欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教学反思>《反比例函数的图象和性质》教学反思

《反比例函数的图象和性质》教学反思

2024-10-21 07:37:39 收藏本文 下载本文

“番茄小L”通过精心收集,向本站投稿了15篇《反比例函数的图象和性质》教学反思,下面是小编整理后的《反比例函数的图象和性质》教学反思,欢迎您能喜欢,也请多多分享。

《反比例函数的图象和性质》教学反思

篇1:《反比例函数的图象和性质》教学反思

这一课主要的教学任务是探究反比例函数的比例系数k的几何意义,研究与反比例函数有关的面积问题。

课堂设计程序是:例题1研究从双曲线上任意一点P作坐标轴的垂线,围成的长方形PQOR的面积与k的关系,进而进行题目的变化,得到从双曲线上任意一点P作x、y轴的垂线三角形PQO的面积与k的关系,得到从双曲线上任意一个动点P作坐标轴的垂线,围成的长方形S1、S2、S3的面积总有S1=S2=S3;例题2揭示了正比例函数的图象与反比例函数的图象两个交点的关系(关于原点对称),过两个交点并且垂直于坐标轴的直线围成的矩形的面积(等于k的绝对值的4倍),进而进行题目的变化,得到几种三角形的面积和平行四边形的面积,由学生及时进行相应的练习;例题3把一次函数与反比例函数相结合,进行了比较简单的综合应用,让学生进行面积的和差组合,培养学生分析问题解决问题的能力。

在学生进行到反比例函数的研究时,数形结合的思想就能够应用自如了,学生的学习情况还是比较好的。回想起来,还是结合个方面的知识内容,用待定系数法求函数的.解析式的题目类型学生的达成率不够好,要加强这方面的训练。

篇2:反比例函数的图象与性质教学反思

刚刚讲完《反比例函数的图像和性质》这节课,感受很深,本节课的内容主要有两点:一是画反比例函数的图象,二是由图像得出比例函数的性质。而难点是反比例函数图象的画法及探究反比例函数的性质。

首先,本节课在反比例函数图象的画法这一难点的处理上,我先让学生自学课本内容,根据自学指导完成练习,再由教师利用多媒体演示列表、描点、连线过程,特别注意自变量x的取值范围,然后,学生在给出的坐标纸中描点画图,我运用多媒体及时矫正,学生很容易发现自己画图中的错误,最后概括总结水到渠成。本节课在探究反比例函数的性质这一难点的处理上,学生通过自主完成图像的画法,观察、比较归纳出反比例函数的性质。我感到课前确定的教学目标基本达成。

其次,通过引导学生自主探索反比例函数的性质,全班学生都能够主动地去观察、感受、讨论、发现、探究、总结,表现了他们的学习兴趣和信心。实现了学习中让学生自己动手、主动探索、合作交流的目的。同时通过练习让学生理解“在每个象限内”这句话的必要性,学生再一次体会数学的严谨性。根据新课标精神,“人人学有用的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。”最后在练习时给出有梯度的练习,以满足不同层次学生学习的需要。如应用性质“题组训练、巩固练习”都能很好的体现分层教学的要求。

然而,由于学生刚刚接触反比例函数的图像,图像的外在形式(双曲线)与一次函数的图像(直线)之间存在较大的差异,学生还缺乏对反比例函数图像“整体形象”的把握。一方面,当反比例系数的绝对值较大时,部分学生画出的图形,不能完整地反映其图像“渐近”的特征;另一方面,在应用反比例函数(增或减)的性质,比较反比例函数的两个函数值的大小时,学生还不能有意识地从“自变量的正负”来考虑问题,导致学生在课后完成作业时,对部分问题的解决可能出现偏差。这些在接下来的教学中要加强引导。通过引导学生对函数图象的分析,可以培养学生抓特征图形的能力,让他们在以后的学习中,对图形可以进行更好的分析,同时提高应用图形的能力。而在整个教学中我对学生只是一个在方法上的引导者,鼓励、帮助学生自己去发现问题、探究问题,这也是我以后的教学指向。

篇3:反比例函数的图象与性质教学反思

反比例函数图像的性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用。为此应加强反比例函数图像的直观效应,让学生在图像上凸出反比例函数所具有的性质,这一个过程是在学生积极探索与讨论交流达成的共识。我认为这个经验比较重要,虽然在这个过程耽误了很多时间,但毕竟是学生收获的结果。在引导例题的同时,试着让学生利用图象解决问题,培养学生数形结合的思想,并提示学生注意自变量在实际情境中的取值范围问题。而后,给学生几分钟的'思考时间,让他们通过平时对生活的细心观察,生活中有关反比例函数的有价值的问题,说出来与全班共同分享。这一环节的设置,不仅体现新教改的合作交流的思想,更主要的培养他们与人协作的能力。更好的发展了学生的主体性,让他们也做了一回小老师,展示他们的个性,这样有益于他们健康的人格的成长。最后在总结中让学生体会到利用反比例函数解决实际问题,关键在于建立数学函数模型,并布置了作业。

