欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 范文大全 > 汇报报告>燃烧热的测定实验报告

燃烧热的测定实验报告

2022-11-15 08:48:12 收藏本文 下载本文

“蓝色裹尸布”通过精心收集,向本站投稿了20篇燃烧热的测定实验报告,以下是小编为大家整理后的燃烧热的测定实验报告,希望能够帮助到大家。

燃烧热的测定实验报告

篇1:燃烧热的测定

【目的要求】

掌握有关热化学实验的一般知识和技术 ? 掌握氧弹的构造及使用方法 ? 用氧弹式量热计测定萘的燃烧焓

?

预习要求:

1.明确燃烧焓的定义。

2.了解氧弹式量热计的基本原理和使用方法。 3.熟悉热敏电阻温度计的调节和使用。 4.了解氧气钢瓶和减压阀的使用方法。

【基本原理】

当产物的温度与反应物的温度相同,在反应过程中只做体积功而不做其它功时,化学反应吸收或放出的热量,称为此过程的热效应,通常亦称为“反应热”。热化学中定义:在指定温度和压力下,一摩尔物质完全燃烧成指定产物的焓变,称为该物质在此温度下的摩尔燃烧焓,记作ΔcHm。通常,C、H等元素的燃烧产物分别为CO2(g)、H2O(l)等。由于上述条件下ΔH=Qp,因此ΔCHm也就是该物质燃烧反应的等压热效应Qp。 在实际测量中,燃烧反应常在恒容条件下进行(如在弹式量热计中进行),这样直接测得的是反应的恒容热效应Qv(即燃烧反应的摩尔燃烧内能变ΔcUm)。若反应系统中的气体物质均可视为理想气体,根据热力学推导,ΔcHm和ΔcUm的关系为

:

(1)

式中,T为反应温度(K);ΔcHm为摩尔燃烧焓(J・mol-1);ΔcUm为摩尔燃烧内能变(J・mol-1);VB(g)为燃烧反应方程中各气体物质的化学计量数。产物取正值,反应物取负值。

通过实验测得QV值,根据上式就可计算出Qp,即燃烧焓的值ΔCHm。 测量热效应的仪器称作量热计,量热计的种类很多,本实验是用氧弹式量热计进行萘的燃烧焓的测定。

在适当的条件下,许多有机物都能迅速而完全地进行氧化反应,这就为准确测定它们的燃烧热创造了有利条件。

为了使被测物质能迅速而完全地燃烧,就需要有强有力的氧化剂。在实验中经常使用压力为16--18atm的氧气作为氧化剂。用氧弹量热计进行实验时,氧弹放置在装有一定量水的铜水桶中,水桶外是空气隔热层,再外面是温度恒定的水夹套。样品在体积固定的氧弹中燃烧放出的热Qv、引火丝燃烧放出的热和由氧气中微量的氮气氧化成硝酸的生成热,大部分被水桶中的水吸收;另一部分则被

氧弹,水桶、搅拌器及温度计等所吸收。在量热计与环境没有热交换的情况下,可以写出如下的热量平衡公式:

- Qv.m - q.b + 5.98c = W.h.Δt + C总. Δt (1)

式中:Qv:被测物质的定容燃烧热 (J .g-1 ); m:被测物质的质量(g);q:引火丝的燃烧热(J .g-1 );b:烧掉了的引火丝质量(g);5.98 :硝酸生成热为-59800 J .mol-1 ,当用0.100N NaOH来滴定生成的硝酸时,每毫升碱相当于-5.98 J ;c 滴定生成的硝酸时,耗用0.100NNaOH毫升数;W:水桶中的水的质量(g);h :水的比热(J .g-1.℃-1);C总 氧弹、水桶等的总热容( J.℃-1 ); Δt为与环境无热交换时的真实温差。

如在实验时保持水桶中水量一定,把(1)式右端常数合并得到下式:

- Qv.m - q.b + 5.98c = k Δt (2)

式中:k = ( W.h + C总 ) J.℃-1,称为量热计热容(热量计的水当量)。 实际上,氧弹式热量计不是严格的绝热系统,加之由于传热速度的限制,燃烧后由最低温度达最高温度需一定的时间,在这段时间里系统与环境难免发生热交换,因而从温度计上读得的温差就不是真实的温差 。为此,必须对读得的温差进行校正。

从(2)式可知,要测得样品的Qv 必须知道仪器的水当量K。测量的方法是以一定量的已知燃烧热的标准物质(常用苯甲酸,其燃烧热以标准试剂瓶上所标明的数值为准)在相同的条件下进行实验,由标准物质测定仪器的水当量K,再测定样品的Qv,从而计算相应的Qp。 【仪器和试剂】

绝热式氧弹量热计1套; 氧气钢瓶1只; 氧气表1只; 压片机1套; 万用电表1只; 台称1只; 分析天平1台; 三角烧瓶(250mL)2只; 滴定管(碱式)1只; 容量瓶(mL、250mL)各1只; 活搬手1只;不锈钢镊子1只。 苯甲酸; 萘; 燃烧丝; 棉线; NaOH溶液(0.1000mol・dm-3); 酚酞。 【实验步骤】

1、熟悉量热计 2、量热计热容测定

(1) 装样:苯甲酸样品0.6~0.8g(台称),点火丝~15cm(别太长,准确称量),热值为:1400J/g。压片,挂于两电极上。 (2) 充氧:压力为16~18atm。

(3) 安装量热计:加自来水2500mL――接点火线――合盖――安装热敏温度计――接通各电源(各开关处于关)――开搅拌器

(4) 测量:温度稳定――调整定时为半分钟――读数10分钟――点火(按一下即可)――记录温度,温度平稳上升后再读10分钟。

(5) 结束工作:取出未燃烧完的点火线,准确称量(原来质量减去留下的即为燃烧的点火线量)。取氧弹里的水进行滴定。

3、待测样品燃烧热测定(以萘取代苯甲酸,操作步骤同上) 【数据记录与处理】

1、作雷诺校正图

2、计算量热计和介质水的热容

3、计算萘的定容燃烧热及定压燃烧热,并与文献值比较。 【思考与讨论】

1. 在使用氧气钢瓶及氧气减压阀,应注意哪些规则?

2. 写出萘燃烧过程的反应方程式。如何根据实验测得的Qv 求出Qp? 3. 用电解水制得的氧气进行实验可以吗?何故?

4. 测得非挥发性可燃液体的热值时,能否直接放在氧弹中的石英杯(或不锈钢杯)里测定? 【注意事项】

1、未取出温感器,不得开盖 2、点火线安装时不能碰壁 3、压片时不可太松

4、点火开关只按一次即可

5、先调节好读数记时时间为30秒,再开始读数 6、充氧时注意操作,手上不可附有油腻物。

silver

坚和忍。坚者如磐石虽日月交替而不移,忍者如柔练虽困苦艰辛而不摧,坚忍者,

刚柔相济百折不回,持之以恒也。

加博友 关注她

最新日志

? ?

? ? ?

?

液相色谱分析混合样品中的苯

博主推荐 相关日志 推荐阅读

更多>>

液相色谱分析混合样品中的苯和甲苯

人×知识=8

篇2:燃烧热的测定

实验报告 -03-28 21:55:16 阅读485 评论1 字号:大中小

一、实验题目:燃烧热的测定

二、实验目的

1、明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的差别与联系;

2、掌握量热计技术的基本原理; 3、学会测定萘的燃烧热;

4、了解氧弹卡计主要部件的作用,掌握氧弹卡计的实验技术;

5、学会雷诺图解法校正温度改变值。

三、实验原理

物质的标准摩尔燃烧热 是指1mol物质在标准压力下完全燃烧所放出的热量。在恒容条件下测得的1mol物质的燃烧热成为恒容摩尔燃烧热 ,数值上等于这个燃烧反应过程的热力学能变化 ;恒压条件下测得的1mol物质的燃烧热称为恒压摩尔燃烧热 ,数值上等于这个燃烧反应过程的摩尔焓变 ,化学反应热效应通常是用恒压热效应 来表示。若参加燃烧反应是在标准压力下的1mol物质,则

恒压热效应 即为该有机物的标准摩尔燃烧热 。

若把参加反应的气体与生成的气体作为理想气体来处理,则有下列关系式

= +(∑vB)RT??(1)

式中,∑vB为生成物中气体物质的计量系数减去反应物中气体物质的计量

系数;R为气体常数,J/(mol・K);T为反应的绝对温度,K;

本实验所用测量仪器为氧弹量热计,且为外槽恒温式量热计。

量热反应测量的基本原理是能量守恒定律。由于热量的传递往往表现为温度的改变,且温度是很容易测量的。在盛有定量水的容器中,样品的物质的量为nmol,放入密闭氧弹中,充氧,使样品完全燃烧,放出的热量传给水及仪器各部

件,引起温度的上升。 设系统(包括内水桶、氧弹本身、测温器件、搅拌器和水)的总热容为C,并假设系统与环境之间没有热交换,燃烧前、后温度分别为T1、T2,则此样品

的恒容摩尔燃烧热为

??(2)

式中, 为样品的恒容摩尔燃烧热,J/mol;n为样品的物质的量,mol;C

为仪器的总热熔,J/K。 (2)式是最理想、最简单的情况。但是,由于一方面,氧弹量热计不可能完全绝热,因此反应前后温度的变化值不能直接用测到的燃烧前后的温度差来计算,必须通过合理的雷诺校正才能得到准确的温差变化;另一方面,多数物质不能自燃,如萘,必须借助电流引燃点火丝,再引起萘的燃烧。故(2)式左边必须

把点火丝燃烧所放出的热量考虑进去。即

m点火丝Q点火丝= ??(3)

式中,m点火丝为点火丝的质量,g;Q点火丝为点火丝的燃烧热,-6694.1J/g;

为校正后温度的升高值,K。 而仪器的热容C是用已知燃烧焓的物质(如本实验的苯甲酸),放在量热计中燃烧,测其始、末温度,经雷诺校正后,按照式子(3)即可求出C。

四、实验注意事项

1、燃烧过程要保证样品完全燃烧,因此,样品的压片力度须适中; 2、氧弹点火要迅速而果断,点火丝须与电极接触良好,防止松动; 3、实验结束后,一定要把未燃烧的铁丝重量从公式中减掉; 4、在实验测定过程中,要避免卡计周围温度大幅度波动。

五、实验仪器与试剂

实验仪器:HR-15氧弹式热量计、HR-15B热量计多功能控制箱;AL204型电子天平;普通温度计(0~50℃);氧气钢瓶;氧气减压器07型;万用电表;2000mL

量筒

实验试剂:苯甲酸(AR);萘(AR);点火丝;氧气

六、实验步骤

1、测定氧弹卡计和水的总热熔C

(1)、样品压片

①、压片前,检查压模是否有铁锈、油污和尘土等,若有,则必须擦净后才

能进行压片; ②、用电子天平称取约0.8g的苯甲酸,并准确称取一段已截好的点火丝; ③、将粗称的苯甲酸以及准确称量的点火丝放入压片机中进行压片,压片完

成后,在电子天平上准确称量其质量,数据记录与表1中。

(2)、装置氧弹,充氧气

①、将带有点火丝的苯甲酸样品放在氧弹卡计的燃烧皿中,将点火丝的两端分别嵌入绑紧在氧弹中的两根电极上,旋紧氧弹盖,用万用电表检查电极是否通

路; ②、连接好氧气钢瓶与氧气减压阀表,用铜导管将减压表与氧弹进气管相连接,打开氧气瓶上端阀门,此时减压阀表中指针旋转所指压力即为氧气瓶中氧气总压力。打开减压阀,使减压表上另一表盘的指针压力读数约为10kg/cm21MPa。随即关闭减压阀。旋转充氧装置的旋钮,使充氧仪上压力表的指针为10MPa。为

了排除氧弹内的空气,应反复充放三次。

(3)、燃烧温度的测量

①、将充好氧气的氧弹再用万用电表来检查是否通路;

②、用量筒量取3000mL自来水,倒入水桶内,把已通路的氧弹放入卡计的.

水桶内; ③、装好搅拌轴(叶片不能碰壁),盖上盖子,用普通温度计测量水桶中的水的温度,记录于表1中,氧弹两电极用电线连接在点火器上,将贝克曼温度计

探头插入水中,开动搅拌马达。 ④、待温度稳定上升(连续两次读数差值小于0.005℃,则表明温度稳定)后,每隔半分钟读取温度一次,连续记录10次。此数据为燃烧前期的温度;

⑤、读完第10次温度后,此刻迅速按下点火器上点火键通电点火,自按下点火键点火后,读数仍为半分钟记录一次,直到温度出现最高点(或温度基本维

持不变),此数据为燃烧期间的温度;

⑥、当温度升到最高点并开始下降后仍继续每隔半分钟读取温度一次,连续

记录10次。此数据作为燃烧结束后期温度,停止实验。

⑦、④⑤⑥实验数据均记录与表1中。

⑧、实验停止后,小心取出贝克曼温度计,拿出氧弹,放出氧弹中剩余气体,最后旋开氧盖,将燃烧后剩下的铁丝取出并用电子天平准确称取其质量,数据记

录于表1中。

⑨、倒去铜水桶中的水并用毛巾擦干,待下次实验用。

2、萘的燃烧热的测定

(1)、称取约0.5g的萘,按照上述实验操作测量萘的燃烧温度两次,求平均

值;

