欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 教学反思>探索多边形外角研讨课教学反思

探索多边形外角研讨课教学反思

2022-08-19 08:37:58 收藏本文 下载本文

“老皮耶”通过精心收集,向本站投稿了17篇探索多边形外角研讨课教学反思,下面就是小编整理后的探索多边形外角研讨课教学反思,希望大家喜欢。

探索多边形外角研讨课教学反思

篇1:探索多边形外角研讨课教学反思

探索多边形外角研讨课教学反思

在新市区教研室王卫国老师和水玉花老师组织的集体教研活动中,我们在听了范宇老师的研讨课后,感觉到集体备课、集体教研的价值。并且,深深的体会到集体备课和集体教研对自己的帮助和启发。因为,在这种活动中我不仅可以借鉴优秀教师的成功经验,同时,还可以在今后的教学中改进别人的不足之处,从而使自己提高课堂教学的效率。下面,就这节课中我认为值得借鉴的经验和自己的一些不太成熟的建议简单的反思一下。

一、值得借鉴的经验

1)课件展示校门前优美的花朵作为引入,可以吸引学生的注意力;

2)课件展示图形的平移和旋转,可以使学生及时的突破难点;

3)在分析并得出“多边形外角和等于360度”的过程中,利用课件展示一系列具有很强规律性的等式,培养学生的观察能力、归纳能力、猜想能力。从而,渗透解决“中考题”中“归纳猜想题目”的思想方法;

4)在“是否存在一个,外角都等于相邻内角的六分之一”的问题中,有很多同学都在用180度去除7,而除不尽的时候,都在为得不到整数边而认为不存在的时候,范宇老师却从外角和等于内角和的六分之一的角度,给予学生一种简便方法。

二、就这节课的建议

1)当学生进入角色,第一次求外角和的时候,也就是求三角形的外角和的时候,没有一个学生能够很快的考虑到每个顶点处“内外角之和为180度”这一特点,我觉得出现这一问题的原因可能是,在讲这一问题之前没有复习多边形内角和等于180度这一具有铺垫性的知识点。如果说,在前面增加一个课件复习的环节,把内角和等于180度的结论让学生自己回答一下,那么,在探索三角形的外角和等于多少度的时候,就会有一部分学生的思维能够比较简单的'过度到“每个顶点处内外角之和等于180度”。这样的话学生的探索过程就不会变得难于上青天。学生就会感觉这个台阶刚刚好,自己经过努力奋斗可以上去,可以获得成功的喜悦,可以获得探索的兴趣和勇气,而主动探索的兴趣和勇气正是孩子们今后终身学习的必要武器,也是孩子们今后取得成功的源泉和动力。

2)当讨论到“多边形增加一条边,内角增加多少度?外角增加多少度?”时,有一部分学生就都回答180度,而忽略了外角和总是等于360度这一问题。我觉得出现这一问题的原因可能是,在小猪跑步的情境中,没有深入的挖掘,没有能够把五边形扩展到六边形、七边形、八边形……一百边形、二百边形……。如果说,在那一情境中加入前面这一简单的“升华”,我想学生在回答上面这一问题时,情况可能就会有所改变。

总之,我觉得在这次活动中我学到了很多,希望,在今后的教学工作中能够适当的多开展一些这样的集体备课、集体教研活动。这样,我们的教学能力一定会有更快的提高。

篇2:“研讨课”教学反思——听探索多边形外角和

在新市区教研室王卫国老师和水玉花老师组织的集体教研活动中,我们在听了范宇老师的研讨课后,感觉到集体备课、集体教研的价值。并且,深深的体会到集体备课和集体教研对自己的帮助和启发。因为,在这种活动中我不仅可以借鉴优秀教师的成功经验,同时,还可以在今后的教学中改进别人的不足之处,从而使自己提高课堂教学的效率。下面,就这节课中我认为值得借鉴的经验和自己的一些不太成熟的建议简单的反思一下。

一、值得借鉴的经验

1)课件展示校门前优美的花朵作为引入,可以吸引学生的注意力;

2)课件展示图形的平移和旋转,可以使学生及时的突破难点;