不足与改进:在整个课堂教学过程中,教师围绕主题、围绕学生提问的多,给学生提问的时间和机会很少.我的改进设想是:留给时间让学生提出问题,师生共同讨论、交流,让学生的学习更富有主动性;在活动一画出反比例函数的图象后,没有让学生趁热打铁“看图说话”,()说出具体的图象的特征,为活动二猜想作很好的铺垫.我的改进设想是:在活动一画出反比例函数的图象后,追加这样一个问题:“请同学们仔细观察图象并进行讨论,这个反比例函数的图象区别于一次函数的图象有那些不同的特征呢?”留给时间让学生讨论、交流,这样改进之后,必将能更大的激发学生的探索热情,更能体现学生的创新能力,同时也为进一步学习反比例函数的图象的特征埋下伏笔,能增强学生学习的信心。

篇4:反比例函数的图象与性质教学反思

课堂中,我营造了宽松的学习氛围,让学生参与到学习过程中去,自主探索,大胆发表自己的观点,让学生在自主探索中获得了不断的发展。

主要表现在:

1、思维往往是从动手开始的,在教学中,引导学生用多种感官参与到知识的生成过程中。

2、重视合作交流,使学生在合作交流的过程中真正掌握作图的技能。

3、相互评价可以培养学生之间团结合作的精神。在数学课堂教学中,评价的形式有很多,但较多的是由教师对学生的学习作出的评价,教师扮演着“裁判员”。而在这节课中,除了教师对学生的评价外,更重视了学生之间的相互评价,让学生在相互评价中既培养了能力,又寻找到了问题解决的方法,最终达到自我矫正的目标。

4、让学生养成在众多意见中进行甄别、选择的习惯,使学生在实践的过程中形成了自己独特的数学学习方法。

在教学中需要解决的问题:主要是要注重提高学生分析问题、解决实际问题的能力。

(一)数形结合是数学学习的一个重要思想,也是我们学习数学的一个目的。我在教学中加强了这方面的指导,但基础差的同学仍然不会做,今后在这教学中要在这方面下功夫,使学生牢固掌握基本知识,提高基本技能,发展数学能力,特别是在读图方面,一定要强化图形的直观作用,使学生体会到图形的价值;

(二)多题一解是本章遇到的常规情况,要强化一题多解。使学生从题海中得到升华。在以后的学习中,有很多问题无一例外地应用了图象的特点解决,通过归类,可以使学生在这一方面驭轻就熟。

篇5:反比例函数的图象和性质八年级数学教学反思

反比例函数的图象和性质八年级数学教学反思

这一课主要的教学任务是探究反比例函数的比例系数k的几何意义,研究与反比例函数有关的面积问题。

课堂设计程序是:

例题1研究从双曲线上任意一点P作坐标轴的垂线,围成的长方形PQOR的面积与k的关系,进而进行题目的变化,得到从双曲线上任意一点P作x、y轴的垂线三角形PQO的面积与k的关系,得到从双曲线上任意一个动点P作坐标轴的垂线,围成的长方形S1、S2、S3的面积总有S1=S2=S3;

例题2揭示了正比例函数的图象与反比例函数的图象两个交点的关系(关于原点对称),过两个交点并且垂直于坐标轴的直线围成的矩形的面积(等于k的绝对值的4倍),进而进行题目的变化,得到几种三角形的面积和平行四边形的面积,由学生及时进行相应的练习;

例题3把一次函数与反比例函数相结合,进行了比较简单的综合应用,让学生进行面积的和差组合,培养学生分析问题解决问题的.能力。

在学生进行到反比例函数的研究时,数形结合的思想就能够应用自如了,学生的学习情况还是比较好的。回想起来,还是结合个方面的知识内容,用待定系数法求函数的解析式的题目类型学生的达成率不够好,要加强这方面的训练。

利用待定系数法求反比例函数的解析式是学生必会内容,本课教学有一次函数的基础,所以学生学习起来并不感到有多困难的。因此,本课在学习用待定系数法求函数的解析式的前面安排函数性质的复习,学习和巩固“在每个象限内”的反比例函数的增减情况的有关应用问题,例如第4小题,A(a,b),B(a-1,c)在反比例函数y=k/x(k<0)的图象上,探究a的各种不同的取值情况下,b与c的大小关系。

用待定系数法求反比例函数的解析式,安排了两个例题两个练习,题量不多重在使学生自主学习,这里着重加强对数形结合思想的应用,培养学生通过图形研究问题的习惯,另外,例题2需要学生结合三角形全等的几何知识解决点的坐标的探究,去年期末考试的最后一道试题也是在平面直角坐标系下几何问题的研究,学生不是很熟悉的,因此,培养学生各种背景下数学问题的研究很有必要。

由于在上面两块内容上用了很多时间,本课对比例系数k的几何意义没有作研究,安排在下一课再作学习。

篇6:反思三:反比例函数的图象与性质教学反思

反思三:反比例函数的图象与性质教学反思

一、数形结合的处理

1、反比例函数的图象和性质,是“数”与“形”的统一体,本课的教学设计与实施中,通过“描点法”作图、观察几个具体的反比例函数的图象、课件演示展示“由动点生成函数图象”,很好地反映了“数”、“形”之间的这种内在的联系。

2、借助直观图形,帮助学生思考相关的问题,即考虑“已经”形式化的`“数”的本质“特征”,又使“数”、“形”之间达到统一。

3、在总结得出反比例函数的图象和性质之后,我为学生提供了一组题目,目的也是为学生提供一个体会“数形结合”、应用“数形结合”分析问题的平台,使学生经历利用“图形直观”来认识、解决与函数有关问题的过程。