(2)、最后倒去自来水,擦干铜水桶待下次实验用。

七、实验数据记录与处理

实验室温度: 21.0℃ 大气压: 1029.6mbar

1、氧弹卡计和水的总热容C的计算

表1 氧弹卡计和水的总热容C的测定数据记录表

苯甲酸燃烧引起卡计温度变化差值△T的图解法图

次数

t2=22.798℃ t1=21.282℃ 温 度

t/℃

由上图知,

根据(3)式变形C=(-nQv,m(苯甲酸)-m点火丝Q点火丝)/△T得氧弹卡计和

水的总热容

= 13792.01J/K

2、萘的恒容摩尔燃烧热Qv,m(萘)的计算

(1)、第一次测量计算

表2 第一次萘燃烧温度的测量记录数据表

萘燃烧引起卡计温度变化差值△T的图解法图

t2=22.626℃

t1=21.243℃ 次数 温 度

t/℃

由上图知,

根据(3)式变形Qv,m(萘)=(- m点火丝Q点火丝-C△T)/ n(萘) 得

Qv,m(萘)1 = =-4830.1KJ/mol

(2)、第二次测量计算

表3 第二次萘燃烧温度的测量记录数据表

萘燃烧引起卡计温度变化差值△T的图解法图

t2=22.533℃

t1=21.160℃ 次数 温 度

t/℃

由上图知,

根据(3)式变形Qv,m(萘)=(- m点火丝Q点火丝-C△T)/ n(萘) 得

Qv,m(萘)2 = =-4879.7KJ/mol 3、萘的恒压摩尔燃烧热Qp,m(萘)的计算

∵萘的燃烧反应为

∴根据(1)式得萘的恒压摩尔燃烧热(即 )为

Qp,m(萘)1 = Qv,m(萘)1+(10-12)×8.314J/(mol・K) ×(t水,1+273.15)K

=-4830.1 KJ/mol+(10-12)×8.314J/(mol・K) ×

(20.9+273.15)K

=-4835.0 KJ/mol

Qp,m(萘)2 = Qv,m(萘)2+(10-12)×8.314J/(mol・K) ×(t水,2+273.15)K

=-4879.7 KJ/mol+(10-12)×8.314J/(mol・K) ×(20.3+273.15)K

=-4884.6 KJ/mol

4、根据基尔霍夫定律对萘的标准摩尔燃烧热 的计算

查阅物理化学手册,有

根据萘的燃烧反应及基尔霍夫定律得

∴ 1

= Qp,m(萘)1+(4×75.30+10×37.13-12×29.36-1×142.2) J/(mol・K) ×

[298.15-( t水,1+273.15)]

= -4830.1 KJ/mol +(4×75.30+10×37.13-12×29.36-1×142.2) J/(mol・

K) ×[298.15-(20.9+273.15)]K

=-4830.1 KJ/mol+177.98 J/(mol・K) ×4.1K=-4829.4 KJ/mol

2

= Qp,m(萘)2+(4×75.30+10×37.13-12×29.36-1×142.2) J/(mol・K) ×

[298.15-( t水,2+273.15)]

= -4884.6 KJ/mol +(4×75.30+10×37.13-12×29.36-1×142.2) J/(mol・

K) ×[298.15-(20.3+273.15)]K

=-4884.6 KJ/mol+177.98 J/(mol・K) ×4.7K=-4883.8 KJ/mol

∴萘的标准摩尔燃烧热

=

=

=-4856.6 KJ/mol

5、与文献值比较

查阅物理化学手册,知 =-5153.8 KJ/mol

∴测量的相对误差 =-5.77%

八、问题与思考

1、测量燃烧热两个关键的要求是什么?如何保证达到这两个要求?

答:两个关键的要求是:

①、样品的完全燃烧。要达到这要求,必须做到氧弹要充以1.0~1.5MPa的高压氧,且氧弹密封耐压、耐腐蚀;粉末状的样品必须压成片状,避免充氧时样

品散开。

②、使燃烧后放出的热量尽可能全部传递给卡计本身和其中盛装的水,而几乎不与周围环境发生热交换。要达到这要求,可把卡计放于一个水恒温的套壳

中,且把卡计壁做成高度抛光,以减少因辐射产生的热散失。

2、实验测量得到的温度差值为什么要经过雷诺作图法校正,还有那些误差

来源会影响测量的结果?

答:因为氧弹量热计不可能完全绝热,存在热的散失,因此燃烧前后温度的变化不能直接用测到的燃烧前后的温度差来计算,须经过合理的雷诺校正。

其它的误差来源有:由于多数物质不能自燃,因此在实验中必须借助电流引燃点火丝从而引起物质的燃烧,此时在计算体系总共放出的热量的时候必须把点火丝燃烧放出的热量包含在内。且在最后进行燃烧热的计算的时候,又必须把反应后剩余的点火丝的质量从原来的所称量的质量中扣除,否则就会引起测量的误

差。

十、参考文献

[1].何广平,南俊民,孙艳辉等.物理化学实验[M].北京:化学工业出版社,

:67-71.

[2].傅献彩,沈文霞,姚天扬,侯文华.物理化学上册[M].第五版.北京:高

等教育出版社,:112-114.

篇3:物化实验报告:燃烧热的测定-苯甲酸-萘

物化实验报告:燃烧热的测定-苯甲酸-萘

华南师范大学实验报告

课程名称 物理化学实验 实验项目 燃烧热的测定

【实验目的】

①明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的区别。 ②掌握量热技术的基本原理,学会测定奈的燃烧热。

③了解氧弹卡计主要部件的作用,掌握氧弹量热计的实验技术。 ④学会雷诺图解法校正温度改变值。

【实验原理】

燃烧热是指1摩尔物质完全燃烧时所放出的热量。在恒容条件下测得的燃烧热称为恒容燃烧热(Ov),恒容燃烧热这个过程的内能变化(ΔU)。在恒压条件下测得的燃烧热称为恒压燃烧热(Qp),恒压燃烧热等于这个过程的热焓变化(ΔH)。若把参加反应的气体和反应生成的气体作为理想气体处理,则有下列关系式:

?cHm = Qp=Qv +ΔnRT (1)

本实验采用氧弹式量热计测量蔗糖的燃烧热。测量的基本原理是将一定量待测物质样品在氧弹中完全燃烧,燃烧时放出的热量使卡计本身及氧弹周围介质(本实验用水)的温度升高。

氧弹是一个特制的不锈钢容器(如图)为了保证化妆品在若完全燃烧,氧弹中应充以高压氧气(或者其他氧化剂),还必须使燃烧后放出的热量尽可能全部传递给量热计本身和其中盛放的水,而几乎不与周围环境发生热交换。

但是,热量的散失仍然无法完全避免,这可以是同于环境向量热计辐射进热量而使其温度升高,也可以是由于量热计向环境辐射出热量而使量热计的温度降低。因此燃烧前后温度的变化值不能直接准确测量,而必须经过作图法进行校正。

放出热(样品+点火丝)=吸收热 (水、氧弹、量热计、温度计) 量热原理―能量守恒定律

在盛有定水的容器中,样品物质的量为n摩尔,放入密闭氧弹充氧,使样品完全燃烧,放出的热量传给水及仪器各部件,引起温度上升。设系统(包括内水桶,氧弹本身、测温器件、搅拌器和水)的总热容为C(通常称为仪器的水当量,即量热计及水每升高1K所需吸收的热量),假设系统与环境之间没有热交换,燃烧前、后的温度分别为T1、T2,则此样品的恒容摩尔燃烧热为:

QV,m??

C(T2?T1)

(2) n

式中,Qvm为样品的恒容摩尔燃烧热(J・mol-1);n为样品的摩尔数(mol);C为仪器的总热容(J・K-1或J / oC)。上述公式是最理想、最简单的情况。

图 1 氧弹量热计构造示意图图 2 氧弹构造示意图 1、氧弹 1-厚壁圆筒;2-弹盖 2、内水桶(量热容器) 3-螺帽; 4-进气孔 3、电极 4、温度计 5-排气孔;6-电极 5、搅拌器 6、恒温外套 8-电极(也是进气管)

但是,由于(1):氧弹量热计不可能完全绝热,热漏在所难免。因此,燃烧前后温度的变化不能直接用测到的燃烧前后的温度差来计算,必须经过合理的雷诺校正才能得到准确的温差变化。(2)多数物质不能自燃,如本实验所用萘,必须借助电流引燃点火丝,再引起萘的燃烧,因此,等式(2)左边必须把点火丝燃烧所放热量考虑进去就如等式(3):

?nQV,m?m点火丝Q点火丝?CΔT (3)

式中:m点火丝为点火丝的质量,Q点火丝为点火丝的燃烧热,为-6694.4 J / g,?T为校正后的温度升高值。

仪器热容的求法是用已知燃烧焓的物质(如本实验用苯甲酸),放在量热计中燃烧,测其始、末温度,经雷诺校正后,按上式即可求出C。

雷诺校正:消除体系与环境间存在热交换造成的对体系温度变化的影响。

方法:将燃烧前后历次观察的.贝氏温度计读数对时间作图,联成FHDG线如图2-1-2。图中H相当于开始燃烧之点,D点为观察到最高温度读数点,将H所对应的温度T1,D所对应的温度T2,计算其平均温度,过T点作横坐标的平行线,交FHDG线于一点,过该点作横坐标的垂线a,然后将FH线和GD线外延交a线于A、C两点,A点与C点所表示的温度差即为欲求温度的升高?T。图中AA’表示由环境辐射进来的热量和搅拌引进的能量而造成卡计温度的升高,必须扣除之。CC’表示卡计向环境辐射出热量和搅拌而造成卡计温度的降低,因此,需要加上,由此可见,AC两点的温度差是客观地表示了由于样品燃烧使卡计温度升高的数值

有时卡计的绝热情况良好,热漏小,而搅拌器功率大,不断稍微引进热量,使得燃烧后的最高点不出现,如图2-1-3,这种情况下?T仍可以按同法校正之。

外槽恒温式氧弹卡计(一个);氧气钢瓶(一瓶);压片机 (2台);数字式贝克曼温度计(一台); 0~100℃温度计(一支);万用电表(一个);扳手(一把);

萘(A .R);苯甲酸(A.R或燃烧热专用);铁丝(10cm长);

【实验步骤】

一、量热计常数K的测定。

1、苯甲酸约1.0g,压片,中部系一已知质量棉线,称取洁净坩埚放置样片前后质量W1和W2 。 2、苯甲酸约1.0g,压片,中部系一已知质量棉线,称取洁净坩埚放置样片前后质量W1和W2 。 3、把盛有苯甲酸片的坩埚放于氧弹内的坩埚架上,连接好点火丝和助燃棉线。 4、盖好氧弹,与减压阀相连,充气到弹内压力为1.2MPa为止。 6、把氧弹放入量热容器中,加入3000ml水。 7、插入数显贝克曼温度计的温度探头。

8、接好电路,计时开关指向“1分”,点火开关到向“振动”,开启电源。约10min后,若温度变化均匀,开始读取温度。读数前5s振动器自动振动,两次振动间隔1min,每次振动结束读数。

9、在第10min读数后按下“点火”开关,同时将计时开关倒向“半分”,点火指示灯亮。加大点火电流使点火指示灯熄灭,样品燃烧。灯灭时读取温度。

10、温度变化率降为0.05°C・min-1后,改为1min计时,在记录温度读数至少10min,关闭电源。先取出贝克曼温度计,再取氧弹,旋松放气口排除废气。

11、称量剩余点火丝质量。清洗氧弹内部及坩埚。 二、萘的恒容燃烧热的测定

1、取萘0.6g压片,重复上述步骤进行实验,记录燃烧过程中温度随时间变化的数据。

【注意事项】

①为避免腐蚀,必须清洗氧弹

②点火成败是实验关键。应仔细安装点火丝和坩埚。点火丝不应与弹体内壁接触,坩埚支持架不应与另一电极接触。

③每次实验前均应称量坩埚。

【文献值】

【实验数据与处理】

[实验原始数据]

第一组测定的数据:苯甲酸①

第二组测定的数据:苯甲酸②

第三组测定的数据:萘①

第四组测定的数据:萘②

[实验数据的处理]

①雷诺校正作图

② 计算卡计的热容C,并求出两次实验所得水当量的平均值。

苯甲酸的燃烧反应方程式为:

C7H6O2?s??

根据基尔霍夫定律:

15?

O2?g??7CO2?g??3H2O?l?, ?cHm??3226.0kJ?mol?12

15

Cp,m(O2,g) 2

∴ΔCp,m =7×Cp,m(CO2,g)+3×Cp,m(H2O,l)-Cp,m(苯甲酸,s)-=154.6805 J/mol?K

∴ 当室温为26.0℃ 时苯甲酸的燃烧焓为:

△cHm(26.0℃)=△cHm(25.0℃)+△Cp×△T

=-3226.9+154.6805×(26.0-25.0)×10-3 =-3225.84 kJ/mol 则:苯甲酸的恒容摩尔燃烧热为:

QV = △cUm=△cHm- RT∑BVB(g)

=-3225.84-8.314×299.15×(7-7.5) ×10-3

= -3224.6 kJ/mol 又:

nQV=-C△T -QV点火线・m点火线

∴(Ⅰ)苯甲酸①燃烧的数据处理:

QV点火丝・m点火丝= -6694.4×10-3×3.7×10-3 =-0.02477 kJ

0.4874

?(-3224.6)?(-0.02477)

-nQv,m?Q丝?m丝122.12C? ==15.517 kJ/℃

?T29.931?29.1

?

(Ⅱ)苯甲酸②燃烧的数据处理:

QV点火丝・m点火丝= -6694.4×10-3×9×10-4 =-6.025×10-3 kJ

0.4354

?(-3224.6)?(-0.006025)

-nQv,m?Q丝?m丝C? =122.12=15.866 kJ/℃

?T31.373?30.648

?

(Ⅲ)两次实验所得水当量的平均值为:

C=(15.517+15.866)÷2=15.692 kJ/℃

③计算萘的恒容摩尔燃烧热QV,m

根据公式:

nQV=-C△T -QV点火线・m点火线

则:(Ⅰ)萘①燃烧的数据处理:

QV点火丝・m点火丝= -6694.4×10-3×5.4×10-3 =-0.03615 kJ QV,m=(-C△T -QV点火线・m点火线)/n

-15.692??29.695?28.47??0.03615

=-5217.9 kJ/mol

0.4731128.18

(Ⅱ)萘②燃烧的数据处理:

QV点火丝・m点火丝= -6694.4×10-3×1.7×10-3 =-0.01138 kJ QV,m=(-C△T -QV点火线・m点火线)/n

-15.692??28.867?27.627??0.01138

=-5178 kJ/mol

0.4819128.18

(Ⅲ)萘的恒容摩尔燃烧热平均值为

Qv,m=(-5217.9-5178) ÷2=-5197.5 kJ/mol

④求萘的恒压摩尔燃烧热Qp,m(即△cHm)

萘燃烧的化学方程式为:

C10H8?s??12O2?g??10CO2?g??4H2O?l?

根据基尔霍夫定律:

??