3)在分析并得出“多边形外角和等于360度”的过程中,利用课件展示一系列具有很强规律性的等式,培养学生的观察能力、归纳能力、猜想能力。从而,渗透解决“中考题”中“归纳猜想题目”的思想方法;

4)在“是否存在一个,外角都等于相邻内角的六分之一”的问题中,有很多同学都在用180度去除7,而除不尽的时候,都在为得不到整数边而认为不存在的时候,范宇老师却从外角和 等于内角和的六分之一的角度,给予学生一种简便方法。

二、就这节课的建议

1)当学生进入角色,第一次求外角和的时候,也就是求三角形的外角和的时候,没有一个学生能够很快的考虑到每个顶点处“内外角之和为180度”这一特点,我觉得出现这一问题的原因可能是,在讲这一问题之前没有复习多边形内角和等于180度这一具有铺垫性的知识点。如果说,在前面增加一个课件复习的环节,把内角和等于180度的结论让学生自己回答一下,那么,在探索三角形的外角和等于多少度的时候,就会有一部分学生的思维能够比较简单的过度到“每个顶点处内外角之和等于180度”。这样的话学生的探索过程就不会变得难于上青天。学生就会感觉这个台阶刚刚好,自己经过努力奋斗可以上去,可以获得成功的喜悦,可以获得探索的兴趣和勇气,而主动探索的兴趣和勇气正是孩子们今后终身学习的必要武器,也是孩子们今后取得成功的源泉和动力。

2)当讨论到“多边形增加一条边,内角增加多少度?外角增加多少度?”时,有一部分学生就都回答180度,而忽略了外角和总是等于360度这一问题。我觉得出现这一问题的原因可能是,在小猪跑步的情境中,没有深入的挖掘,没有能够把五边形扩展到六边形、七边形、八边形……一百边形、二百边形……。如果说,在那一情境中加入前面这一简单的“升华”,我想学生在回答上面这一问题时,情况可能就会有所改变。

总之,我觉得在这次活动中我学到了很多,希望,在今后的教学工作中能够适当的多开展一些这样的集体备课、集体教研活动。这样,我们的教学能力一定会有更快的提高。

篇3:“研讨课”教学反思——听探索多边形外角和

“研讨课”教学反思——听探索多边形外角和

一、值得借鉴的经验

1)课件展示校门前优美的花朵作为引入,可以吸引学生的注意力;

2)课件展示图形的平移和旋转,可以使学生及时的突破难点;

3)在分析并得出“多边形外角和等于360度”的过程中,利用课件展示一系列具有很强规律性的等式,培养学生的观察能力、归纳能力、猜想能力。从而,渗透解决“中考题”中“归纳猜想题目”的思想方法;

4)在“是否存在一个,外角都等于相邻内角的六分之一”的问题中,有很多同学都在用180度去除7,而除不尽的时候,都在为得不到整数边而认为不存在的时候,范宇老师却从外角和等于内角和的六分之一的角度,给予学生一种简便方法。

二、就这节课的建议

1)当学生进入角色,第一次求外角和的时候,也就是求三角形的外角和的时候,没有一个学生能够很快的考虑到每个顶点处“内外角之和为180度”这一特点,我觉得出现这一问题的原因可能是,在讲这一问题之前没有复习多边形内角和等于180度这一具有铺垫性的知识点。如果说,在前面增加一个课件复习的环节,把内角和等于180度的结论让学生自己回答一下,那么,在探索三角形的外角和等于多少度的时候,就会有一部分学生的思维能够比较简单的'过度到“每个顶点处内外角之和等于180度”。这样的话学生的探索过程就不会变得难于上青天。学生就会感觉这个台阶刚刚好,自己经过努力奋斗可以上去,可以获得成功的喜悦,可以获得探索的兴趣和勇气,而主动探索的兴趣和勇气正是孩子们今后终身学习的必要武器,也是孩子们今后取得成功的源泉和动力。

2)当讨论到“多边形增加一条边,内角增加多少度?外角增加多少度?”时,有一部分学生就都回答180度,而忽略了外角和总是等于360度这一问题。我觉得出现这一问题的原因可能是,在小猪跑步的情境中,没有深入的挖掘,没有能够把五边形扩展到六边形、七边形、八边形……一百边形、二百边形……。如果说,在那一情境中加入前面这一简单的“升华”,我想学生在回答上面这一问题时,情况可能就会有所改变。