二、教学效果的达成

在教学中,通过“观察探究,形成新知”环节,学生能够在教师的引导下,说出一次函数的图象特征及性质,并通过类比一次函数的研究方法,完成列表、描点、画出反比例函数图象的过程,也可以通过观察所画出的反比例函数的图象,得出其图象的“特征”和函数的“性质”。

然而,由于学生刚刚接触反比例函数的图象,图象的外在形式(双曲线)与一次函数的图象(直线)之间存在较大的差异,学生还缺乏对反比例函数图象“整体形象”的把握。一方面,当反比例系数的绝对值较大时,部分学生画出的图形,不能完整地反映其图象“渐近”的特征;另一方面,在应用反比例函数(增或减)的性质,比较反比例函数的两个函数值的大小时,学生还不能有意识地从“自变量的正负”来考虑问题,这致使学生在“课堂检测”时,对部分问题的解决出现偏差。

此外,教学中,通过“类比”,在教学过程中,教师引导学生要“类比一次函数学习的方法”,最大限度地调动学生合情推理的能力,以对反比例函数“个性”的结论做出正确的判断和学习

但是,我们在运用“类比”的方法研究反比例函数的过程中,还应注意“趋同求异”,关注反比例函数与一次函数之间的“差异性”,如图形的“曲”与“直”、“间断”与“连续”等,这样的认识,在本课教学时,应加以强调,并传达给学生。

篇7:反比例函数的图象与性质教学设计

一、教学设计思路

1、本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。

2、对教材的分析

(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。

(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。

(3)难点:探索并掌握反比例函数的主要性质。

二、教学过程

(一)作图象,试比较

1、提问:

(1)=4/x是什么函数?你会作反比例函数的图象吗?

(2)作图的步骤是怎样的

(3)填写电脑上的表格,开始在坐标纸上描点连线。

2、按照上述方法作=—4/x的图象

3、对照你所作的`两个函数图象,找一下它们的相同点和不同点。

(二)细观察,找规律

1、让学生观察函数=/x的图象,按下动画按钮,在运动中观察值的变化与函数图象变化之间的关系,并与同学充分讨论有何规律。

2、演示反比例函数中心对称的性质以及轴对称性质,显示反比例函数的两条对称轴。

3、让学生观察函数=/x的图象,观察过反比例函数上任意一点作x轴和轴的垂线,观察其围成矩形的面积变化情况。

(1)拖动,使变化,观察不断变化过程中,矩形面积的变化情况,讨论得出结论。

(2)拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。

(三)用规律,练一练

1、给出两个反比例函数的图象,判断哪一个是=2/x和=—2/x的图象。

2、判断一位同学画的反比例函数的图象是否正确。

3、下列函数中,其图象位于第一、三象限的有哪几个?在其图象所在象限内,的值随x的增大而增大的有哪几个?

(四)想一想,作小结

(五)作业:

课本137页第1题、141页第2题

篇8:反比例函数的图象与性质教学设计

教学目标

使学生对反比例函数和反比例函数的图象意义加深理解。

教学重难点

重点:反比例函数的图象。

难点:利用反比例函数的图象解题。

教学过程

一、情境创设

反比例函数

解析式y=kx(k为常数,k≠0)

图象形状双曲线(以原点为对称中心)

k>0位置一、三象限

增减性每一象限内,y随x的增大而减小

k<0位置二、四象限

增减性每一象限内,y随x的增大而增大

二、例题讲解

例1、如图是反比例函数的图象的一支。

(1)函数图象的另一支在第几象限?试求常数m的取值范围;

(2)点都在这个反比例函数的图象上,比较xx的大小

例2、如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是—2,

求:(1)一次函数的解析式;

(2)△AOB的面积。

三、课堂练习

课本P70练习1、2题

四、课堂小结

1、反比例函数的图象。

2、反比例函数的性质。

五、课堂作业

课本P72/第5题

篇9:反比例函数的图象与性质教案教学设计

一:画出 的图象

(1)列表(取值的特殊与有效性)

x -8 -4 -2 -1 -1/2 1/2 1 2 4 8

(2)描点(描点的准确)

(3)连线(注意光滑曲线)

注:(1)x取绝对值相等符号相反的数值

(2)x取值要尽可能多,而且有代表性 三:练习

(3)连线时用光滑曲线从小到大依次连接

(4)图象不与坐标轴相交

二:反比例函数的图象y = 是由两支曲线组成的。

(1) 当 k0 时,两支曲线分别位于第一、三象限,

(2) 当 k0 时,两支曲线分别位于第二、四象限.

篇10:反比例函数的图象与性质教案教学设计

教学目标

知识与技能:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。

2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。

3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。

过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力.

情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。

教学重点

教学难点 1) 重点:画反比例函数图象并认识图象的特点.

2)难点:画反比例函数图象.

教学关键 教师画图中要规范,为学生树立一个可以学习的模板

教学方法 激发诱导,探索交流,讲练结合三位一体的教学方式

教学手段 教师画图,学生模仿

教具 三角板,小黑板

学法 学生动手,动眼,动耳,采用自主,合作,探究的学习方法

教学过程

(包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)

内 容 设计意图

一:课前检测:

1.什么叫做反比例函数;

(一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k0)的形式,那么称y是x的反比例函数。)

2.反比例函数的定义中需要注意什么?

(1)k为常数,k0

(2)从y= 中可知x作为分母,所以x不能为零.