B

B

(g)??2,

∴ΔCp,m =10×Cp,m(CO2,g)+4×Cp,m(H2O,l)-Cp,m(萘,s)-12Cp,m(O2,g) =154.304 J/mol?K

∴26.0℃ 时萘的燃烧焓为:

△cHm (26.0℃)=△cUm + RT∑BVB(g)

=-5206.63+8.314×299.15×(-2)×10-3 =-5211.604 kJ/mol

⑤由基尔霍夫定律将△cHm (T)换成△cHm (298.15K),并与文献比较

△cHm(25.0℃)=△cHm(26.0℃)+△Cp×△T

=-5211.604+154.304×(25.0-26.0) ×10-3 =-5211.758 kJ/mol

相对误差:??

|?5211.758?(?5153.8)|

?100%=1.12%

5153.8

【实验结果与讨论】

实验求得萘的燃烧热QP,实与文献值QP,标=?5153.85 kJ?mol?的误差为1.12%(小于3%)。可见本实验温度对萘的燃烧焓值影响很小,实验结果较为准确。产生误差的原因除了仪器误差之外,主要还有以下几个方面:

①使用雷诺图解法时,要做切线,切线分别表示正常温度上升和量热系统温度降低,切线拟合的结果对ΔT的影响很大,此次实验结果很大程度上取决于这一步数据处理。

②在实验进行过程中,夹套水温也不可能恒定,这会对ΔT的求算造成影响。但是夹套中水很多,且为了调零水温只比夹套水温1K左右,所以此误差可以忽略,这也是步骤中调整水温的原因。

③萘为易挥发性物质,压片称量后应该迅速放入氧弹中,以免因挥发而损失过多的质量,给实验带来误差,使实验结果偏大。

④氧弹内可能存在少量空气,空气中N2的氧化会产生热效应。

1

⑤若试样未完全燃烧,造成的影响很大,若有明显的黑色残渣,实验应重做。

⑥量取3000mL水使用的mL量筒的称量误差很大。

⑦水温改变带来的误差:由于此次实验是测量的内桶的水温,且总的波动不超过3℃,所以水温的改变会对实验结果造成较大影响。

热量交换很难测量,温度或温度变化却很容易测量。本实验中采用标准物质标定法,根据能量守恒原理,标准物质苯甲酸燃烧放出的热量全部被氧弹及周围的介质等吸收,使得测量体系的温度变化,标定出氧弹卡计的热容。再进行奈的燃烧热测量和计算。

测量体系与环境之间有热量的交换,因为理想的绝热条件是不可能达到的。同时影响热量的交换量大小的因素也比较多,①与体系、环境的材质有关;②与体系、环境的接触界面积大小有关;③与体系、环境的温差有关,所以要定量准确地测量出体系与环境交换的热量是比较困难的。如果有净的热量交换的话,将会增大实验的测量误差。

在本实验中采用的是恒容方法先测量恒容燃烧热,然后再换算得到恒压燃烧热。原因为:①如果是使用恒压燃烧方法,就需要有一个无摩擦的活塞,这是机械摩擦的理想境界,是做不到的;②做燃烧热实验需要尽可能达到完全燃烧,恒压燃烧方法难于使另一反应物――“氧气”的压力(或浓度)达到高压,会造成燃烧不完全,带来实验测定的实验误差。

【实验评注与拓展】

(1)实验关键:点火成功、试样完全燃烧是实验成败关键,可以考虑以下几项技术措施:

①试样应进行磨细、烘干、干燥器恒重等前处理,潮湿样品不易燃烧且有误差。

压片紧实度:一般硬到表面有较细密的光洁度,棱角无粗粒,使能燃烧又不至于引起爆炸性燃烧残剩黑糊等状。

②点火丝与电极接触电阻要尽可能小,注意电极松动和铁丝碰杯短路问题。

③充足氧(2MPa)并保证氧弹不漏氧,保证充分燃烧。燃烧不完全,还时常形

成灰白相间如散棉絮状。

④注意点火前才将二电极插上氧弹再按点火钮,否则因仪器未设互锁功能,极易发生(按搅拌钮或置0时)误点火,样品先已燃烧的事故。

(2) 氧弹内预滴几滴水,使氧弹为水汽饱和,燃烧后气态水易凝结为液态水。

试样在氧弹中燃烧产生的压力可达14MPa,长期使用,可能引起弹壁的腐蚀,减少其强度。故氧弹应定期进行20MPa水压检查,每年一次。

氧弹、量热容器、搅拌器等,在使用完毕后,应用干布擦去水迹,保持表面清洁干燥。恒温外套(即外筒)内的水,应采用软水。长期不使用时应将水倒掉。

氧弹以及氧气通过的各个部件,各联接部分不允许有油污,更不允许使用润滑油,在必须润滑时,可用少量的甘油。

(3)仪器应置放在不受阳光直射的单独一间试验室内进行工作。室内温度和湿度应尽可能变化小。最适宜的温度是20?5℃。每次测定时室温变化不得大于1℃。因此。室内禁止使用各种热源,如电炉、火炉、暖气等。

(4) 如用贝克曼温度计,其调节可以归纳为倒立连接、设定温度、正立震断和校验四步,注意别让水银过多地流向弯曲贮管,导致因水银重而在正立时,玻管扩张处挂不住。也绝不允许放在电炉上烤等骤冷骤热情况出现。在精密的测量中,应进行贝克曼温度计的校正。改进后的本实验普遍采用热敏电阻温度计、铂电阻温度计或者热电堆等,相应配以电桥、指示mV值,实际已转换为温度 (数显温度计) 的仪器,能自动记录温度,精密度可达10?4~10?5K。国产型号为半自动HR―15A(B)数显微机型或WHR―15全自动微机型氧弹式热量计。进入了全面启用电脑处理数据的新时代。

(5)苯甲酸和萘燃烧产物的热容差别因为产物量小而仪器热容的基数相对较大而可以忽略。

(6)量热方法和仪器多种多样,可参物化实验报告:燃烧热的测定_苯甲酸_萘阅复旦大学物理化学实验教材。量热法广泛用来测量各种反应热如相变热等。本实验装置除可用作测定各种有机物质、燃料、谷物等固体、液体物质的燃烧热外,还可以研究物质在充入其它气体时反应热效应的变化情况。

【提问与思考】

篇4:四燃烧热的测定

【实验目的】

1. 通过测定萘的燃烧热,掌握有关热化学实验的一般知识和技术。 2. 掌握氧弹式量热计的原理、构造及其使用方法。 3. 掌握高压钢瓶的有关知识并能正确使用。 【基本要求】

1. 了解量热计(环境恒温式量热计)构造和使用方法。 2. 掌握量热法的原理

3. 掌握量热法的有关技术,如用作图法校正温度(差),用标准物质标定量热计的热容量,以及测定某些物质的燃烧热。 【实验原理】

燃烧焓的定义:在指定的温度和压力下,一摩尔物质完全燃烧生成指定产物的焓变,称该物质在此温度下的摩尔燃烧焓,记作△cHm。

本实验是在等容的条件下测定的。等压热效应与等容热效应关系为

△cHm=△cUm+△nRT

(1)

△n是燃烧反应方程式中气体物质的化学计量数, 产物取正值,反应物取负值。燃烧热可在恒容或恒压条件下测定,又热力学第一定律可知,在不做非膨胀功时,△cUm=Qv, △cHm=Qp. 在氧弹式量热计中测定的燃烧热是Qv,则

Qp?Qv??nRT

(2)

在盛有水的容器中放入装有W克样品和氧气的密闭氧弹,使样品完全燃烧,放出的热量引起体系温度的上升。根据能量守恒原理,用温度计测量温度的改变量,由下式求得Qv。

Qv?

M

C(T终?T始) W

(3)

式中,M是样品的摩尔质量(g.mol-1);C为样品燃烧放热始水和仪器每升高1度所需要的热量,称为水当量(J.K-1)。水当量的求法是用已知燃烧热的物质(本实验

用苯甲酸)放在量热计中,测定和T始和T终,然后可测得萘的燃烧焓。 【仪器试剂】

氧弹式量热计1套;氧气钢瓶(带氧气表); 台称1只;电子天平1台(0.0001g)。苯甲酸(A.R); 萘(A.R);燃烧丝;棉线。

【实验步骤】 用环境恒温式量热计

1. 水当量的测定:

(1) 仪器预热 将量热计及其全部附件清理干净, 将有关仪器通电预热。

(2) 样品压片 在电子台秤上粗称0.9~1.0g苯甲酸, 在压片机中压成片状;取约10cm长的燃烧丝和棉线各一 根,分别在电子天平上准确称重;用棉线把燃烧丝绑在苯 甲酸片上,准确称重。

(3) 氧弹充氧 将氧弹的弹头放在弹头架上,把燃烧丝的两端分别紧绕在氧弹头上的两根电极上;在氧弹中加入10mL蒸馏水(实验中此步骤可以省略),把弹头放入弹杯中,拧紧。

充氧时,开始先充约0.5MPa氧气,然后开启出口,借以赶出氧弹中的空气。再充入1MPa氧气,充气约1分钟。氧弹放入量热计中,接好点火线。

(4) 调节水温 准备一桶自来水,调节水温约低于外筒水温1℃(也可以不调节水温直接使用)。用容量瓶取3000mL已调温的水注入内筒,水面盖过氧弹。装好搅拌头。

(5) 测定水当量 打开搅拌器,待温度稍稳定后开始记录温度,每隔1分钟记录一次,共记录10次。开启“点火”按钮,每隔15秒记录一次,约记录6~8次。当温度明显升高时,说明点火成功,继续每30s记录一次;到温度升至最高点后,再记录10次,停止实验。

停止搅拌,取出氧弹,放出余气,打开氧弹盖,若氧弹中无灰烬,表示燃烧完全,将剩余燃烧丝称重,待处理数据时用。

环境恒温式氧弹量热计装置

1. 弹头; 2. 数字温度计 2. 内桶; 4. 空气夹层 5.;外桶 6. 搅拌

2. 测量萘的燃烧热 称取0.8g~0.9g萘,重复上述步骤测定之。 【注意事项】

? 仪器先预热,打开开关,实验过程中不允许关闭。 ? 注意压片机要专用。

? 充氧时注意氧气钢瓶和减压阀的正确使用顺序,注意开关的方向和压力 ? 内筒中加3000mL水后若有气泡逸出,说明氧弹漏气,设法排除。 ? 搅拌时不得有摩擦声。

? 测定样品萘时,内筒水要更换且需调温。

? 氧气瓶在开总阀前要检查减压阀是否关好;实验结束后要关上钢瓶总阀,注意排净余气,使指针回零。

? 拔电极时注意不要拔线。 ? 第二次实验注意擦内筒。

【数据处理】

1. 实验数据:

原始数据记录:

1.燃烧丝重g; 棉线重g;苯甲酸样品重g; 剩余燃烧丝重 g;水温 ℃。

2. 燃烧丝重g; 棉线重g;萘样品重g; 剩余燃烧丝重;水温

2. 由实验数据分别求出苯甲酸、萘燃烧前后的t始和t终。

ΔT苯甲酸= ΔT萘=

3.由苯甲酸数据求出水当量C。

Q镍铬丝=-1400.8J・g-1;Q棉线=-17479J・g-1。

C?

(?Um)

w苯甲酸

-Q丝w丝-Q线w线

?T

查表知:25℃时苯甲酸Qp=-3228.0 kJ/mol 根据基尔霍夫定律:

CpH2O(l)=75.295 J.mol-1.K-1 Cp苯甲酸=145.2 J.mol-1.K-1

Cp O2=J.mol-1.K-1 Cp CO2=J.mol-1.K-1 Cp 萘=165.3J.mol-1.K-1 对于苯甲酸△Cp=7×37.129+3×75.295-145.2-15/2×29.359=120.3955 J.mol-1.K-1 对于萘

△Cp=10×37.129+4×75.295-165.3-12×29.359=154.9 J.mol-1.K-1

T298

苯甲酸: ??T=??298.15+??CpdT Qv= Qp-ΔnRT=

C?T?(?Um)

w苯甲酸M

-Q丝w丝-Q线w线

C= J/℃

4.求出萘的燃烧热QV,换算成Qp。 对于萘QV= Qp=QV+-ΔnRT

5. 将所测萘的燃烧热值与文献值比较,求出误差,分析误差产生的原因。 萘的文献值:

??T=??T+??CpdT

298T

相对误差= 【实验讨论】

1. 环境恒温式量热计由雷诺曲线求得ΔT的.方法如图下图所示。详细步骤如下:

将样品燃烧前后历次观察的水温对时间作图,联成FHIDG折线(图2-1-3),图中H相当于开始燃烧之点,D为观察到的最高温度读数点,作相当于相当于室温(或HD的1/2)之平行线JI交折线于I,过I点作ab垂线,然后将FH线和GD线外延交ab线A、C两点,A点与C点所表示的温度差即为欲求温度的升高ΔT。图中AA′为开始燃烧到

温度上升至室温这一段时间Δt1内,由环境辐射进来和搅拌引进的能量而造成体系温度的升高必须扣除,CC′为温度由室温升高到最高点D这一段时间Δt2内,体系向环境辐射出能量而造成体系温度的降低,因此需要添加上。由此可见AC两点的温差是较客观地表示了由于样品燃烧致使量热计温度升高的数值。

有时量热计的绝热情况良好,热漏小,而搅拌器功率大,不断稍微引进能量使得燃烧后的最高点不出现(图2-1-4)。这种情况下ΔT仍然可以按照同样方法校正。

图4-1 绝热较差时的雷诺校正图 图4-2 绝热良好时的雷诺校正图 2. 在燃烧过程中,当氧弹内存在微量空气时,N2的氧化会产生热效应,在精确的实验中,这部分热效应应予校正,方法如下:用0.1mol/L NaOH 溶液滴定洗涤氧弹内壁的蒸馏水,每毫升0.1 mol/L NaOH溶液相当于5.983 J(放热)。 【实验成败的关键】

(1)保证试样完全燃烧是实验的关键。 (2)氧弹点火要迅速果断。

(3)测定前在氧弹内滴几滴蒸馏水,能使氧弹内为水汽所饱和,又能使室温下的反应物之一的水蒸气凝结为液体水。

(4)必须注意燃烧前后体系温度的改变量在贝克曼温度计量程内。 【思考题】

1. 在氧弹里加10mL蒸馏水起什么作用?

2. 本实验中,那些为体系?那些为环境?实验过程中有无热损耗,如何降低热损耗?

3. 在环境恒温式量热计中,为什么内筒水温要比外筒水温低?低多少合适? 4. 欲测定液体样品的燃烧热,你能想出测定方法吗? 5. 说明恒容热和恒压热的关系。

6. 实验终那些因素容易造成误差?最大误差是哪种?提高本实验的准确度应该从哪方面考虑?