总之,我觉得在这次活动中我学到了很多,希望,在今后的教学工作中能够适当的多开展一些这样的集体备课、集体教研活动。这样,我们的教学能力一定会有更快的提高。

篇4:《探索多边形外角和》教学反思

我在听了范宇老师的研讨课后,感出颇深。她对教学内容挖掘很深,教材把握很准。借助多媒体把抽象的内容简洁的展示给学生,使我们耳目一新。从中我认为值得学习的东西很多。

课件首先以校门前优美的花朵作为引入,通过问题提出,推导,运用,环环相扣,层层深入得学习,达到教学的目的。同时开头吸引了学生的注意力。图案中隐含着巧妙的变化和适时的提问培养了学生的观察,思考的能力。

课件从多方面说明多边形外角和360度。以三角形,四边形,五边形进而得到多边形。利用课件展示一系列具有很强规律性的等式,培养学生的观察能力、归纳能力、猜想能力。从而,渗透解决“中考题”中“归纳猜想题目”的思想方法;课件利用图形的平移和旋转把学生引入想象的空间,使学生及时的突破难点。充分体现以学生为主的数学思想。

在练习题的设置上很有梯度,达到了巩固知识的目的。在“是否存在一个,外角都等于相邻内角的六分之一”的问题中,有很多同学都在用180度去除7,而除不尽的时候,都在为得不到整数边而认为不存在的时候,范宇老师却从外角和 等于内角和的六分之一的角度,给予学生一种简便方法。

范宇老师轻松幽默的教学风格我很喜欢。说明了她语言基本功很强,而且很有亲和力。 在  教学过程中对学生的评价,肯定表扬及时,从而激发课堂气氛。

总之,这节课体现课堂以学生为主,培养学生自主探究的能力,在教学设计中总是围绕学生展开。

篇5:《多边形外角和》教学反思

新课程背景下的教学理念要求我们要帮助学生形成认知框架,带给学生理智的挑战,通过问题的解决进行学习。张老师的这节课通过设置问题,掌握原理,推导过程,灵活运用几个环节。层层深入,环环紧扣。使学生感触到知识的连贯性,紧密性,逻辑性,应用性。

首先这节课的开头很吸引学生,观察三个用三角形拼成的小花图案,设置巧妙的问题让学生进入课堂,而此时老师把本节的教学内容又巧妙隐藏在这些图案当中培养学生在课堂上善于观察思考的习惯,老师想要干什么?立即抓住了学生的注意力。此时老师用恰到好处的提问引导,把复杂的数学原理拆分成小的问题和知识点,例,求第一朵小花中的三个角的度数和,让学生来寻求解决问题的方法,找到数学原理和数学知识,并用此种方法来解决第二朵小花和第三朵小花的问题,抓住学生的数学意识,使学生寻找数学知识解决问题的能力有所提高。用前后知识的连贯性把分散的知识凝聚在一起并把知识提升了一定的高度,把本节的教学重点和难点得以化解,充分体现了由特殊到一般的数学思想。此时老师给出了本节的课题《多边形的外角和》从而完成了这节课的推导过程。游刃有余,自然流畅。

紧接着老师就学生学习的热情来解决课本上的实际问题,学以致用,灵活运用。从而也达到本节课的高潮,难点知识轻松化解。整个过程松弛有度,紧紧抓住学生,充分体现了以学生为主的教学思想。

最后,老师设计的也很好,注重课堂教学的实用性和应用性,设计了难易适度的练习题,巩固知识,把学生的基础,知识基础,思维基础作为前提,达到人人学有价值的数学。

篇6:《多边形外角和》教学反思

本节课的重点是多边形外角和定理的探索过程,目的是让学生利用所学的多边形的内角和、平移、旋转、剪拼等知识去探究多边形的外角和是360。让学生掌握一种解决问题的思路和进行探究的模式。为了强化这个探索过程,我在听了范宇老师的课之后,回来之后我结合自己的思路是这样安排这节课的:

学生课前准备:在一张较大较硬的纸上画一个五边形;带一个小动物玩具。

教学设计:(突出多边形外角和的探索过程)