二:激发兴趣 导入新课

问题1:对于一次函数 y = kx + b ( k 0 )的图象与性质,我们是如何研究的?

y=kx+b y=kx

K0 一、二、三 一、三

b0 一、三、四

K0 一、二、四 二、四

b0 二、三、四

问题2:对于反比例函数 y=k/x ( k是常数,k 0 ),我们能否象一次函数那样进行研究呢?

可以

问题3:画图象的步骤有哪些呢?

(1)列表

(2)描点

(3)连线

(教学片断:

师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。

生:我知道反比例函数来源于生活,生活中的许多问题都属于反比例函数问题,例如,在匀速运动中当路程一定时,且路程不等于零,则速度与时间成反比例函数关系。

生:我知道反比例函数的解析式为 且k不等于0

生:我知道反比例函数的图象是曲线。

师:同学们说的都很好,关于反比例函数,相信大家还会知道一些,今天我们先讨论到这里.现在大家思考一个问题,我们在研究一次函数时研究完解析式后,研究的是函数图象,那么对于反比例函数我们接下来该研究什么呢?

生:该研究反比例函数图象和性质了。

师:现在给大家几分钟的时间探讨一下反比例函数图象该怎么画?

三:探求新知

学生思考、交流、回答。

提问:你能画出 的图象吗?

学生动手画图,相互观摩。

(1) 列表(取值的特殊与有效性)

x -8 -4 -2 -1 -1/2 1/2 1 2 4 8

(2)描点(描点的准确)

(3)连线(注意光滑曲线)

议一议

(1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。

(2)如果在列表时所选取的数值不同,那么图象的形状是否相同?

(3)连接时能否连成折线?为什么必须用光滑的曲线连接各点?

(4)曲线的发展趋势如何?

曲线无限接近坐标轴但不与坐标轴相交

学生先分四人小组进行讨论,而后小组汇报

做一做

作反比例函数 的图象。

学生动手画图,相互观摩。

想一想

观察 和 的图象,它们有什么相同点和不同点?

学生小组讨论,弄清上述两个图象的异同点

相同点:(1)图象分别都是由两支曲线组成(2)都不与坐标轴相交(3)都是轴对称图形(y=x、y=-x)和中心对称图形(对称中心(0,0)即坐标原点)

不同点:第一个图象位于一、三象限;第二个图象位于二、四象限

四:归纳与概括

反比例函数 y = 有下列性质:反比例函数的图象y = 是由两支曲线组成的。

(1) 当 k0 时,两支曲线分别位于第___、___象限,

(2) 当 k0 时,两支曲线分别位于第___、___象限.

五:课堂练习

(1)

(2)反比例函数 的图象是________,过点( ,____),其图象分布在_ __象限;

六:形成性检测

(1)已知函数 的图象分布在第二、四象限内,则 的取值范围是_________

(2)若ab0,则函数 与 在同一坐标系内的图象大致可能是下图中的 ( )

(A) (B) (C) (D)

(3)画 和 的图象

七:反馈拓展

在同一坐标系中作出函数y=2/x与函数y=x-1的图象,并利用图象求它们的交点坐标.

八:作业布置

(1) 作反比例函数y=2/x,y=4/x,y=6/x的图象

(2)习题5.2.1

(3)预习下一节 反比例函数的图象与性质II

复习上节主要内容

(3分钟)

(5分钟)

运用类比研究一次函数性质的方法,来研究反比例函数图象与性质

由于初中学生属于义务教育阶段,没有经过入学选拔,所以两极分化比较严重,上面提出的问题带有一定的开放性,面向各层次的学生,使不同层次的学生都有一定的问题可答,从而激发起不同层次学生的学习积极性。

数学教学重要目的之一是使学生学会学习,利用这个问题可以使学生学会寻找研究的方向,会提出研究的课题,提高学习的能力。

数学学习活动是学生对自己头脑中已有知识的重新建构,所以利用学生头脑中已有的一次函数图象与性质,及研究一次函数图象与性质的方法,创设问题情境,可以激发学习研究的热情,点燃学生思维的火花,并使学生知道如何研究新问题,使学生在探究过程中实现知识的迁移,形成新的认知结构。

(12分钟)

引导学生正确画出反比例函数图象,并能归纳反比例函数图象的.有关性质.

在画第一个图象时,教师要在黑板上用三角板一步一步的示范,在重要地方再重点强调,直到整个图象的完成。只有以身示范,同学学习才有样可依,有了正确标准的样板,学生学习也变得容易。这样可以培养学生严谨与严密的做题步骤以及做题的规范性。

注:(1)x取绝对值相等符号相反的数值

(2) x取值要尽可能多,而且有代表性

(3)连线时用光滑曲线从小到大依次连接

(4)图象不与坐标轴相交

在此学生若是回答图象是轴对称图象或者中心对称图象都要予以肯定,这些内容留给学生课下探讨,并鼓励提出问题的学生继续探索不要放弃。

(3分钟)

此时图象由学生仿照第一个在下边自己独立画出,并且监督学生,在有学生画的不对的地方及时指出,并使其改正后鼓励。最后在黑板上画出正确的图象,使学生自己画的图象与黑板对比。

(5分钟)

活动效果及注意事项 学生初次作非线性函数的图象,在作图过程中应给学生留有思考和交流的时间;连线必须是光滑的曲线

(4分钟)

