半夜游荡的本就不少

可是,白车凌晨才来,挤开了

无数伸展的脖子,围成的黑洞

古老的战场

一个战士吹着冲锋号

他吹过牛角,羊角,还有海螺的声音

每个海螺的心底都隐藏着一个大海

后面指挥的将军

弥望着四起的硝烟

他带过狮子,熊,还有狼群

但他知道,他带不好羊

脖子,鸭子

将军,士兵

【两类惯性系问题】相关文章:

1.惯性物理学论文

2.两类本科毕业生自我鉴定

3.基于GFIMU微惯性测试系统

4.《工作DNA》(38):惯性的掌控

5.打破惯性思维的名言句子

6.系动词

7.英语中的两类汉语借词分析

8.物理惯性概念的认识及其影响

9.机电系自我鉴定

10.建筑系自荐信

下载word文档
《两类惯性系问题.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部