一、自学有关多边形的外角和及外角和的概念。

二、探索多边形的外角和(分三步进行强化)

三、第一步:让学生在事先准备好的五边形上画出要求和的五个外角,并让学生去验证外角和是360。大部分同学会用所学的内角和去证明外角和是360。

第二步:教师在黑板上画一个较大的五边形,并画出要求和的五个外角,让学生拿自己事先带的小玩具进行演示课本刚开始围绕五边形转一圈的例子,进一步验证外角和是360。

第三步:让学生将五个外角剪下来,拼在一起验证外角和是360。

(让两组同学到黑板上进行操作比赛,将所拼成的360。角贴到黑板上)

四、进行适当的有关习题训练。

五、回顾本节课的探索过程,积累以后解决问题的思路和方法。

通过三步强化外角和的定理,学生对本部分的内容掌握非常深刻;而且体会到了探索的思路,掌握了一定的方式和方法,同时也锻炼了动手能力。

篇7:《多边形的外角和》教学反思

我听了两节公开课后,有一些想法,我们交流一下。

这两节公开课,有共同的优点: 为了体现课堂以学生为主,培养学生自主探究的能力,采取了小组合作学习,着眼于课堂形式的多样化及学生能力(如:合作、探究、交流等)的培养,在这一点上,体现了新课标的新理念。另外,布置了一定量的习题,巩固了知识点的掌握和理解。不足之处是小组讨论是新教材框架中的一个重要部分,教师事先一定要有详细的计划,教师还应精心策划,讨论如何有效地开展,时间多长,采取何种讨论方法,教师在讨论过程中又该担当何种角色等。在这些方面,我觉得准备的不充分。另外在小组交流过程中学生的发言过分地注重于探索的结果,而忽视了学生探索过程的展示。同时教师有些总结性的话,限制了学生的思维,不能最大限度的发挥学生自主探究的能力。教师在教学过程中对学生的评价较为单一,肯定不够及时,表扬不够热情。

对于这节课,我觉得是不是可以这样来进行。先介绍外角和外角和的概念,然后分组,每组一种多边形,分别剪拼外角和,探索外角和性质,由各组所得结论,猜想外角和性质,然后证明。这样的过程中蕴含了归纳法的数学思想,经历了由特殊到一般的过程。然后再辅以一定量的习题对知识点进行理解和巩固。

篇8:多边形的外角和教学反思

根据这节课讲授的内容,两位老师均运用新课标的理念,从技能、知识、情感态度、学习策略和文化意识等整体方面看,较为成功地完成了教学任务,教学效果较好,主要表现在以下几个方面:

1.面向全体学生,鼓励学生大胆发言,甚至到讲台上面去为同学们讲题,为学生提供了充分表现自我的空间。

2.针对所要讲的内容,创设各种合作学习的活动,使学生带着任务学习,使他们同构思考、讨论、交流和合作,即学习数学又使用数学解决身边的问题,很好地完成学习任务。

3.学生们运用所学的语言知识,联系自己的生活实际,进行讨论活动时,气氛很活跃、热烈,巩固了所学知识。

不足之处:这节课的整体性教学体现的不够好。时间分配上,第一部分教学用的时间有些长,练习第二部分的时间稍短,如果设计得再合理些,教学效果会更好。

篇9:《多边形的外角和》的教学反思

《多边形的外角和》的教学反思

《多边形的外角和》是在学习了三角形的外角和与多边形的内角和之后学习的,学生对三角形的外角有所了解,但对于多边形的外角还不太清楚,教材中给出了小明绕五边形广场按逆时针方向跑步的例子,在第一个班讲的时候,学生不太理解为什么小明转的角度就是多边形的外角,于是,我打算在第二个班让学生实际做一下。

刚上课不久,有个学生注意力不太集中,我刚好想找个人演示一下,正好找这个学生。我让他起立并绕着教室走一圈,他一听有点懵,不过他也照做了。在他走的过程中,每当有一个拐弯时,我都叫他停,让大家注意他转动的角度,再继续走,再拐弯时,再让大家注意他转动的角度,让他绕着教室走一圈,把他的大致路线在黑板上画出来,形成一个多边形,然后让大家说他刚才转过的角是哪个角,这次大部分学生都找出来了,他转的角就是多边形的外角。从而我提出多边形的'外角和是多少呢?因为刚学过多边形的内角和,所以他们很容易想到用内角和来解决问题。