篇5:燃烧热的测定22

预习思考题

1、在本实验的装置中哪部分是燃烧反应体系?哪部分是测量体系?燃烧反应体系的温度和温度变化;测量体系的温度和温度变化能否被测定?为什么?

2、测量体系与环境之间有没有热量的交换?(即测量体系是否是绝热体系?) 如果有热量交换的话,能否定量准确地测量出所交换的热量?

3、加入内桶中水的水温为什么要选择比外筒水温低?低多少为合适?为什么?,样品应如何处理,才能提高测量的准确性?

4、在使用氧气钢瓶及氧气减压阀,应注意哪些规则?

5、在本实验中采用的是恒容方法先测量恒容燃烧热,然后再换算得到恒压燃烧热。为什么本实验中不直接使用恒压方法来测量恒压燃烧热?

6、苯甲酸物质在本实验中起到什么作用?

7、恒压燃烧热与恒容燃烧热有什么样的关系?

8、水热式量热计的温差值为什么必须进行雷诺图解正? 怎样校正?

9、本实验成功的关键因素是什么?

一. 实验目的

1、明确燃烧热的定义,了解定压燃烧热与定容燃烧热的差别;

2、了解氧弹量热计的主要组成及作用,掌握氧弹量热计的操作技术;

3、学会雷诺图解法,校正体系漏热引起的温度改变值。

4、掌握氧弹式热量计、氧气钢瓶、氧气减压阀、压片机的使用方法。

二. 实验原理

在恒容条件下测得的燃烧热称为恒容燃烧热(Qv),在恒压条件下测得的燃烧热称为恒压燃烧热(Qp),其值等于这个过程的热焓变化(ΔH) Qp = Q + ΔnRT

本实验在恒容条件下进行,测得的是恒容燃烧热(Qv)。

为了使被测物质能迅速而完全地燃烧,就需要有强有力的氧化剂。在实验中经常使用压力为25--30atm的氧气作为氧化剂。用氧弹量热计进行实验时,氧弹放置在装有一定量水的铜水桶中,水桶外是空气隔热层,再外面是温度恒定的水夹套。样品在体积固定的氧弹中燃烧放出的热、引火丝燃烧放出的热和由氧气中微量的氮气氧化成硝酸的生成热,大部分被水桶中的水吸收;另一部分则被氧弹,水桶、搅拌器及温度计等所吸收。在量热计与环境没有热交换的情况下,可以写出如下的热量平衡公式:

-Qv.a-q.b- C总.?t = W.h.?t (1)

式中:Qv:被测物质的定容燃烧热 (cal .g ); a:被测物质的质量(g);q:引火丝的燃烧热(cal .g );b:烧掉了的引火丝质量(g);W:水桶中的水的质量(g);h :水的比热(cal .g.℃);C

真实温差。

如在实验时保持水桶中水量一定,把(1)式右端常数合并得到下式:

-Qv.a-q.b=k?t (2)

式中:k= (W.h+C总) cal.℃,称为热量计的水当量。

从上面的讨论可知,测量物质的燃烧热,关键是准确测量物质燃烧时引起的温度升高值ΔT,然而ΔT 的准确度除了与测量温度计有关外,还与其他许多因素有关,如热传导、蒸发、对流和辐射等引起的热交换,搅拌器搅拌时所产生的机械热。它们对ΔT 的影响规律相当复杂,实际上,氧弹式热量计不是严格的绝热系统,加之由于传热速度的限制,燃烧后由最低温度达最高温度需一定的时间,在这段时间里系统与环境难免发生热交换,因而从温度计上读得的温差就不是真实的温差?t。为此,必须对读得的温差进行校正。

实验采用雷诺校正法进行(见书P27)。

采用雷诺图解法对ΔT 进行校正,具体校正方法如下: -1-1-1总-1-1 氧弹、水桶等的总热容(cal.℃ ); ?t与环境无热交换时的-1

图1 雷诺校正图

图1 是量热实验中测得的典型的温度-时间曲线,其中 T 为相对值(即贝克曼温度计读数。在燃烧热测定中,只需测量温度变化值ΔT,因而无需知道系统的绝对温度是多少。分析该图曲线可知,此温度-时间曲线可以分成三个部分来讨论,一是 AB 段,此段常称为前期。在前期,物质并没有被点火燃烧,温度随时间的变化是由于搅拌热和其他热交换所引起的,温度变化比较平缓。至 B 点时,物质被点火,系统温度上升比较显著,直至 C 点。BC 段称为主期。主期以后的 CD 段称为后期。主期之所以不能很快过渡到后期,也是由热滞后性等许多其他因素引起的。校正方法是分别作出曲线的.前期和后期的切线并用虚线延长之。在主期内作一垂线 FH 使其分别与前后期切线的延长线交于 G、F点。作垂线时应注意

使垂线、主期温升曲线分别与前后期切线的沿长线所围成的面积 SBGE 和 SCFE 相等,则F、G 两点的温差即为系统内部由于燃烧反应放出热量致使系统温度升高的数值ΔT。

从(2)式可知,要测得样品的Qv 必须知道仪器的水当量K。测量的方法是以一定量的已知燃烧热的标准物质(常用苯甲酸,其燃烧热以标准试剂瓶上所标明的数值为准)在相同的条件下进行实验,测得t低. ,t高并用雷诺图算出?t校正后,就可按(2)式算出K值。由K值再测萘的QV,再计算QP。

三 仪器与试剂

仪器:氧弹计、压片器、分析天平、万用电表、点火丝、剪刀、直尺、扳手、氧气钢瓶及氧气减压阀。

化学试剂:苯甲酸、萘。

图1. 绝热式氧弹量热计

1.内筒搅拌器;2.精密电子温差测量仪;3.氧弹;4.外筒搅拌筒; 5.外筒搅拌电机;6.外筒放水龙头;

7.外筒搅拌器;8.外筒加热极板; 9.外壳;10.外筒;11.水帽;12.内筒贝克曼温度计;13.内筒;

A.外筒热敏电阻; B.内筒热敏电阻。

图2. 氧弹的构造

1.厚壁圆筒; 2、5.电极; 3.螺帽; 4.进气孔; 6.排气孔; 7. 弹盖8. 火焰遮板; 9.燃烧皿

四、实验方法、步骤及结果测试

(一) 水当量的测定

1.样品称量压纯

(1)

(2)

(3)

(4) 在托盘天平上称取0.8克左右的苯甲酸和0.5克左右的萘, 到入各自的压纯机压纯, 在压好的样品纯上系上已知长度的棉线,并穿上已知长度的引火线. 将带有引火线和棉线的两个样品在电子天平上准确称量.

2. 充氧

(1)

(2)

(3)

(4) 用手拧开氧弹盖,置氧弹盖与专用架上. 将已称好的样品纯(苯甲酸和萘)放入不锈钢杯内. 将样品上的引火线的两端分别接在两电极上,盖好盖子并拧紧 用万用表检查两极是否通路(应通路)

(5) 拧下进气管口螺钉,接上输氧管,充氧.(开始先充少量氧气约0.5MPa)然后开启出口,

借以赶出弹中空气,然后充入氧(2.8-3.0 MPa)约1分钟.

(6) 用万用表进行第二次检查.

3. 安装量热计

(1)

(2)

(3) 在水夹套中加满水 在内桶中加入准确量取的3000ml水,水温低于夹套水温0.5-1.0度 把电极插头插紧在两极上,盖上盖子,将温差测量仪探头插入内桶水中,开启

搅拌器。

4.温度的测定

(1)

(2) 初期――开启“时间”每一分钟读1次,共10次。 中期――在上述最后一次(第10次)读数瞬间,按下“点火”(须

在1秒钟内完成),同时是将艾为0.5秒1次,直至温度不再上升。

(3)

5.结束工作

(1)

(2) 关闭电源,取下温度探头,揩干放入盒子。 拿出氧弹,揩干表面水分,慢慢打开出气口,放出余气,旋下氧弹盖,

检查样品燃烧情况。若有黑色残渣,需重做。

(3)

(4) 量取剩余引火线长度。 将水桶中水倒掉并揩干,备用。 改“时间”为1分钟1次,读数10次。

(二)萘燃烧热的测定

用准确称取0.5-0.6克萘于燃烧杯中, 其余方法与前述相同。

(三)数据处理

由苯甲酸测定值进行雷诺图算出?t校正后,就可按(2)式算出K值,在相同的条件下进行实验测定萘t低. ,t高,用雷诺图算出?t校正后,由K值计算萘的QV, QP。

篇6:实验二燃烧热测定

专业:11化学 姓名:赖煊荣 座号:32 同组人:陈见晓 时间:.10. 15

Ⅰ、目的要求

1.用氧弹热量计测定萘的燃烧热。

2.明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的差别。 3.了解热量计中主要部分的作用,掌握氧弹热量计的实验技术。 4.学会雷诺图解法校正温度改变值。

Ⅱ、基本原理

一、燃烧与量热

根据热化学的定义,1mol物质完全氧化时的反应热称作燃烧热。所谓完全氧化,对燃烧产物有明确的规定。

量热法是热力学的一个基本实验方法。在恒容或恒压条件下,可以分别测得恒容燃烧热Qv和恒压燃烧热Qp。由热力学第一定律可知,Qv等于体系内能变化ΔU;Qp等于其焓变ΔH。若把参加反应的气体和反应生成的气体都作为理想气体处理,则它们之间存在以下关系:

ΔH =ΔU + Δ(pV)

Qp = Qv + Δn RT ――(1)

式中,Δn为反应前后反应物和生成物中气体的物质的量之差;R为气体常数;T为反应时的热力学温度。

热量计的种类很多,本实验所用氧弹热量计是一种环境恒温式的热量计。氧弹热量计的装置如图右。

二、氧弹热量计

氧弹热量计的基本原理是能量守恒定律。样品完全燃烧所释放的能量使得氧弹本身及其周围的介质和

热量计有关附件的温度升高。测量介质在燃烧前后温度的变化值,就可求算该样品的恒容燃烧热。其关系

式如下:

-W样/M 〃Qv C l〃Ql =(W水c水+C计) ΔT ――(2)

式中,W样和M分别为样品的质量和摩尔质量;Qv为样品的恒容燃烧热;l和Ql是引燃用金属丝的长度和单位长度燃烧热,W水和C水是以水作为测量介质时,水的质量和比热容;C计称为热量计的水当量,即除水之外,热量计升高1℃所需的热量;ΔT为样品燃烧前后水温的变化值。

三、雷诺温度校正图

实际上,热量计与周围环境的热交换无法完全避免,它对温差测量值的影响可用雷诺温度校正图校正。具体方法为:称取适量待测物质,估计其燃烧后可使水温上升1.5~2.0℃。预先调节水温低于室温1.0℃左右。按操作步骤进行测定,将燃烧前后观察所得的一系列水温和时间关系作图。得一曲线如下左图。图中H点意味着燃烧开始,热传入介质;D点为观察到的最高温度值;从相当于室温的J点作水平线交曲线于I,过I点作垂线,再将FH线和GD线延长并交ab线于A、C两点,其间的温度差值即为经过校正的ΔT。图中AA′为开始燃烧到温度上升至室温这一段时间Δt1内,由环境辐射和搅拌引进的能量所造成的升温,故应予扣除。CC′为由室温升高到最高点D这一段时间Δt2内,热量计向环境的热漏造成的温度降低,计算时必须考虑在内。故可认为,AC两点的差值较客观地表示了样品燃烧引起的升温数值。

本实验采用贝克曼温度计来测量温度差。

Ⅲ、仪器、试剂

XRY-1A型数显氧弹式热量计(已包含贝克曼温度计、秒表、放大镜等)1套、氧气钢瓶1只、氧气减压阀1只、压片机1台、电子天平1台、万用电表1台、量杯(1000ml)1只、量筒(10ml)1个、塑料桶1个、直尺1把、剪刀1把、温度计(100℃)1支、引燃专用金属丝、苯甲酸(分析纯)、萘(分析纯)

Ⅳ、实验步骤

1.测定热量计的水当量

(1)样品制作 用电子天平称取大约1g苯甲酸(切勿超过1.1g),在压片机上压成圆片。

样片压得太紧,

点火时不易全部燃烧;压得太松,样品容易脱落。将样品在干净的玻璃板上轻击二、三次,再用电子天平精确称量。

(2)装样并充氧气 拧开氧弹盖,将氧弹内壁擦干净,特别是电极下端的不锈钢丝更应擦干净。搁上金属小皿,小心将样品片放置在小皿中部。剪取10cm长的引燃金属丝,在直径约3mm的玻璃棒上,将其中段绕成螺旋形约5~6圈。将螺旋部分紧贴在样片的表面,两端如图2所示固定在电极上。用万用电表检查两电极间电阻值,一般应不大于20Ω。旋紧氧弹盖,再用万用电表检查后卸下进气管口的螺栓,换接上导气管接头。导气管另一端与氧气钢瓶上的减压阀连接。打开钢瓶阀门,使氧弹充入2 M Pa的氧气。

关闭氧气瓶阀门,旋下导气管,放掉氧气表中的余气。将氧弹的进气螺栓旋上,再次用万用表检查两电极间的电阻,在确保两电极导通。如阻值过大或电极与弹壁短路,则应放出氧气,开盖检查,重新装样。

(3)测量 用量杯(1000 ml)准确量取已被调节到低于室温1.0℃的自来水2700 ml于盛水桶内。将氧弹放入水桶中央,接好两极导线,装好搅拌马达,盖上盖板。待温度稳定上升后,每隔1min读取一次温度。10~15min后,按下面板上电键通电点火。若指示灯亮后即熄灭,且温度迅速上升,表示氧弹内样品已燃烧;若指示灯根本不亮且温度也不见迅速上升,则须停止实验。打开氧弹检查原因。自按下电键后,读数改为每隔15s一次,直至两次读数差值小于0.005℃,读数间隔恢复为1min一次,继续15min后方可停止实验。本实验用自动报时装置,按报时间隔读取相应读数。实验时间大约40分钟。