培养学生归纳,语言表达能力

此中注意分类讨论思想的应用

巩固反比例函数图象性质

(2分钟)

与新课较接近的简化检测可以再次回顾所学内容,以及内容重点。这类题多为口算或口答,题目简单不过所学内容可以全部体现。

(5分钟)

这类练习要求动笔计算或者画图,有一定难度,可以深化所学内容。

(4分钟)

此题既是对函数图象画法的复习又是对方程求解的深化。其中蕴含了数形结合思想。

(1分钟)

巩固作反比例函数图象的步骤,预习下一节课内容

教学反思与检讨:

本节课通过学生自主探索,合作交流,自主画图,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成。培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合以及分类讨论的数学思想方法。

由于此节课是动手画图,限于器材以及教学设备,图象显示不能用几何画板和投影仪,不过一笔一笔的教学生一个范例,既可给学生思考也可有学习的空间。

在由图象获取性质的时候有一些不足,以后教课时要注意引导,使学生较快获得有效信息,从而归纳出要得到的性质和结论。在这节课要多强调光滑曲线以及画法。

篇11:正弦函数的图象及性质教学反思

本节课分为“正弦函数的图象”和“性质(一)”两部分,在教学中充分发挥学生的主体性,循序渐进地引导学生发现问题——探索问题——解决问题。职高学生的数学基础差,理解能力不强,因此对教师提出了新的要求,要达到良好的教学效果,就必须采取更形象、更具体的教学模式,引导学生积极地投入到课堂学习中去,真正体会到学习数学的乐趣。本节课利用FLASH课件更能体现出直观、形象、生动的特点。具体情况如下:

一、对教学设计的反思。

教学设计过程中真正考虑学生的实际情况,对教材的内容及教学顺序进行了大胆地调整,真正做到因材施教。同时征求科组老师的意见,探讨教学设计的合理性以及实用性。但通过实际的教学发现自己对教材知识整体感知把握不够,设计上存在一些不足,比如:知识的有效性建构方面有待提高;设计中,没有考虑对学生知识的实际应用和学生口语交际能力的培养,在以后的教学设计中应渗入“小组合作学习”的模式,注重课堂知识的生成和学生表达能力的培养,与新课标接轨。

二、对教学过程的反思。

1、课堂导入中,教师与学生共同探讨生活中的波浪现象,让学生对正弦曲线产生感性上的认识,体现出数学来源于生活,服务于生活的理念。基于学生的生活经验不足,自信心不足,导致在导入时占用较长的时间,教师没有能真正与学生互动起来,因此,日后应多培养学生用数学语言表达的能力。

2、概念、图象部分。学生通过自学概念后,教师列举几种函数模型,检查学生是否对概念有正确地理解,如: , , 等。这样通过反例,学生的思维受到一定冲击,激发他们去探索、思考。另外,教师引导学生观察正弦函数的特征,让他们理解得更深入。当学生理解完概念后,教师暗示学生本节课的重难点,认识函数 的图象和能根据图象归纳出其性质,考虑到学生的数学基础薄弱,对于作出 的图象利用正弦线法和五个关键点作图,教师选择了五个关键点作图法,这样学生理解起来更容易,(强调学生一定要用圆滑的曲线把5个关键点连接起来)。在实际的教学中,指导学生在讲义上作图,列表——描点——连线,让每个学生都参与到课堂中去,充分调动学生的积极性,而本节课的难点在于——学生能否利用诱导公式: 作出 在 , 等区间上的图象,依次类推,描绘出整条正弦曲线。这种由特殊到一般,由结论到实例的直线型思维模式,一反数学的严格推理论证模式,由浅入深,使我们的学生在思维上易于理解与接受。

3、对函数 性质教学。教师引导学生根据图象归纳出 的定义域、值域、,以及奇偶性。在重难点知识上,如 性质归纳上讲得不够深入,时间安排不足,应避免课堂教学过于追求“形式”。

总体来说,本节课气氛活跃,互动性强,充分调动学生的积极性,认真梳理好讲解的顺序,学生能够体会到数学的.奥秘。利用FLASH技术制作的课件,增加本节课的技术含量及新鲜感,适当弥补课堂上的不足。动画演示作图过程中,大大吸引了学生的注意力。

4、课堂练习反思。“讲练相结合法”是数学常用的方法之一,典型例题和巩固性练习相互交替,学生上台板演到邀请基础好的学生上台作评析等等环节都充分发挥学生的主体性,注重师生互动。根据学生所反馈的.信息,及时调整教学过程,使学生“听得懂,学得会”。在课后练习部分处理地较灵活,采用了阶梯式法,让各层次的学生都能根据自己的基础,完成教师布置的作业,如:让基础好的学生,模拟 的作图过程,作出y=cosx的简图,并试图归纳出其性质,课堂练习处理应采用多种方式。学生在练习时,留给他们思考时间不足,一定程度上抑制了他们的创造性。

5、课后小结的反思。考虑到学生的学情和时间的安排,将 的其余性质留到下次课讲解,并让全班同学一起回顾本节课的知识点,教师起到画龙点精的作用,这是考虑到课堂资源应该是生成的,应使学生由客体变为主体,使之积极地、目的明确地、主动热情地参与到教学活动中来。但教师引导学生小结的形式过于单一,只是对本节课重难点进行简单回顾,没有顾及到学生真正学会了什么?有哪些没有掌握的?