在整个过程中,对于全班学生来说,更有利于理解多边形外角的概念,对于那个注意力不集中的学生,既没有伤其自尊,又让他的注意力回到了课堂上,一举两得。

课堂是学生的课堂,在讲课时要时刻注意学生的表情,行动。刚参加工作时,我只想着能把课讲好就行了,可老师讲的是否学生都听了呢,听进去多少呢?现在,我越来越注重学生的课堂管理,比如学生是否在听;如果注意力不太集中了应该怎么调动学生学习兴趣;设计什么样的游戏或活动,能让学生快乐的学习。以学生为主体,让更多的学生能够主动的学习数学,才是学习的最终目标。

篇10:多边形的外角和教学反思

听了范宇老师的课,给了我很多的启示。

她用几朵多边形小花引入,基于学生的生活经验,设计巧妙,能够引起学生的'欲望,从感情上抓住学生,然后设计一系列恰到好处的提问,让学生在很自然的情况下得到三角形、四边形、直到n边形的外角和,遵循由特殊到一般的规律,很愉悦的让学生接受新知识。

小学生数学《多边形的外角和》教学反思:在讲解完外角之后,紧接着出示了几道有关的练习,讲练结合,源于教材,又揉进自己的创意,教师轻松自如,学生兴趣盎然,这一点值得我好好学习。

但“是否存在一个多边形,他的每一个外角都等于相邻内角的六分之一,简述理由。”学生想法和教师不一致,如果让学生把自己的理由叙述再充分一些,教师再出示解法让学生对比,学生自然会选择省时省力的方法。

总之,范老师充分发挥了导演的作用,给了学生发挥灵感的空间,这一点非常成功。但我有一点困惑,这样是否会让优等生更优,差等生更差呢?以上是我的一点体会和困惑,希望大家批评指正。

篇11:对《多边形的外角和》的反思

我听了范宇老师的课以后,感触很深,特别是她对本节的教学内容挖掘很深,对教材的把握很准。能够利用多媒体教学把抽象的内容简单明了地展示给学生,学生在轻松的状态下接受,并能灵活运用。这是我认为本节最成功的地方。

新课程背景下的教学理念要求我们要帮助学生形成认知框架,带给学生理智的挑战,通过问题的解决进行学习。范宇老师的这节课通过设置问题,掌握原理,推导过程,灵活运用几个环节。层层深入,环环紧扣。使学生感触到知识的连贯性,紧密性,逻辑性,应用性。

首先这节课的开头很吸引学生,观察三个用三角形拼成的小花图案,设置巧妙的问题让学生进入课堂,而此时老师把本节的教学内容又巧妙隐藏在这些图案当中培养学生在课堂上善于观察思考的习惯,老师想要干什么?立即抓住了学生的注意力。此时老师用恰到好处的提问引导,把复杂的数学原理拆分成小的问题和知识点,例,求第一朵小花中的三个角的度数和,让学生来寻求解决问题的方法,找到数学原理和数学知识,并用此种方法来解决第二朵小花和第三朵小花的问题,抓住学生的数学意识,使学生寻找数学知识解决问题的能力有所提高。用前后知识的连贯性把分散的知识凝聚在一起并把知识提升了一定的高度,把本节的教学重点和难点得以化解,充分体现了由特殊到一般的数学思想。此时老师给出了本节的课题《多边形的外角和》从而完成了这节课的推导过程。游刃有余,自然流畅。

紧接着老师就学生学习的热情来解决课本上的实际问题,学以致用,灵活运用。从而也达到本节课的高潮,难点知识轻松化解。整个过程松弛有度,紧紧抓住学生,充分体现了以学生为主的教学思想。