2.萘的燃烧热测量

称取0.6g左右的萘,同上述方法进行测定。

Ⅴ、数据处理

表1.苯甲酸燃烧时温度随时间的变化 次数/30s 温度/℃ 次数/30s 温度/℃ 次数/30s 温度/℃

1 26.341 11(点火) 26.465 21 27.281

2 26.379 12 26.493 22 27.316

3 26.397 13 26.607 23 27.346

4 26.461 14 26.699 24 27.373

5 26.462 15 26.851 25 27.397

6 26.469 16 26.962 26 27.419

7 26.461 17 27.047 27 27.440

8 9 10

26.464 26.468 26.463 18 27.131 28 27.460

19 27.186 29 27.480

20 27.498 30 27.498

次数/30s 温度/℃ 次数/30s 温度/℃

31 27.515 41(熄火) 27.654

32 27.532 42 27.666

33 27.547 43 27.679

34 27.561 44 27.690

35 27.576 45 27.702

36 27.590 46 27.712

37 27.590 47 27.723

38 27.603 48 27.733

39 27.627 49 27.743

40 27.639 50 27.753

压片后苯甲酸的`质量m=0.981g 铁丝原长L1=10cm

剩余未燃尽的铁丝的长度L2

=2.2cm

表2.萘燃烧时温度随时间的变化 次数/30s 温度/℃ 次数/30s 温度/℃ 次数/30s 温度/℃ 次数/30s 温度/℃ 次数/30s 温度/℃

1 25.593 11(点火) 25.499 21 26.329 31 26.588 41(熄火) 26.699

2 25.604 12 25.515 22 26.399 32 26.602 42 26.707

3 25.597 13 25.581 23 26.415 33 26.615 43 26.717

4 25.596 14 25.618 24 26.446 34 26.630 44 26.726

5 25.595 15 25.754 25 26.474 35 26.639 45 26.737

6 25.602 16 25.897 26 26.498 36 26.646 46 26.741

7 25.609 17 26.023 27 26.520 37 26.653 47 26.750

8 25.577 18 26.119 28 26.539 38 26.664 48 26.758

9 25.560 19 26.206 29 26.556 39 26.675 49 26.766

10 25.548 20 26.272 30 26.572 40 26.686 50 26.773

压片后萘的质量m=0.607g

铁丝原长L1=10cm

剩余未燃尽的铁丝的长度L2

=2.2cm

表3. 实验室条件的记录表

实验开始时

温度/℃ 压力/hp 湿度/%

由ΔT计算水当量和萘的恒容燃烧热Qv,并计算其恒压燃烧热Qp: C6H5COOH(s)+15/2O2(g)=7CO2(g)+3H2O(l) 由Qp = Qv + ΔnRT 可知 Qv苯甲酸 = Qp ΔnRT

=3226.9kJ/mol×0.973/122.12(-0.5) ×8.314×298k =24.47kJ

由图1可知:△T1=1.10 k 有以下关系式

实验结束时

26.1 1020.0 57.2

温度/℃ 压力/hp 湿度/%

26.9 1021.0 58.0

- QvW样/M - l・QJ = (W水c水 + c计) △T1

K=( W水c水 + c计)=( - QvW样/M ・Qv - l・Ql)/ △T1 =[-0.973 x(-24.47)/122.12-5.9×(-2.9)/1000]/1.10 =0.193 kJ/k

由图2可知:ΔT2 =1.09k 有以下关系式

- QvW2 / M - l・Ql = (W水c水 + c计) ΔT2 Qv萘= [(W水c水 + c计)ΔT2+ l・Ql]?M/- W2 =(KΔT2+ l・Ql) M/- W2

=[0.193×1.09+8.5×(-2.9)/1000]×128.18/(-0.607) =-39.22 kJ

Qv .m 萘=-39.22/(0.607/128.18)= -8281.7 kJ/mol

Ⅵ、结果分析与讨论

由结果看出误差相对于标准值较大,应该与实验中操作有失误有关。在实验数据处理中将反应的热效应近似为一常数,但实际上它的值是温度的函数,在实验过程中发现环境温度并不稳定,在实验过程中有变化,因此带来一定误差。

上述计算相对误差的公式是假定在苯甲酸和茶都完全燃烧的条件下得出的,实际上仅用眼睛来观察试样燃烧后是否有残余的黑渣存在而判断撤烧完全与否是不准确的,也是不科学的,因所谓完全燃烧是指碳元素生成二氧化碳、氢元素生成水,所以即是没有碳渣,若是有一氧化碳生成也不为完全燃烧,这也会给实验带来难以估计的误差,如果将燃烧后的残气用气体分析仪分析一下,则这个误差也是可估计的。

Ⅶ、思考题

1.固体样品为什么要压成片状?

答:排除空气等气体杂质的同时,节省了样品在氧弹中所占体积,减小误差;同时,压片后的样品燃烧会更充分,便于准确秤样,装入氧弹时不易洒落;.便于与铁丝接触;便于铁丝、样品与正负极连接;便于燃烧完全。

2.在量热学测定中,还有哪些情况可能需要用到雷诺温度校正方法?

答: 在体系与周围环境可能有热交换的情况下都可能需要用到雷偌温度校正方法。例如在测量中用到热量

计或用到搅拌器等的情况下。

3.如何用萘的燃烧热数据来计算萘的标准生成热?

答: 因为△fHm=△rH反应物-△rH生成物,所以求出萘在此温度下的燃烧热;再用公式△fH2=△fH1+Cp(T2-T1)求出萘的标准生成热。

Ⅷ、参考资料

1.《物理化学实验》(第三版)复旦大学等编P34-39;P186-188 2.《物理化学实验》(第二版)复旦大学等编P43-47;P241-242

篇7:实验二燃烧热的测定

一、实验目的

1、巩固燃料燃烧热的概念。

2、了解和掌握固体燃料或沸点大于250℃重质液体燃料发热量的测定方法。

3、掌握氧弹式热量计的构造、安装及实验技术。

二、实验原理

目前国内外均采用氧弹法测定固体、液体类燃料的热值,其原理是把一定量的分析试样放置在氧弹中,在氧弹中充入氧气,然后使试样在氧弹中完全燃烧,氧弹预先放在一个盛满水的容器中,根据试样燃烧后水温的升高,计算出试样的发热量。由于实际情况并不如此简单,所以需要考虑各种影响测定的因素,进行各种校正,然后才能获得正确的结果。

目前通用的热量计有绝热式和恒温式两种类型。

绝热式热量计:把盛有氧弹的水筒放在一个双壁水套中间,这个水套称外筒。当试样点火后,内筒水温度在上升过程中,外筒水温度通过自动控制加热跟踪而上,当内筒水温度达最高点而呈现平稳时,外筒水温度也达到这个水平,并保持恒定。在整个试验过程中,内、外筒水温度保持一致,因而消除了热交换。用这种绝热式热量计测定时,可以省略许多繁琐的计算。这种方法叫绝热式热量计法。 恒温式热量计:恒温式热量计是在保持外筒水温恒定不变的情况下,采用雷诺作图法或计算公式来校正热交换的影响,因而这种仪器要有严格的试验室,以减少外界对试验结果的影响,这种方法叫恒温式热量计法。

本实验采用恒温式热量计法,仪器型号为SHR-15氧弹式热量计,该热量计操作方便,设备简单,用标准苯甲酸进行标定,不需附加设备。在设计与制造中,已考虑到使热量计环境与体系之间的热交换作用减到最小,剩余的热交换作用,在体系与环境不大于2~3℃的情况下,可用一定的热交换校正公式进行校正。 在测定中,先用已知重量的标准苯甲酸(26460J/g)在热量计中燃烧,求出热量计的水当量(即在数值上等于量热体系温度升高一度所需要的热量)。接着把被测燃料(试样)在同样条件下,在热量计内燃烧,测量量热体系温度升高,根据所测温度升高及量热体系的水当量,即可求出所测燃料的燃烧热。

设在测量热量计水当量时,发生的热效应为Qe,体系温度升高为?Te,则热

量计的水当量K可以表示成:K?Qe/?Te

又设被测物质发生的热效应为Qx(即未知热效应),体系温度升高为?T,则体系温度每升高1℃所需的热量仍应为K?Qe/?Te,两式相比则:

Qx?(Qe/?Te)?T?K.?. T

由此式即可计算所测物质的燃烧热,式中K为热量计的水当量,△T为在热量计中发生未知热效应时所测得的体系温升。

三、实验仪器及装置

1、SHR-15型氧弹式热量计。结构见图2-1、图2-2。

图2-1 SHR-15型氧弹式热量计结构图

图2-2 氧弹式热量计安装和氧弹充气示意图

四、实验步骤与结果计算

1、热量计水当量的测定

1)、试剂和材料

苯甲酸(已知热值);作引火用的金属丝(已知燃烧热3.138J/cm,金属丝长约120mm);氧气;酚酞;0.1mol的氢氧化钠。氧弹式量热计1套;氧气钢瓶(带氧气表)1个;台秤1只;电子天平1台(0.0001g)。

2)、准备工作

A、仪器预热 将量热计及全部附件清理干净,将有关仪器通电预热,打开计算机。

B、样品压片 压片前先检查压片用钢模是否干净,否则应进行清洗并使其干燥, 用电子天平称0.6~0.7克干燥苯甲酸(在100~105℃烘箱中烘干3~4小时冷却至室温)并压片,并在电子天平上称重;

C、装氧弹及充氧气

将氧弹的弹盖旋出,在氧弹中加入10mL水,把氧弹的弹头放在弹头架上,把燃烧丝的两端分别紧绕在弹头上的两根电极上,其中一段放在苯甲酸片上。引火线切勿接触坩埚。把弹头放入弹杯中拧紧。

首先开启氧气钢瓶,观察减压阀和压力表,然后对氧弹充气约1mim充氧

1.5-2.0Mpa,迅速抬起充氧阀。将氧弹放入量热器放稳,并插稳电极。

D、调节水温 首先观测外筒温度,用加冰或加热水的方法调整内外筒水温,测定开始时外筒水温与室温相差不得超过0.5℃,内筒水温比外筒水温应低0.7℃(使用水当量较大的热量计,如3000克时),保证内筒水面盖过氧弹。盖好盖子调节好搅拌头位置。

E、接上控制器上的点火电极,盖上盖子,将温度温差仪的探头插入内桶水中,将温度温差档打向温差。控制器上各线路接好,开动搅拌马达,待温度均匀稳定即可读取数据。

3、读取数据

A、初期:在试样燃烧之前,观测和记录周围环境与量热体系在试验开始温度下的热交换关系。每隔半分钟读取温度一次,共读取十一次。

B、主期:燃烧定量的试样,产生的热量传给热量计,使热量计装置的各部分温度达到均匀。在初期的最末一次读取温度的瞬间,按动点火电扭点火,然后开始读取主期的温度,每半分钟读取温度一次,直到温度不再上升而开始下降的第一次温度为止。

C、末期:观察在试验终了温度的热交换关系。在主期读取最后一次温度后,每隔半分钟读取温度一次,约共读取十次温度,直至温度停止下降为止。

4、结尾

A、停止读取温度后,关上马达,停止搅拌,取出测温探头,打开外筒盖,取出氧弹,用泄气阀在5分钟左右放尽气体,拧开并取下氧弹盖,量出未燃完的引火线长度。随后仔细检查氧弹,如弹中有烟黑或未燃完的试样微粒,则此试验应作废,若未发现上述情况,则用热蒸馏水150~200ml洗涤弹内各部分,坩埚和进气阀,并将洗弹液和坩埚中的物质收集在洁净的烧杯中。

B、用干布将氧弹内外表面和弹盖拭净,并用电吹风吹干。

C、将盛洗弹液的烧杯加盖微沸5分钟,加两滴1%酚酞,以0.1mol氢氧化钠溶液滴到粉红色,保持15秒不变为止。滴定的0.1mol氢氧化钠溶液容积应记录备用。

5、数据处理及测定结果计算

① 测试结果按下列公式计算

式中,K―热量计的水当量(g);Q―苯甲酸的热值(J/g);a―苯甲酸的重量(g); g――引火线的燃烧热(J/cm);b――实际消耗的引火线长度(cm);

5.98――相当于1ml0.1mol氢氧化钠溶液的硝酸的生成热和溶解热(J/ml); C――滴定洗弹液所消耗的0.1mol氢氧化钠溶液的体积(ml);

T――直接观测到的主期的最终温度(℃);T0――直接观测到的主期的最

初温度(℃);?t――热量计热交换校正值。

?t用奔特公式计算 :?t?(V1?V2)m/2?V2r

式中:V1――初期温度变率;V2――末期温度变率;

m ――在主期中每半分钟温度上升不小于0.3℃的间隔数,第一个间隔不管温度升多少都计入m中;r ――在主期中每半分钟温度上升小于0.3℃的间隔数。

(二)萘恒容燃烧热的'测定:?

称取0.6克的萘,按上述操作步骤,压片、称重、燃烧等实验操作重复一次。测量萘的恒容燃烧热为Qv?(K(T?T0??t)?gb)/G。

五、实验数据记录与处理

1、实验基本数据

1)预实验的水当量K= 室温T(℃): 室内大气压P(kPa):

2)萘的测定 外筒温度: ℃ 内筒温度: ℃

萘的质量G: g 燃烧丝原长L0: 燃烧丝剩余长度L:

V1? V2? m= r? b=L?L= 0

?t?(V1?V2)m/2?V2r=

Qv?(K(T?T0??t)?gb)/G=

六、思考题(五选三)

1、在环境恒温式量热计中,为什么内筒温度要比外筒温度低?低多少合适?

2、在本实验的装置中哪部分是测量体系?测量体系的温度和温度变化能否被测定?为什么?

3、欲测定液体样品的燃烧热,你能想出测定方法吗?固体样品为什么要压成片状?

4、测量体系与环境之间有没有热量的交换?(即测量体系是否是绝热体系?)如果有热量交换的话,能否定量准确地测量出所交换的热量?

5、在本实验的装置中哪部分是燃烧反应体系?燃烧反应体系的温度和温度变化能否被测定?为什么?