注:小结的形式①概括式小结②问题式小结③对比式小结④互动性小结

三、对教学效果的反思。

教学效果依赖于课堂中各种资源,其中最重要是教师的方法,虽然教无定法,但贵在得法,良好教学效果的形成是学生和教师思维同步的结果,所以课堂过程中时刻关注学生的学习动态相当重要,自己在这堂课上并没有完全顾及到学生的动态,感觉自己的思维与学生的思维进度不够协调,但由于采用生动形象的动画演示,使得本次公开课效果较好。

教育既要“教”,更重要懂得“育”,对于职业学校的学生,学习不重视文化课的学习,要想提高数学课堂教学效果,必须教会它们如何学习,兼顾育人和教学,绝不能走“满堂灌式、严肃型、唱独角戏型”的教学道路,应做到以生为本,授之以渔而不是授之以鱼,应该不断优化教学策略,不断进修学习,不断从各种渠道提高自身的能力,尤其应提高自身多媒体技术的处理和应用能力,赋予课堂更多的活力,为学生的营造一种轻松的学习气氛。

篇12:正弦函数的图象及性质教学反思

正弦函数的图象及性质教学反思

本节课能够大胆灵活处理教材,能够注重课堂资源的生成,能把多媒体技术与课堂教学进行有效地整合。但基于自己是名新教师和性格因素,授课时语速应该放慢些。在日后的教学中应进一步通过多种渠道提高自己的理论水平和驾驭课堂的能力,做一名研究型的教师。

本节课分为“正弦函数的图象”和“性质(一)”两部分,在教学中充分发挥学生的主体性,循序渐进地引导学生发现问题——探索问题——解决问题。职高学生的数学基础差,理解能力不强,因此对教师提出了新的要求,要达到良好的教学效果,就必须采取更形象、更具体的教学模式,引导学生积极地投入到课堂学习中去,真正体会到学习数学的乐趣。本节课利用FLASH课件更能体现出直观、形象、生动的特点。具体情况如下:

一、对教学设计的反思。

教学设计过程中真正考虑学生的实际情况,对教材的内容及教学顺序进行了大胆地调整,真正做到因材施教。同时征求科组老师的意见,探讨教学设计的合理性以及实用性。但通过实际的教学发现自己对教材知识整体感知把握不够,设计上存在一些不足,比如:知识的有效性建构方面有待提高;设计中,没有考虑对学生知识的实际应用和学生口语交际能力的培养,在以后的教学设计中应渗入“小组合作学习”的模式,注重课堂知识的生成和学生表达能力的培养,与新课标接轨。

二、对教学过程的反思。

1、课堂导入中,教师与学生共同探讨生活中的波浪现象,让学生对正弦曲线产生感性上的认识,体现出数学来源于生活,服务于生活的理念。基于学生的生活经验不足,自信心不足,导致在导入时占用较长的时间,教师没有能真正与学生互动起来,因此,日后应多培养学生用数学语言表达的能力。

2、概念、图象部分。学生通过自学概念后,教师列举几种函数模型,检查学生是否对概念有正确地理解,如: , , 等。这样通过反例,学生的思维受到一定冲击,激发他们去探索、思考。另外,教师引导学生观察正弦函数的特征,让他们理解得更深入。当学生理解完概念后,教师暗示学生本节课的重难点,认识函数 的图象和能根据图象归纳出其性质,考虑到学生的数学基础薄弱,对于作出 的图象利用正弦线法和五个关键点作图,教师选择了五个关键点作图法,这样学生理解起来更容易,(强调学生一定要用圆滑的曲线把5个关键点连接起来)。在实际的教学中,指导学生在讲义上作图,列表——描点——连线,让每个学生都参与到课堂中去,充分调动学生的积极性,而本节课的难点在于——学生能否利用诱导公式: 作出 在 , 等区间上的图象,依次类推,描绘出整条正弦曲线。这种由特殊到一般,由结论到实例的直线型思维模式,一反数学的严格推理论证模式,由浅入深,使我们的学生在思维上易于理解与接受。

3、对函数 性质教学。教师引导学生根据图象归纳出 的定义域、值域以及奇偶性。在重难点知识上,如 性质归纳上讲得不够深入,时间安排不足,应避免课堂教学过于追求“形式”。

总体来说,本节课气氛活跃,互动性强,充分调动学生的积极性,认真梳理好讲解的.顺序,学生能够体会到数学的奥秘。利用FLASH技术制作的课件,增加本节课的技术含量及新鲜感,适当弥补课堂上的不足。动画演示作图过程中,大大吸引了学生的注意力。

4、课堂练习反思。“讲练相结合法”是数学常用的方法之一,典型例题和巩固性练习相互交替,学生上台板演到邀请基础好的学生上台作评析等等环节都充分发挥学生的主体性,注重师生互动。根据学生所反馈的信息,及时调整教学过程,使学生“听得懂,学得会”。在课后练习部分处理地较灵活,采用了阶梯式法,让各层次的学生都能根据自己的基础,完成教师布置的作业,如:让基础好的学生,模拟 的作图过程,作出y=cosx的简图,并试图归纳出其性质,课堂练习处理应采用多种方式。学生在练习时,留给他们思考时间不足,一定程度上抑制了他们的创造性。

5、课后小结的反思。考虑到学生的学情和时间的安排,将 的其余性质留到下次课讲解,并让全班同学一起回顾本节课的知识点,教师起到画龙点精的作用,这是考虑到课堂资源应该是生成的,应使学生由客体变为主体,使之积极地、目的明确地、主动热情地参与到教学活动中来。但教师引导学生小结的形式过于单一,只是对本节课重难点进行简单回顾,没有顾及到学生真正学会了什么?有哪些没有掌握的?