最后,范宇老师设计的也很好,注重课堂教学的实用性和应用性,设计了难易适度的练习题,巩固知识,把学生的基础,知识基础,思维基础作为前提,达到人人学有价值的数学。

总之,本节课通过猜想来展示学生的思维,对创造性的学习起了推动作用,而这一点正是我在今后的教学中学习的地方。

以上只是我对这节课的浅显认识,不足之处还望各位老师指导。

篇12:《多边形的内角和与外角和》教学反思

《多边形的内角和与外角和》教学反思

完成三角形内外角和的教学之后,学生很自然地就会想到对于多边形的情况如何。为了体现课堂以学生为主,培养学生自主探究的能力,在课前的教学设计中尽量围绕学生展开。如:采取了小组合作学习、组与组之间交流等形式。虽然想法上有此意图,但在具体的实施过程中还是暴露出了很多问题,有事先没预计到的,也有想体现但没体现完整的。经过课后反思及老教师们的指点,主要表现在:

(1)较多的着眼于课堂形式的多样化及学生能力(如:合作、探究、交流等)的培养,而忽视了教学中最重要的知识点的落实。学生练的机会不多,仅有编制习题解答这一部分,且对学生来说要求较高,教师在编题前可先让学生解题,给学生搭好阶梯,使其不至于感到突然。

(2)小组讨论可以说是新教材框架中的'一个重要部分,教师事先一定要有详细的计划。这也是本堂课暴露缺陷较多的环节。比如:组员的设置(七、八人一组加上发下的表格较少使得讨论未能有效的开展),以4、5人为一组较为合适,且要分工明确,如谁记录,谁发言等等,避免某些小组成员流离于合作之外。教师还应精心策划:讨论如何有效地开展;时间多长;采取何种讨论方法;教师在讨论过程中又该担当何种角色等。

(3)在小组交流过程中学生的发言过分地注重于探索的结果,而忽视了学生探索过程的展示。同时教师有些总结性的话,限制了学生的思维,不能最大限度的发挥学生自主探究的能力。

(4)教师在教学过程中对学生的评价较为单一,肯定不够及时,表扬不够热情,比如当最后一个平常表现较为一般的学生有此创意时,教师就应大加赞扬,从而也能激发课堂气氛。

篇13:多边形的内角和与外角和教学反思

多边形的内角和与外角和教学反思

体会及反思:

1、在初一旧教材中完成三角形内外角和的教学之后,学生很自然地就会想到对于多边形的情况如何。结合新教材中这一部分内容的编排,所以特意在教学过程中安排了这样一堂活动课,希望对于新课程标准思想有所体现。

2、为了体现课堂以学生为主,培养学生自主探究的能力,在课前的教学设计中尽量围绕学生展开。如:采取了小组合作学习、组与组之间交流等形式。虽然想法上有此意图,但在具体的实施过程中还是暴露出了很多问题,有事先没预计到的,也有想体现但没体现完整的。经过课后反思及老教师们的指点,主要表现在:

(1)较多的着眼于课堂形式的多样化及学生能力(如:合作、探究、交流等)的.培养,而忽视了教学中最重要的知识点的落实。学生练的机会不多,仅有编制习题解答这一部分,且对学生来说要求较高,教师在编题前可先让学生解题,给学生搭好阶梯,使其不至于感到突然。

(2)小组讨论可以说是新教材框架中的一个重要部分,教师事先一定要有详细的计划。这也是本堂课暴露缺陷较多的环节。比如:组员的设置(七、八人一组加上发下的表格较少使得讨论未能有效的开展),以4、5人为一组较为合适,且要分工明确,如谁记录,谁发言等等,避免某些小组成员流离于合作之外。教师还应精心策划:讨论如何有效地开展;时间多长;采取何种讨论方法;教师在讨论过程中又该担当何种角色等。

(3)在小组交流过程中学生的发言过分地注重于探索的结果,而忽视了学生探索过程的展示。同时教师有些总结性的话,限制了学生的思维,不能最大限度的发挥学生自主探究的能力。

(4)教师在教学过程中对学生的评价较为单一,肯定不够及时,表扬不够热情,比如当最后一个平常表现较为一般的学生有此创意时,教师就应大加赞扬,从而也能激发课堂气氛。

虽然整堂课下来出现了较多的漏洞,但我想作为一个新教师的一种尝试也未尝不可。只有通过不断地尝试,不断地失败,我们才能到达胜利的彼岸!