附件一、实验注意事项

1、充氧时,通过的调压阀、压力表及氧弹等不允许沾有油污,更不允许使用润滑油。且氧弹充氧压力要按规定值严格控制,以免在充氧时发生意外爆炸。

2、温度温差仪安装时应特别小心,实验前最后装入,实验后最先取出并放妥。氧弹充完氧后一定要检查确信其不漏气,并用万用表检查两极间是否通路。

3、热值实验最好在不受阳光照射,无其它热源且室温变化不大的独立实验室进行。将氧弹放入量热仪前,一定要先检查点火控制键是否位于“关”的位置。点火结束后,应立即将其关上。

4、因控制箱接220伏的交流电,所以在安装和操作过程中一定要认真细心,严禁用湿手去安装和操作,以免触电。

5、试样点火燃烧后,内筒水温升高较快,所以实验时要思想集中,以免漏读数据造成计算结果误差较大。

附件二: SWC-ⅡD数字温度温差仪使用说明

一、面板示意图

1、电源开关 2、温差显示窗口――显示温差值

3、温度显示窗口――显示所测物的温度值 4、定时窗口――显示设定的读数时间间隔

5、测量指示灯――灯亮表明系统处于测量工作状态

6、保持指示灯――灯亮表明系统处于读数保持状态

7、锁定指示灯――灯亮表明系统处于基温锁定状态

8、锁定键――按下此键,基温自动选择和采零键都不起作用,直至重新开机

9、测量、保持功能转换键――此键为开关式按键,在测量功能和保持功能之间转换

10、采零键――用以消除仪表当时的温差值,使温差显示窗口显示“0.000”

11、12、数字调节键――△键和键分别调节数字的大小

二、操作步骤

1、将传感器探头插入后盖板上的传感器接口(槽口对准)。

2、将~220V电源接入后盖板上的电源插座。

3、将传感器插入被测物中(插入深度应大于50mm)。

4、按下电源开关,此时显示屏显示仪表初始状态(实时温度),如:

5、当温度显示值稳定后,按一下采零键,温差显示窗口显示“0.000”。稍后的变化值为采零后温差的相对变化量。

6、在一个实验过程中,仪器采零后,当介质温度变化过大时,仪器会自动更换适当的基温,这样,温差的显示值将不能正确反映温度的变化量,故在实验时,按下采零键后,应再按一下锁定键,这样,仪器将不会改变基温,采零键也不起作用,直至重新开机。

7、需要记录读数时,可按一下测量/保持键,使仪器处于保持状态(此时“保持”指示灯亮)。读数完毕,再按一下测量/保持键,即可转换到“测量”状态,进行跟踪测量。

8、定时读数

① 按下△或键,设定所需的报时间隔(应大于5秒钟,定时读数才会起作用)。

② 设定完后,定时显示将进行倒计时,当一个计数周期完毕时,蜂鸣器鸣叫且读数保持约5秒钟,“保持”指示灯亮,此时可观察和记录数据。

③ 若不想报警,只需将定时读数置于0即可。

篇8:深圳大学物理化学实验报告--燃烧热的测定--谢佳澎 苏竹

深圳大学物理化学实验报告--燃烧热的测定--谢佳澎 苏竹 -实习报告

深圳大学物理化学实验报告

实验者: 谢佳澎 苏竹 实验时间: /3/5

气温: 24.5 ℃ 大气压: 101.47 kPa

燃烧热的测定

目的'要求

一,用氧弹热量计测定萘的燃烧热

二,明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的差别

三,了解热量计中主要部分的作用,掌握氧弹热量计的实验技术

四,学会雷诺图解法校正温度改变值

仪器与试剂

氧弹卡计 贝克曼温度计 普通温度计 压片器 分析天平台秤 万用电表 点火丝 剪刀 直尺镊子 扳手 苯甲酸 柴油 氧气钢瓶 氧气减压阀

实验数据及其处理

贝克曼温度计读数

苯甲酸

柴油

苯甲酸

柴油

样品质量 g

序号

初段

末段

初段

末段

W2

W2

1

2.157

3.458

1.528

3.440

2.2500

39.1769

2

2.162

3.461

1.533

3.480

W1

W1

3

2.169

3.464

1.538

3.520

1.5718

38.5392

4

2.175

3.467

1.541

3.550

样重

样重

5

2.180

3.469

1.542

3.558

0.6782

0.6377

6

2.185

3.470

1.544

3.561

点火丝

7

2.190

3.471

1.546

3.568

L2

L2

8

2.194

3.472

1.547

3.570

20

20

9

2.198

3.473

1.549

3.575

L1

L1

10

2.203

3.475

1.550

3.572

16

5.8

消耗

消耗

4

14.2

初段斜率

初段截距

初段斜率

初段截距

0.0051

2.153

0.0023

1.529

末段斜率

末段截距

末段斜率

末段截距

0.0018

3.458

0.0131

3.467

升温中点

12

升温中点

12.5

中点低温

中点高温

中点低温

中点高温

2.215

3.480

1.558

3.625

温升

1.265

温升

2.066

水值J/℃

14191

热值 J/g

45920

4 实验讨论

固体样品为什么要压成片状?

答:压成片状易于燃烧,和氧气充分接触,且易于称中。

2. 在量热学测定中,还有哪些情况可能需要用到雷诺温度校正方法?

答:实验中要用到温度差校正的都可以用。

3. 如何用萘的燃烧数据来计算萘的标准生成热?

答:代入公式计算。

篇9:肺活量的测定实验报告

肺活量的测定

[目的]

学习测量肺通气功能的方法。了解肺活量计的构造.

[试验器材及对象]

牐犎(受试者),肺活量计

[实验原理]

肺的主要功能是进行气体交换,以维持正常的新陈代谢。为此,肺必须与外界大气不断地进行通气。

牐牱稳萘渴侵负粑过程中某一阶段肺内空气的容积。肺通气量则为单位时间内通过肺的气体流通量。常用肺活量计用来测量肺通气量。测定这些数据可以在一定程度上反映肺通气功能

[试验步骤]

1、了解肺活量计的构造:肺活量计主要由一对套在一起的圆筒组成:外筒装入一定量的清水,底部有排水阀门,中央有进气管,管的'上端露出水面,管下端通向筒外的三通阀门,呼吸气经此出入。内筒为倒扣在外筒中的浮筒,浮筒内为一密闭的空间,浮筒可随呼吸气体的进出而升降。

2、将肺活量计按压平稳,抽出浮筒.

3、将预先准备好的清水注入外筒内,使水位到达水位表的红线刻度(275 mm)。 4、用三支调整螺丝调整外筒与水平面的垂直度。

5、用食指和中指卡住浮筒上的排水阀的阀体,用拇指压住排气压头,使浮筒徐徐压入水中,一直压倒筒底。

6、检查外筒,内筒,气阀等是否漏气漏水。

7、受试者手持吹气嘴,站立,深吸气至最大限度,嘴部贴紧吹气嘴,徐徐向筒内吹气,截至不能再吹气为止,读出浮筒刻度指针对应的数字,即

为受试者的肺活量数字。重复三次,取最大值。

8、复位:按5的方法将浮筒压入水中复位

[注意事项]

1.每次使用肺活量计前应检查其是否漏水漏气,平衡锤重量时候合适。

2.肺活量计中的水应在试验前灌足,以使水温与室温一致.

3.试验时应注意防止从鼻孔或嘴角漏气.

4.每次更换受试者,都应重新消毒橡皮接口和吹嘴.

5.肺活量计用后将水倒出并擦干.

6.人体的肺活量与性别,年龄,身高,体重,生活环境等有密切关系。青少年儿童的肺活量随年龄增长而增长,到18-20岁时趋向稳定,男子肺活量均高于女子,至成年时女子的肺活量为男子的70%,且农村,城市,南北方青年的肺活量均有差别.

7.测定最大通气量前,受试者最好练习一下如何进行最深最快的呼吸,以掌握试验所要求的呼吸方法

[作业]

1.为什么肺活量的测定要取最大值?

2.比较肺活量与时间肺活量的意义有何不同?

3.浮筒内充氧气和充一般空气所测得的结果有无差别,为什么?

篇10:肺活量的测定实验报告

肺活量检测

肺活量是指在不限时间的情况下,一次最大吸气后再尽最大能力所呼出的气体量,这代表肺一次最大的机能活动量,是反映人体生长发育水平的重要机能指标之一。

指标分析

成年男子肺活量约为3500毫升,女子约为2500毫升。壮年人的肺活量最大,幼年和老年人较小。

注意事项

1. 静呼吸法:将右手大拇指按住右鼻孔,慢慢地由左鼻孔深呼吸,有意识地想像空气是朝前额流去的。当肺部空气饱和时,用右手的食指和中指把左鼻孔按住,屏气10秒钟再呼出。然后按住左鼻孔重新开始。每边各做5次。

2. 睡眠呼吸法:躺在床上,两手平放身体两侧,闭上眼睛开始做深呼吸。慢慢抬起双臂举过头部,紧贴两耳,手指触床头。这一过程约10秒钟,双臂同时还原,反复10次。此法还可助您安然入睡。

3. 坚持抬头挺胸直腰的正确姿势,在日常生活中,无论坐、站或走路,如能长期坚持挺胸抬头直腰的姿势,肺活量可增加半成至两成,而身体各组织所获得的氧气量也随之增加。

4. 防止烟雾损害肺部,居室和工作、学习场所都要注意空气卫生,居室要常开窗户,促进空气流通,及时消除室内烟雾,吸烟者戒烟。

篇11:肺活量的测定实验报告

实验内容:测肺活量(五年级上册第一单元)

课题:肺和呼吸

实验器材: 塑料瓶(大饮料瓶)、100ml烧杯、白纸条、记号笔、胶水、水槽

实验类型:教师演示、学生操作

实验结论:人的肺活量有大有小。

篇12:金属材料硬度实验测定实验报告

一、实验目的

(1)了解硬度测定的基本原理及常用硬度试验法的应用范围。

(2)学会正确使用硬度计。

二、实验设备

(1)布氏硬度计

(2)读数放大镜

(3)洛氏硬度计

(4)硬度试块若干

(5)铁碳合金退火试样若干(ф20×10mm的工业纯铁,20,45,60,T8,T12等)。

(6)ф20×10mm的 20,45,60,T8,T12钢退火态,正火态,淬火及回火态的试样。

三、实验内容

1、概述

硬度是指材料抵抗另一较硬的物体压入表面抵抗塑性变形的一种能力,是重要的力学性能指标之一。与其它力学性能相比,硬度实验简单易行,又无损于工件,因此在工业生产中被广泛应用。常用的硬度试验方法有:

布氏硬度试验――主要用于黑色、有色金属原材料检验,也可用于退火、正火钢铁零件的硬度测定。

洛氏硬度试验——主要用于金属材料热处理后产品性能检验。

维氏硬度试验——用于薄板材或金属表层的硬度测定,以及较精确的硬度测定。 显微硬度试验——主要用于测定金属材料的显微组织组分或相组分的硬度。

2、实验内容及方法指导

(1)布氏硬度试验测定。

(2)洛氏硬度试验测定。

(3)试验方法指导。

3、实验注意事项

(1)试样两端要平行,表面要平整,若有油污或氧化皮,可用砂纸打磨,以免影响测定。

(2)圆柱形试样应放在带有“V”形槽的工作台上操作,以防试样滚动。

(3)加载时应细心操作,以免损坏压头。

(4)测完硬度值,卸掉载荷后,必须使压头完全离开试样后再取下试样。

(5)金刚钻压头系贵重物品,资硬而脆,使用时要小心谨慎,严禁与试样或其它物件碰撞。

(6)应根据硬度实验机的使用范围,按规定合理选用不同的载荷和压头,超过使用范围,将不能获得准确的硬度值。

四、实验步骤

1、布氏硬度 试验

布氏硬度试验是用载荷P把直径为D的淬火钢球压人试件表面,并保持一定时间,而后卸除载荷,测量钢球在试样表面上所压出的压痕直径d,从而计算出压痕球面积A,然后再计算出单位面积所受的力(P/A值),用此数字表示试件的硬度值,即为布氏硬度,用符号HB表示。

设压痕深度为h,则压痕的球面积为

A=πDh=πD

试中 P——施加的载荷,kg;

D——压头(钢球)直径 mm;

A——压痕面积,mm;

d——压痕直径,mm。

2、洛氏硬度试验

洛氏硬度试验是用特殊的压头(金刚石压头或钢球压头)在先后施加的'两个载荷(预载荷和总载荷)的作用下压入金属表面来进行的。总载荷P为预载荷P0和主要载荷P1之和,即

P= P0+ P1

洛氏硬度值是施加总载荷P并卸除主载荷P1引起的残余压入深度e来计算。 用h0表示在预载荷P0作用下,压头压入被试材料的深度;h1表示施加总载荷P并卸除主载荷P1,但仍保留预载荷P0时,压头压入被试材料的深度。

深度差e= h1+ h0,该值用来表示被测材料硬度的高低。在实际应用中,为了使硬材料测出的硬度值比软材料的硬度值高,并符合一般的习惯,将被测材料的硬度值用公式加以适当变换,即

HR=K-(h1-h0)/C

试中K――常数,其值在采用金刚石压头时为0.2,采用钢球压头时为0.26;

C——常数,代表指示器读数盘每一刻度相当于压头压入被测材料的深度,其值为0.002mm;

HR——标注洛氏硬度的符号,当采用金刚石压头及150 kg的总载荷时应标注HRC,当采用钢球压头及100kg,总载荷试验时,则应标注HRB。 2

HR值为一无名数,测量时可直接由硬度计表盘读出,表盘上有红﹑黑两种刻度,红线刻度的30和黑线刻度的0相重合。

学生分成若干组,利用备好的硬度试块或试样,在硬度计上测定其相应硬度值,使之学会硬度计的使用方法。

五、实验 报告书

(1)简述布氏和洛氏硬度试验原理。

(2)测定碳钢(20﹑45﹑60﹑T8﹑T12)退火试样的布氏硬度值(HBS)。

(3)测定碳钢(45﹑T8﹑T12)正火及淬火试样的洛氏硬度值(HRC)。

(4)测定45钢调质试样的洛氏硬度值(HRC)。

篇13:脂肪碘值测定的实验报告

脂肪碘值测定的实验报告

一、实验目的

1.掌握皂化价测定的原理和方法。

2.加深对油脂性质的了解。

二、实验原理

脂肪的碱水解称皂化作用。皂化1g 脂肪所需KOH 的毫克数,称为皂化值。脂肪的皂化值和其相对分子质量成反比(亦与其所含脂酸相对分子质量成反比),由皂化值的数值可知混合脂肪(或脂酸)的`平均相对分子质量。平均分子量=3×56×1000/皂化值

三、仪器、实验原料与试剂

仪器:电热恒温水浴锅、电子分析天平、烧瓶250mL(×2)、滴定管(酸式)50mL(×1)、(碱式)50mL(×1)。 原料:脂肪(猪油、豆油、棉籽油等均可)