三、对教学效果的反思。

教学效果依赖于课堂中各种资源,其中最重要是教师的方法,虽然教无定法,但贵在得法,良好教学效果的形成是学生和教师思维同步的结果,所以课堂过程中时刻关注学生的学习动态相当重要,自己在这堂课上并没有完全顾及到学生的动态,感觉自己的思维与学生的思维进度不够协调,但由于采用生动形象的动画演示,使得本次公开课效果较好。

教育既要“教”,更重要懂得“育”,对于职业学校的学生,学习不重视文化课的学习,要想提高数学课堂教学效果,必须教会它们如何学习,兼顾育人和教学,绝不能走“满堂灌式、严肃型、唱独角戏型”的教学道路,应做到以生为本,授之以渔而不是授之以鱼,应该不断优化教学策略,不断进修学习,不断从各种渠道提高自身的能力,尤其应提高自身多媒体技术的处理和应用能力,赋予课堂更多的活力,为学生的营造一种轻松的学习气氛。

篇13:正弦函数的图象及性质教学反思

正弦函数的图象及性质教学反思

本节课能够大胆灵活处理教材,能够注重课堂资源的生成,能把多媒体技术与课堂教学进行有效地整合。但基于自己是名新教师和性格因素,授课时语速应该放慢些。在日后的教学中应进一步通过多种渠道提高自己的理论水平和驾驭课堂的能力,做一名研究型的教师。

本节课分为“正弦函数的图象”和“性质(一)”两部分,在教学中充分发挥学生的主体性,循序渐进地引导学生发现问题――探索问题――解决问题。职高学生的数学基础差,理解能力不强,因此对教师提出了新的要求,要达到良好的教学效果,就必须采取更形象、更具体的教学模式,引导学生积极地投入到课堂学习中去,真正体会到学习数学的乐趣。本节课利用FLASH课件更能体现出直观、形象、生动的特点。具体情况如下:

一、对教学设计的反思。

教学设计过程中真正考虑学生的实际情况,对教材的内容及教学顺序进行了大胆地调整,真正做到因材施教。同时征求科组老师的意见,探讨教学设计的合理性以及实用性。但通过实际的教学发现自己对教材知识整体感知把握不够,设计上存在一些不足,比如:知识的有效性建构方面有待提高;设计中,没有考虑对学生知识的实际应用和学生口语交际能力的培养,在以后的教学设计中应渗入“小组合作学习”的模式,注重课堂知识的生成和学生表达能力的培养,与新课标接轨。

二、对教学过程的反思。

1、课堂导入中,教师与学生共同探讨生活中的波浪现象,让学生对正弦曲线产生感性上的认识,体现出数学来源于生活,服务于生活的理念。基于学生的生活经验不足,自信心不足,导致在导入时占用较长的时间,教师没有能真正与学生互动起来,因此,日后应多培养学生用数学语言表达的能力。

2、概念、图象部分。学生通过自学概念后,教师列举几种函数模型,检查学生是否对概念有正确地理解,如: , , 等。这样通过反例,学生的思维受到一定冲击,激发他们去探索、思考。另外,教师引导学生观察正弦函数的特征,让他们理解得更深入。当学生理解完概念后,教师暗示学生本节课的'重难点,认识函数 的图象和能根据图象归纳出其性质,考虑到学生的数学基础薄弱,对于作出 的图象利用正弦线法和五个关键点作图,教师选择了五个关键点作图法,这样学生理解起来更容易,(强调学生一定要用圆滑的曲线把5个关键点连接起来)。在实际的教学中,指导学生在讲义上作图,列表――描点――连线,让每个学生都参与到课堂中去,充分调动学生的积极性,而本节课的难点在于――学生能否利用诱导公式: 作出 在 , 等区间上的图象,依次类推,描绘出整条正弦曲线。这种由特殊到一般,由结论到实例的直线型思维模式,一反数学的严格推理论证模式,由浅入深,使我们的学生在思维上易于理解与接受。

3、对函数 性质教学。教师引导学生根据图象归纳出 的定义域、值域、,以及奇偶性。在重难点知识上,如 性质归纳上讲得不够深入,时间安排不足,应避免课堂教学过于追求“形式”。

总体来说,本节课气氛活跃,互动性强,充分调动学生的积极性,认真梳理好讲解的顺序,学生能够体会到数学的奥秘。利用FLASH技术制作的课件,增加本节课的技术含量及新鲜感,适当弥补课堂上的不足。动画演示作图过程中,大大吸引了学生的注意力。

4、课堂练习反思。“讲练相结合法”是数学常用的方法之一,典型例题和巩固性练习相互交替,学生上台板演到邀请基础好的学生上台作评析等等环节都充分发挥学生的主体性,注重师生互动。根据学生所反馈的信息,及时调整教学过程,使学生“听得懂,学得会”。在课后练习部分处理地较灵活,采用了阶梯式法,让各层次的学生都能根据自己的基础,完成教师布置的作业,如:让基础好的学生,模拟 的作图过程,作出y=cosx的简图,并试图归纳出其性质,课堂练习处理应采用多种方式。学生在练习时,留给他们思考时间不足,一定程度上抑制了他们的创造性。

5、课后小结的反思。考虑到学生的学情和时间的安排,将 的其余性质留到下次课讲解,并让全班同学一起回顾本节课的知识点,教师起到画龙点精的作用,这是考虑到课堂资源应该是生成的,应使学生由客体变为主体,使之积极地、目的明确地、主动热情地参与到教学活动中来。但教师引导学生小结的形式过于单一,只是对本节课重难点进行简单回顾,没有顾及到学生真正学会了什么?有哪些没有掌握的?