篇14:《探索多边形的内角和与外角和》的教案

《探索多边形的内角和与外角和》的教案

一、教学目标:

1、让学生经历探索多边形外角和公式的过程,培养学生主动探究的习惯。

2、能灵活的运用多边形内角和与外角和公式解决有关问题。

二、教材分析

本节的主要内容是多边形的外角定义和公式.多边形的外角和是三角形的一个重要性质,与前面的内角和公式综合运用能解决一些较难的问题.为提供三角形的外角提供了一种方法。

三、教学重点、难点

1、多边形的外角和公式及公式的探索过程。

2、能灵活运用多边形的内角和与外角和公式解决有关问题。

四、教学建议

关于外角和公式关键要让学生理解它是不随多边形边数的增加而增大,因此在教学中应设置由特殊到一般的题目,让学生亲身体会这个外角和是360°.

五、教具、学具准备

投影仪、题板、画图工具

六、教学过程

1.复习提问:

(1)多边形的内角和是多少?

(2)正八边形的每一个内角为度?

2.创设问题情景,引入新课:

教师投放课本51页图9-35时,并出示以下问题:

小明沿一个五边形广场周围的小路,按顺时针方向跑步。

(1)小明从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们。

(2)观察∠1、∠2、∠3、∠4、∠5的两边分别与它相邻的五边形的内角的'边有何关系?

(3)问题:你能计算小明跑完一圈,身体转过的角度和吗?如何计算∠1+∠2+∠3+∠4+∠5呢?

点拨:

请填写下题:

如图,oa‘∥ae,ob‘∥ab,oc‘∥bc,od‘∥cd,oe‘∥de,则∠α=   ,∠β=     ,∠γ=   ,∠δ=     ∠θ=    .

因为∠α+∠β+∠γ+∠δ+∠θ=.

所以∠1+∠2+∠3+∠4+∠5= .

由此可得:五边形的外角和是360°

(4)你能借助内角和来推导五边形的外角和吗?

点拨:

因五边形的每一个内角与它相邻的外角是邻补角,所以五边形的内角和加外角和等于5×180°所以外角和等于5×180°-(5-2)×180°=360°。

(5)你用第二种方法推导下列多边形的外角和三角形的外角和    四边形的外角和   五边形的外角和   n边形的外角和是得出结论:多边形的外角和都等于360°。

4.应用举例

例 一个多边形的内角和等于它的外角和的3倍,它是几边形?

点拨:

设出未知数,根据相等关系: 内角和=3×外角和列出方程。

5.练习:

见学案练习一和练习二

6.达标检测

见学案达标检测

7.小结

本节课你学到了什么?有什么收获?

8.作业

学生口答,并计算出度数

学生独立观察分析思考找出特征,试概括所得结论,从而引出多边形的外角定义及外角和定义及引入新课从而板书课题.

学生质疑思考,一时找不到方法,可按点拨的引导继续思考。

生充分思考,认真分析,小组讨论交流得出答案。

学生找关系,小组积极讨论、交流,小组汇报结果。

学生独立探究,很快得出答案.

学生独立解决

让学生先总结、交流谈体会

篇15:《探索多边形的内角和与外角和》的课程教学设计

[教学目标]

知识与技能:

1会用多边形公式进行计算。

2理解多边形外角和公式。

过程与方法:

经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力。

情感态度与价值观:

让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。

[教学重点、难点与关键]

教学重点:多边形的内角和。的应用。

篇16:《探索多边形的内角和与外角和》的课程教学设计

教学关键:应用化归的数学方法,把多边形问题转化为三角形问题来解决。

[教学方法]

本节课采用“探究与互动”的教学方式,并配以真的情境来引题。

[教学过程:]

(一)探索多边形的内角和

活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。

边形边形边形

活动2:

①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?

②总结多边形内角和,你会得到什么样的结论?

多边形边数分成三角形的个数图形内角和计算规律

三角形31

180°(3—2)·180°

四边形4

五边形5

六边形6

七边形7

n边形n

活动3:把一个五边形分成几个三角形,还有其他的分法吗?

总结多边形的内角和公式

一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。

巩固练习:看谁求得又快又准!(抢答)

(二)探索多边形的外角和

活动4:例2如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和。五边形的外角和等于多少?