试剂:

1. 0.100mol/L 氢氧化钾乙醇溶液:配好后以0.1000mol/L 盐酸标准液标定,准确调整其浓度至0.100mol/L。

2. 0.100mol/L 盐酸标准溶液:取浓盐酸(相对密度1.19A.R.)8.5mL,加蒸馏水稀释至1000 mL,此溶液约0.1mol/L,需标定。(最好用恒沸盐酸配制,可不必标定)

标定方法如下:称取3~5g 无水碳酸钠(A.R.),平铺于直径约5cm 扁形称量瓶中,110℃烤两小时,置干燥器中冷至室温,称取此干燥碳酸钠两份,每份重0.13~0.15g(精确到小数点后4位),溶于50 mL蒸馏水中,加甲基橙指示剂2滴,用待标定的盐酸溶液滴定至橙红色,按下式计算盐酸溶液物质的量

式中:

c—盐酸溶液物质的量浓度(mol/L);

m:—Na2CO3质量(g);

V—滴定所耗盐酸溶液的体积(mL);

取两次滴定结果平均值作为酸液的浓度。如两次滴定结果相差0.2%,需重新标定。

3. 70%乙醇(C.P.):取95%乙醇70mL,加蒸馏水稀释至50mL。

4. 1%酚酞指示剂:称取酚酞1g,溶于100mL95%乙醇。

四、操作步骤

1.在电子分析天平上称取脂肪0.5g 左右,置于250mL 烧瓶中,加入0.100mol/LKOH 乙醇溶液50mL。

2.烧瓶上装冷凝管于沸水浴内回流30~60min,至烧瓶内的脂肪完全皂化为止(此时瓶内液体澄清并无油珠出现)。皂化过程中,若乙醇被蒸发,可酌情补充适量的70%乙醇。

3.皂化完毕,冷至室温,加1%酚酞指示剂2滴,以0.100mol/LHCl 液滴定剩余的碱,记录盐酸用量。

4.另作一空白试验,除不加脂肪外,其余操作同上,记录空白试验盐酸的用量。

五、计算

V1—空白试验所消耗的0.100mol/LHCl 体积(mL);

V2—脂肪试验所消耗的0.100mol/LHCl 体积(mL);

c—HCl 的物质的量浓度,即0.100mol/L;

m—脂肪质量(g);

56.1—每摩尔KOH 的质量(g/moL)。

篇14:土壤容重的测定的实验报告

一、目的和要求

土壤容重又叫土壤的假比重,是指田间自然状态下,每单位体积土壤的干重,通常用g/cm3表示。土壤容重除用来计算土壤部孔隙度外,还可用于估计土壤的松紧和结构状况。本实验要求学生学习土壤寄人篱下的测定方法,掌握环刀法测定土壤容重的原理及操作步骤,掌握用容重数值计算土壤孔隙度的方法。

二、内容和原理

用一定容积的钢制环刀,切割自然状态下的土壤,使土壤恰好充满环刀容积,然后称量并根据土壤自然含水率计算每单位体积的烘干土重即土壤容重。

三、主要仪器设备

容积为100立方厘米的钢制环刀。

削土刀及小铁铲各一把。

感量为0.1及0.01的粗天平各一架。

烘箱、干燥器及小铝盒等。

四、操作方法与实验步骤

在室内先称量环刀(连同底盘、垫底滤纸和顶盖)的重量,环刀容积一般为100立方厘米。

将已称量的环刀带至田间采样。采样前,将采样点土面铲平,去除环刀两端的盖子,再将环刀(刀口端向下)平稳压入土壤中,切忌左右舞动,在土柱冒出环刀上端后,用铁铲挖周围土壤,取出充满土壤的环刀,用锋利的削土刀削去环两端多余的土壤,使环刀内的土壤体积恰为环刀的容积。在环刀刀口垫上滤纸,并盖上底盖,环刀上端盖上顶盖。擦去环刀外的泥土,立即带回实验称重。

在紧靠环刀采样处,再采土10-15克,装入铝盒带回实验室内测定土壤含水量。

五、公式

根据以下公式计算土壤容重:

环刀内干土重(g)=100环刀内湿土重/100土含水率

土壤容重(g/cm3)=环刀内干土重/环刀容积

篇15:土壤容重的测定的实验报告

课程名称:指导老师: 成绩: 实验名称:  土壤容重、比重和孔隙的测定 实验类型:操作性实验[1]  同组学生姓名: 一、实验目的和要求(必填)  三、主要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得

一、实验目的和要求

1)学习并掌握土壤容重、比重、孔隙度及三相比的测定与计算方法; 2)结合实验,加深对土壤容重、比重和孔隙度等量的含义的理解。

二、实验内容和原理

1)内容:利用已知体积的环刀取自然状态的土壤样品一份,烘干除去水分,测量得环刀的容

积、重量,以及土壤的重量和其含水量,则可计算出土壤的容重、孔隙度、含水率等指标。

2)原理:各项指标的计算公式:

(1)土壤容重(g/cm)=  烘干后带土环刀重—环刀重

环刀容积

(2)土壤含水率(%)=带土环刀重—烘干后带土环刀重

烘干后带土环刀重—环刀重 (3)土壤孔度(%)= (1— 容重/

比重)X100  (4)土壤比重 = 2.65 (取平均值)

三、主要仪器设备

小环刀,手柄,三角铲,游标卡尺,天平(感量0.01),电热恒温烘箱

四、操作方法和实验步骤 步骤:

二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填)

五、实验数据记录和处理 1)记录:

环 刀

平均值 土 壤

2)处理:

(1)土壤容重(g/cm3)=  烘干后带土环刀重—环刀重

环刀容积

= (142.22 – 59.65)/(3.14×4.2612)=1.448 g/cm3

(2)土壤含水率(%) =带土环刀重—烘干后带土环刀重

烘干后带土环刀重—环刀重

= (165.79-142.22)×100/(142.22 – 59.65)=28.55  (3)土壤孔度(%)= (1— 容重/比重)X100  = (1—1.448/2.65)×100 =45.36

(4)三相比 = 土壤固相容积率:土壤液相容积率:土壤气相容积率

= (100-45.36):28.55:(100-28.55-(100-45.36))=54.64:28.55:16.81

六、实验结果与分析 1)实验结果:

土壤容重= 1.448 (g/cm);

质量/g 59.65 59.66 59.64 59.65

土壤+环刀/g 165.79

内径/cm 4.270 4.250 4.264 4.261

高/cm 3.54 3.56 3.55 3.55

干燥后/g 142.22

土壤含水率(%)=28.55; 土壤孔度 (%)= 45.36

三相比=土壤固相容积率:土壤液相容积率:土壤气相容积率= 54.64:28.55:16.81 2)结果分析:

①土壤容重可以反映土粒排列情况、孔度大小、土壤肥力和耕作管理状况:一般含矿物质多而结构差的土壤(如砂土),土壤容积比重在1.4-1.7之间;含有机质多而结构好的土壤(如农业土壤),在1.1-1.42之间。我组所采样的土壤容重值约为1.448 g/cm3,采集地点为环资实验楼楼下的绿化带中(绿化还未完全长好,土样中较多杂质,下方有石块),由此可见,此地的土壤含有机质较少,结构较差。

②土壤孔度是农业生产中的一个重要参数。土壤孔隙度大小取决于土壤的质地、结构和有机质的含量。一般作物适宜的孔隙度为50%左右。实验结果土壤孔度为45.35%,可知该处土壤孔度较小。

③土壤含水率测定结果为28.55%,根据季节与作物生长状态判断,含水量适合。 总之,由上述分析可得,该处土壤并不是十分理想,不大适合植物生长。

七、讨论、心得

1)在测定上述指标的过程中,许多误差是难以避免的,如:重量、体积的测量误差。但是有一些误差是可以尽量减小的,如:用环刀取土时,在不破坏土壤自然垒结状态的情况下,应使土壤充满环刀,使得土壤的体积尽量完全接近环刀的体积。 2)注意:

① 在选择实验土壤时,要先判断该土壤是否为田间自然垒结的;取时要用手柄慢慢将整个环刀压入(或敲入)土中,不可压得太实,切勿破坏土壤的自然垒结状态,; ② 挖开环刀周围的土壤,小心取出环刀,切勿使环刀内土块脱落; ③ 小心切除环刀上下的余土,使土壤刚好填满整个环圈; ④ 在取完土壤后回实验室的过程中,不可将之擩平。

实验按形式和内容可分为演示性、操作性、验证性、综合性、设计性和研究创新性等类型。 摘自:百度百科

篇16:土壤容重的测定的实验报告

1 土壤容重的测定(环刀法)

土壤容重不仅用于鉴定土壤颗粒间排列的紧实度,而且也是计算土壤孔度和空气含量的必要数据。

测定土壤容重的方法很多,如环刀法、蜡封法、水银排出法等。常用的是环刀法,本法操作简便,结果比较准确,能反映田间实际情况。

方法原理  本法系利用一定体积的环刀切割未搅的自然状态的土样,使土样充满其中,称量后计算单位体积的烘干土重。

操作步骤

1.先在田间选择挖掘土壤剖面的位置,然后挖掘土壤剖面,按剖面层次,分层采样,每层重复3次。如只测定耕作层土壤容重,则不必挖土壤剖面。

2.将环刀托放在已知重量的环刀上,将环刀刃口向下垂直压入土中,直至环刀筒中充满样品为止。环刀压入时要平稳,用力一致。

3.用削土刀托放在已知重量的环刀上,将环刀刃口向下垂直压入土中,直至环刀筒中充满样品为止。环刀压入时要平稳,用力一致。

4.用削土刀切开环刀周围的土壤,取出已装满土的环刀,细心削去环刀两端多余的土,并擦净环刀外面的土。环刀两端立即加盖,以免水分蒸发。随即称重(精确到0.01g)并记录。

5.同时在同层采样处,用铝盒采样,测定土壤自然含水量。或者直接从环刀筒中取出样品,测定土壤含水量。

结果计算  按下式计算土壤容重。

d=g·100/[V·(100+W)]

式中:d—土壤容重(g/cm3)

g—环刀内湿土重(g)

V—环刀容积(cm3)

W—样品含水量(%)

此法允许平行绝对误差<0.03g/cm3,取算术平均值。

仪器设备  环刀(容积为100cm3)、环刀托、削土刀、小铁铲、铝盒、干燥器、烘箱、天平(感量0.1g和0.01g)等。

2 土壤孔度的测定

土壤孔度与土壤结构、土壤质地及土壤有机质含量有关。它们对土壤的水、肥、气、热状况和农业生产有显著影响。

总孔度的计算

土壤总孔度一般不直接测定,常由测定土壤比重和容重之后,通过计算间接求得。也可

以在没有比重或不用比重值的情况下,直接用容重(d)通过经验公式计算出土壤总孔度(Pt%)。

Pt%=93.947-32.995d

在工作中为了方便起见,可按上式计算出常用容重范围的土壤孔度,查对下表即可。

土壤总孔度查对表

d

d 0.00 0.01 0.02 0.03 0.01 0.05 0.06 0.07 0.08 0.09

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7 70.85 70.52 70.19 69.86 69.53 69.20 68.87 68.54 68.21 67.88 67.55 67.22 66.89 66.56 66.23 65.90 65.57 65.24 64.91 64.58 64.25 63.92 63.59 63.26 62.93 62.60 62.27 61.94 61.61 61.28 60.95 60.62 60.29 59.96 59.63 59.30 58.97 58.64 58.31 57.88 57.65 57.32 56.99 56.66 56.33 56.00 55.67 55.34 55.01 54.68 54.35 54.02 53.69 53.36 53.03 52.70 52.37 52.04 51.71 51.38 51.05 50.72 50.39 50.06 49.73 49.40 49.07 48.74 48.41 48.08 47.75 47.42 47.09 46.76 46.43 46.10 45.77 45.44 45.11 44.79 44.46 44.13 43.80 43.47 43.14 42.81 42.48 42.12 41.82 41.49 41.16 40.83 40.50 40.17 39.84 39.51 39.18 38.85 38.52 38.19 37.86 37.53 37.20 36.87 36.54 36.21 35.88 35.55 35.22 34.89 注:表中第一纵行(d值)为容重,第一横行(d值)为容重的第二位小数。

使用上表时,依一般对数表的方法即能查出某一容重的总孔度值,而不需要按经验公式计算。

查表举例:d=0.87时,Pt=65.24%

d=1.10时,Pt=57.65%

d=1.72时,Pt=37.20%

毛管孔度的测定(环刀法)

1.操作步骤

(1)用环刀在野外采取原状土(方法同容重)。

(2)将环刀有孔并垫有滤纸的一端放入盛薄层水的搪瓷托盘内,瓷盘内水深保持在2—3mm内,浸水时间:砂土4—6小时,粘土8—12小时或更长时间。

(3)环刀中土样吸水膨胀后,用刮土刀削去胀到环刀外面的土样,并立即称重,准确至0.1g。

(4)称重后,从环刀中取出4—5g,放入铝盒中,测定土样吸水后的含水率,以换算环刀中烘干土重。

2.结果计算。毛管孔度可用下式计算:

PC%=W/V×100

式中:Pc%—土壤毛管孔度(容积%)

W—环刀筒内土壤所保持的水量,相当于水的容积(cm3);

V—环刀筒内容积(cm3)。

本测定进行3—4次平行测定,重复误差不得大于1%,取算术平均值。

3.仪器设备:瓷盘、滤纸、铝盒、环刀(100cm3)、烘箱、干燥器、刮土刀等。 通气孔度的计算  土壤通气孔度可用下式计算:

Pc%=Pt%-Po%

式中:Pc%—土壤通气孔度(%);

Pt%—土壤总孔度(%);

Po%—土壤毛管孔度(%).