注:小结的形式①概括式小结②问题式小结③对比式小结④互动性小结

三、对教学效果的反思。

教学效果依赖于课堂中各种资源,其中最重要是教师的方法,虽然教无定法,但贵在得法,良好教学效果的形成是学生和教师思维同步的结果,所以课堂过程中时刻关注学生的学习动态相当重要,自己在这堂课上并没有完全顾及到学生的动态,感觉自己的思维与学生的思维进度不够协调,但由于采用生动形象的动画演示,使得本次公开课效果较好。

教育既要“教”,更重要懂得“育”,对于职业学校的学生,学习不重视文化课的学习,要想提高数学课堂教学效果,必须教会它们如何学习,兼顾育人和教学,绝不能走“满堂灌式、严肃型、唱独角戏型”的教学道路,应做到以生为本,授之以渔而不是授之以鱼,应该不断优化教学策略,不断进修学习,不断从各种渠道提高自身的能力,尤其应提高自身多媒体技术的处理和应用能力,赋予课堂更多的活力,为学生的营造一种轻松的学习气氛。

篇14:八年级数学上册《函数图象性质》教学反思

人教版八年级数学上册《函数图象性质》教学反思

“有了函数意义和函数的图象认识,我们有能力开始具体的函数的研究了,按照从简单到复杂的认知规律,今天我们研究的函数是最简单和最常见的,从实际问题入手,我们来看以下引力”,接着从四个具体的函数实例进行观察、归纳和总结,得出正比例函数的定义,结合定义写出一些正比例函数、进行判断,利用定义给出含字母的函数解析式是正比例函数,求字母的值。

研究函数的方法是结合和利用函数的图象,因此,引导学生画出具体的一些正比例函数的图象(分工比赛,资源共享,合作研究),有学生画出的众多的函数图象进行提升,得出图象的形状特征、位置情况、变化趋势,做到真正是学生自己探究得到了图象和性质,性质的叙述必须与图形相联系,这是数形结合的基础。本课的`时间不是太紧的,在知识内容上,老教材中有两个变量成正比例的说法,由于训练题中少不了还有类似的应用,因此,我们也一样介绍了这一说法,在后面的应用中,要让学生体会成正比例和正比例函数的区别联系,在小学里,我们学过:“两种相关联的量,一种量变化,另一种量也随着变化。且一种量随着另一种量的增大而增大。如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成,我们就称这两个变量成正比例。用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,正比例关系可以用以下关系式表示:y/x=k(一定)。正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变”。正比例函数是:“形如y=kx的函数(k为常数,k≠0)”。两者揭示的两个变量之间的数量关系实质是一样的,成正比例“比值一定”,则两个变量不能取零,在y=kx中自变量x和函数y的值可以为零。另外,小学里没有学习负数,因此学生的印象是:两个变量成正比例,则“同时扩大,同时缩小,比值不变”,而正比例函数y=kx中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小。再有,两个变量成正比例,这两个变量可以是一个字母,也可以是一个整体,如y+3与3x-1成正比例,当x=1时,y=3,求y与x的函数关系式,此时y不是x的正比例函数。

篇15:反比例函数图像的性质的教学反思

反比例函数图像的性质的教学反思

反比例函数图像的性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用。为此应加强反比例函数与正比例函数的对比:应该有意识地加强反比例函数与正比例函数之间的对比,对比可以从以下几个方面进行:(1)两种函数的关系式有何不同?两种函数的图像的特征有何区别?(2)在常数相同的情况下,当自变量变化时,两种函数的函数值的变化趋势有什么区别?(3)两种函数的取值范围有什么不同,常数的符号的改变对两种函数

图像的变化趋势有什么影响?从这些方面去比较理解反比例函数与一次函数,帮助学生将所学知识串联起来,提高学生综合能力。运用多媒比较两函数图像,使学生更直观、更清楚地看清两函数的区别。从而使学生加深对两函数性质的理解。

体会:

通过本案例的教学,使我深刻地体会到了信息技术在数学课堂教学中的灵活性、直观性。虽然制作起来比较麻烦,但能使课堂教学达到预想不到的效果,使课堂教学效率也明显提高。

【《反比例函数的图象和性质》教学反思】相关文章:

1.反比例函数的图象与性质教学反思

2.反比例函数的图象和性质说课稿

3.八年级数学上册《函数图象性质》教学反思

4.数学函数图象的性质教学方案

5.《反比例函数》教学反思

6.函数的图象教学方案

7.反比例函数教案及教学反思

8.反比例函数知识点

9.反比例函数测试题

10.反比例函数教案

下载word文档
《《反比例函数的图象和性质》教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部