分析:(1)任何一个外角同于他相邻的内角有什系?

(2)五边形的五个外角加上与他们相邻的内角所得总和是多少?

(3)上述总和与五边形的内角和、外角和有什么关系?

解:五边形的外角和=______________—五边形的内角和

活动5:探究如果将例2中五边形换成n边(n≥3),可以得到同样的结果吗?

也可以理解为:从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回到点A。最后再转回出发时的方向。由于在这个运动过程中身体共转动了一周,也就是说所转的各个角的和等于一个______角。所以多边形的'外角和等于_________。

结论:多边形的外角和=___________。

练习1:如果一个多边形的每一个外角等于30°,则这个多边形的边数是_____。

练习2:正五边形的每一个外角等于________,每一个内角等于_______。

练习3。已知一个多边形,它的内角和等于外角和,它是几边形?

(三)小结:本节课你有哪些收获?

(四)作业:

课本P84:习题7。3的2、6题

附知识拓展—平面镶嵌

(五)随堂练习(练一练)

1、n边形的内角和等于__________,九边形的内角和等于___________。

2、一个多边形当边数增加1时,它的内角和增加。

3、已知多边形的每个内角都等于150°,求这个多边形的边数?

4、一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()

A:360°B:540°C:720°D:900°

篇17:探索多边形内角和与外角和初二数学说课稿

探索多边形内角和与外角和初二数学说课稿

一、学生起点分析

学生已经学完三角形的内角和,对内角和的问题有了一定的认识,加上八年级的学生好奇心、求知欲强,互相评价、互相提问的积极性高、因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,所以把这节课设计成一节探索活动课是切实可行的。

二、教学任务分析

本节课是《义务教育课程标准实验教科书》北师大版八年级上册第四章第六节《探索多边形内角和与外角和》的第一课时、本节内容是七年级上册多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,联系性比较强,特别是教材中设计了现实情境,“想一想”,“议一议”等内容,体现了课改的精神、在编写意图上,编者强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是硬背公式,发展了学生的合情推理能力。

三、教学目标

【知识与技能】掌握多边形内角和定理,进一步了解转化的数学思想。

【过程与方法】经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的`思想和方法。

【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。

四、教学重难

【教学重点】多边形内角和定理的探索和应用。

【教学难点】多边形定义的理解;多边形内角和公式的推导;转化的数学思维方法的渗透。

五、教学过程设计

本节课分成七个环节:

第一环节:创设现实情境,提出问题,引入新课;

第二环节:概念形成;

第三环节:实验探究;

第四环节:思维升华;

第五环节:能力拓展;

第六环节:课时小结;

第七环节:布置作业。

第一环节创设现实情境,提出问题,引入新课。

1、多媒体展示蜂窝,教师结合图片让学生发现生活中无处不在的多边形。

2、工人师傅锯桌面:一个四边形的桌面,用锯子锯掉一个角,还剩几个角?

目的:

1、通过现实情境的展示,调动学生的情绪,激发起进一步学习的兴趣。

2、把学生的注意力自然的引入研究方向,为课题的研究做铺垫。

第二环节概念形成

1、借助多媒体显示一多边形,学生类比三角形的有关知识对多边形定义、并表示出相应的元素。

2、教师再给出严格规范的定义,特别借助学具说明“在平面内”的必要性、此外,说明正多边形的定义以及多边形可分为凸多边形和凹多边形。

目的:

1、对于边角这些能在图形中识别而又不要求学生掌握的描述性定义,采取学生类比三角形的表示方法来归纳,渗透类比的数学思想。

2、借助于自制的直观教具,说明多边形定义中“在平面内”这一条件,易于学生理解,化解了难点。

【探索多边形外角研讨课教学反思】相关文章:

1.《多边形的外角和》的教学反思

2.探索多边形内角和与外角和初二数学说课稿

3.三角形外角和教学反思

4.研讨课《氧气的性质》教学反思

5.研讨课教案

6.初中数学研讨课讲课反思

7.《多边形的面积》数学教学反思

8.探索图形教学反思

9.政史地生教学研讨反思

10.初中英语小组合作学习研讨课听课学习反思

下载word文档
《探索多边形外角研讨课教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部