篇17:离心泵特性曲线测定实验报告

一、实验内容

测定一定转速下离心泵的特性曲线。

二、实验目的

1.了解离心泵的结构特点,熟悉并掌握离心泵的工作原理和操作方法。

2.掌握离心泵特性曲线测定方法。

三、基本原理

离心泵是工业上最常见的液体输送机械之一,离心泵的特性,通常与泵的结构、泵的转速以及所输送液体的性质有关,影响因素很多。因此离心泵的特性只能采用实验的方法实际测定。

在泵的进口管分别安装上真空表和压力表,则可根据伯努利方程得到扬程的计算公式

He+0+(u22-u12)/2g ①

式①中,h0——二测压点截面之间的垂直距离,m;

P1——真空表所处截面的绝对压力,MPa;

P2——压力表所处截面的绝对压力,MPa;

u1——泵进口管流速,m/s;

u2——泵出口管流速,m/s;

He——泵的实际扬程,m。

由于压力表和真空表的读数均是表示两测压点处的表压,因此,式①可表示为

He=H压+H真+h0+(u22-u12)/2g ② 其中H压③ H真④ ρgρgP2p1

式③、④中的p2和p1分别是压力表和真空表的显示值。

离心泵的效率为泵的有效功率与轴功率之比值,

η=Ne/N轴  ⑤

式⑤中η——离心泵的效率; Ne——离心泵的'有效功率,kw;N轴——离心泵的轴功率,kw.

有效功率可用下式计算 Ne=HeQρg[w]  ⑥

工程有意义的是测定离心泵的总效率(包括电机效率和传动效率)。η总=η轴/η电 ⑦

实验时,使泵在一定转速下运转,测出对应于不同流量的扬程、电机输入功率、效率等参数值,将所有数据整理后用曲线表示,即得泵的特性曲线。

四、实验设计

实验方案

用自来水做实验物料;在离心泵转速一定的条件下,测定不同流速下离心泵进、出口压力和电机功率,即可由式⑤、⑥和⑦计算出相应的扬程、功率和效率;在实验布点时,要考虑到泵的效率随流量变化的趋势。

测试点及测试方法

根据实验原理,需测定的原始数据有:泵两端的压力P1和P2,离心泵电机功率Ne,流量Q、水温t(以确定水的密度),以及进出口管路管径d1和d2,据此可配置相应的测试点和测试仪表。

离心泵出口压力p2由压力表测定

离心泵入口压力p1由真空表测定

流量由装置设在管路中的涡轮流量计测定Q=/

其中Q——流量,L/s;——流量计的转子频率;——涡轮流量计的仪表系数。

电机功率采用数字仪表测量  N电=15×显示读数(kw)

水的温度由水银温度计测定,温度计安装在泵出口管路的上方。 控制点和调节方法

试验中控制的参数是流量Q,可用调节阀来控制流量。为保证系统满灌,将控制阀安装在出口管路的末端。

实验装置及流程

实验装置流程图如下所示,由离心泵和进出口管路、压力表、真空表、流量计和调节控制阀组成控制系统。实验物料为自来水,为节约起见,配置水乡循环使用。为保证离心泵启动时保持满灌,排出泵壳内的空气,在泵的进口管路末端安装有止逆底阀。

1、循环水槽;2、真空表;3、排气阀;4、离心泵;5、功率表;6、压力表;7、引水阀;8、温度计;9、涡轮流量计;10、控制阀

五、实验操作要点

1.首先打开引水阀引水灌泵,并打开泵体的排气阀排出泵内的的气体,确认泵已经灌满且其中的空气已排净,关闭引水阀和泵的排气阀。

2.在启动泵前,要关闭出口控制阀的显示仪表电源开关,以使泵在最低负荷下启动,避免启动脉冲电流过大而损坏电机和仪表。

3.启动泵,然后将控制阀开到最大以确定实验范围,在最大流量范围内合理布置实验点。

4.将流量调至某一数值,待系统稳定后,读取并记录所需数据。

篇18:油脂酸败的测定实验报告

1、实验方案设计

1、通过对油脂特性指标的测定,综合训练食品分析的基本实验技能。

2、学会根据实验要求选择实验方法,设计实验方案。

3、掌握食用油脂过氧化值的测定方法

4、学会如何控制食用油脂的酸败.

2. 实验原理、实验流程或装置示意图

油脂是膳食中的重要组成部分是机体能量的主要来源之一,油脂的氧化酸败会导致风味的延展和食品成分,如蛋白质的其他反应严重变质,变质的油脂会减少营养价值且对人体消化器官及其他部位产生毒性,从而成为食品卫生上的问题之一,油脂氧化酸败的关键产物是脂肪酸过氧化氢物是形成羰基和羟基化合物的中间产物,此化合物通常认为,是过氧化物油脂中过氧化值是指测定1g油脂所需要的标准硫代硫酸钠溶液的体积,它是判断油脂质量的一个重要的指标油样的存放条件对油脂氧化酸败有明显的影响作用,因此为了防止油脂氧化酸败速度过快油样赢避光低温保存,另外为了能够准确,反映出油样氧化酸败中产生的过氧化氢物称样后必须快速进行测定。

油脂氧化过程中产生的过氧化物,与碘化钾作用,生成游离碘,以硫代硫酸钠溶液滴定,计算含量。

化学反应式:

油脂过氧化值(POV值)测定

精密称取油样2~3g,置于250mL碘量瓶中,加入30mL三氯甲烷-冰乙酸混合液,使样品完全溶解。再加入1.00mL饱和碘化钾溶液,紧密塞好瓶盖,并轻轻振摇0.5min,然后在暗处放置3min。取出加100mL水,摇匀,立刻用0.002188mol/mL硫代硫酸钠标准溶液滴定至淡黄色,加1mL淀粉指示剂,继续滴定至蓝色消失为终点。  计算公式为:

(V2-V1)c0.1269100POV(%)m

式中:V1——样品消耗硫代硫酸钠标准溶液的体积mL;

V2——试剂空白消耗硫代硫酸钠标准溶液的体积mL;

c——硫代硫酸钠标准溶液的浓度mol/L;

m——样品质量g;

0.1296——1mol/L硫代硫酸钠标准溶液1mL相当于碘的克数。

3. 实验设备及材料

1实验设备:隔水式恒温培养箱 2实验材料:

饱和碘化钾溶液:称取14g碘化钾,加10ml水溶解,必要时微热使其溶解,冷却后贮于棕色瓶中

氯甲烷–冰乙酸混合液:量取40ml三氯甲烷,加60ml冰乙酸,混匀 0.01mol/L硫代硫酸钠标准溶液;

淀粉试剂:将淀粉0.5g用少许冷水调成糊状,倒入50ml沸水中调匀,煮沸,临时用现配;

3实验材料:没有添加剂的刚榨食用油

4.实验方法步骤及注意事项

1分别取30g左右的'食用油加入四个塑料杯中,编号1、2、3号和4号,1号加茶多酚并且放置烘箱,2号放置冰箱,3号作为常温也就是温度的对照组,4号放置烘箱也就是即作为温度的实验组,也作为抗氧化剂的对照组,根据设计时间测定所需数据。

2测量POV值:称取2.00~3.00g试样→ 250mL碘瓶+30mL三氯甲烷-冰乙酸→样品完全溶解+1.00mL饱和碘化钾→密塞→ 轻轻振摇0.5min →暗处放置3min →取出+100mL水→摇匀→立即用0.002mol/L硫代硫酸钠标准溶液滴定→淡黄色+1mL淀粉指示液→继续滴定→蓝色消失为终点,取相同量三氯甲烷-冰乙酸溶液、碘化钾溶液、水,按同一方法,做试剂空白试验。 3记录数据,根据公式计算POV值 4分析数据,得出结论

5. 实验数据处理方法

表一 抗氧化剂对POV值得影响

表二  温度对POV值得影响

计算公式为:

(V2-V1)c0.1269100POV(%)

式中:V1——样品消耗硫代硫酸钠标准溶液的体积mL;

V2——试剂空白消耗硫代硫酸钠标准溶液的体积mL;

c——硫代硫酸钠标准溶液的浓度mol/L;

m——样品质量g;

0.1296——1mol/L硫代硫酸钠标准溶液1mL相当于碘的克数。

6.参考文献

[1] 张禄生,袁文彬,张华,张火根.  食品油脂过氧化值测定方法的研究[J]. 中国卫生检验杂志. (10)

[2] 庞瑞平.  食品中过氧化值测定时应注意问题的分析[J]. 中小企业管理与科技(上旬刊). (04)

[3] 战宇,周永强.  食品分析实验指导.

[4] 肇立春  浅谈食用油脂的氧化及其测定[J]. 粮食与食品工业.(01)

教师对实验方案设计的意见

签名:

年月  日

二、实验报告

1.实验现象与结果

表一 抗氧化剂对POV值得影响

篇19:油脂酸败的测定实验报告

一、原理:

油脂氧化过程中产生过氧化物,与碘化钾作用,生成游离碘,以硫代硫酸钠滴定,计算含量。

二、试剂:

1. 饱和碘化钾溶液:取14g碘化钾,加10ml水溶解,必要时微热溶解,冷

却后贮于棕色瓶中。

2. 三氯甲烷—冰醋酸混合液:量取40毫升三氯甲烷,加60毫升冰醋酸。 3. 硫代硫酸钠标液:C(Na2S2O3)=0.002mol/L

4. 淀粉指示剂(10g/L):取可溶性淀粉0.5g加少许水,调成糊状,倒入50ml

沸水中调匀,煮沸,临用时现配。

三、操作方法:

1. 取2.00~3.00g混匀(必要时过滤)的样品,于250ml碘量瓶中,加30ml

三氯甲烷—冰醋酸,使样品完全溶解。加入1ml饱和碘化钾溶液紧密盖好瓶盖,并轻振摇30s,然后在暗处放置3min。

2. 取出加入100ml水摇匀,立即用Na2S2O3标液滴定至黄色时加入1ml淀粉

指示剂,滴至蓝色消失为终点。

3. 取与样品测定时相同量的三氯甲烷—冰醋酸混合液、碘化钾溶液、水,

按同一方法做试剂空白。

四、计算:

X1=(V-V0)×C×0.1269×100/mX2=X×78.8

式中:  X1—样品的过氧化值 g/100gX2—样品的过氧化值 meq/Kg

V—Na2S2O3 标液体积ml V0—空白耗Na2S2O3标液体积 ml C—Na2S2O3 标液的浓度 mol/L

m—样品的质量g,0.1269—与1.00ml Na2S2O3标液C=1.000mol/L

相当的碘的质量, g 五、注意事项:

1、淀粉指示剂必须现用现配。

2、KI溶液应澄清无色,且放置时间不能太长,不超过3天。 3、

对过氧化值含量高的油脂可适当减少取样量。

4、含油脂少的产品若初测滴定不出结果时,考虑增加检测样品量或提取出

油脂后再测定。

参照GB/T5009.37

油脂酸价的测定

一、原理:

油脂在存放过程中,容易受到外界多种因素的影响而发生各种变化,并分解成游离脂肪酸等产物;游离脂肪酸是油脂水解酸败过程累计产生的,它能加速油脂的酸败。油脂中的游离脂肪酸用氢氧化钾标准溶液滴定,每克油脂消耗氢氧化钾的毫克数,称为酸价。它是判断油脂酸败程度的依据之一。

二、试剂:

1. 乙醚—乙醇混合液(2﹕1):用氢氧化钾(3g/L)中和至酚酞指示液呈中性

(初现粉红色)。

2. 氢氧化钾标液:C(KOH)=0.05mol/L 3. 酚酞指示剂:10g/L乙醇溶液

三、操作方法:

(一) 直接滴定:

1. 准确称取3.00~5.00g样品,于三角瓶中;

2. 加入50ml乙醚—乙醇混合液,振摇使油完全溶解,必要时可微热使

其溶解。冷至室温,加入酚酞2~3滴,以KOH标液滴定至溶液初现粉红色,30s不褪色为终点,记录所耗KOH的体积。

(二) 提取(浸泡)滴定:

1. 准确称取100-120g,放于带塞碘量瓶中,加入100ml石油醚放置

20-24小时;

2. 烘干燥三角瓶至恒重后称重;浸泡的样品用定性滤纸过滤到三角瓶

中,水浴70°蒸发后,再50°烘箱烘干1小时; 3. 称量油脂重量,按照方法一中的第二步方法滴定。

四、计算:

X=VC m

式中: X—样品酸价,mg/g

V—样品消耗KOH标准液体积数,

mlC—KOH标准液浓度,mol/L

m—样品质量(提取出的油脂的重量),g

56.11—与1.0ml氢氧化钾标液(1.000mol/L)相当的氢氧化钾的毫克数。 五、注意事项:

1.  乙醚—乙醇混合溶液一般配置后要放置一段时间,不宜现配现用,否则会导致检测结果偏低。

2.实验中存在乙醚乙醇混合液加入指示剂后用氢氧化钾滴定不变色的情况,其原因为:实验用量筒与检测过氧化值所用量筒混用,使溶液受到污染导致不变色。故此,实验用具做标示,专项专用。

参照标准:GB/T5009.37《食用植物油脂卫生标准的分析方法》

篇20:油脂酸败的测定实验报告

一、实验目的

进一步熟悉酸价测定的原理,掌握酸价测定的方法。

二、实验原理

油脂暴露于空气中一段时间后,在脂肪水解酶或微生物繁殖所产生的酶作用下,部分甘油酯会分解产生游离的脂肪酸,使油脂变质酸败。通过测定油脂中游离脂肪酸含量反映油脂新鲜程度。游离脂肪酸的含量可以用中和1g油脂所需的氢氧化钾mg数,即酸价来表示。通过测定酸价的高低来检验油脂的质量。酸价越小,说明油脂质量越好,新鲜度和精炼程度越好。

典型的测量程序是,将一份分量已知的样品溶于有机溶剂,用浓度已知的氢氧化钾溶液滴定,并以酚酞溶液作为颜色指示剂。酸价可作为油脂变质程度的指标。

油脂中的游离脂肪酸与KOH发生中和反应,从KOH标准溶液消耗量可计算出游离脂肪酸的量,反应式如下:

RCOOH+KOH——RCOOK+H2O

三、实验器材

1、仪器和用具

碱式滴定管(25mL);锥形瓶(150mL);量筒(50mL);称量瓶;电子天平。

2、试剂

氢氧化钾标准溶液 c(KOH)=0.1mol/L:称取5.61g干燥至恒重的分析纯氢氧化钾溶于100ml蒸馏水(此操作在通风橱中进行);

中性乙醚—乙醇(2:1)混合溶剂:乙醚和无水乙醇按体积比2:1混合,加入酚酞指示剂数滴,用0.3%氢氧化钾溶液中和至微红色;

指示剂 1%酚酞乙醇溶液:称取1g酚酞溶于100 mL95%乙醇中。

四、测定步骤

称取均匀试样3~5g于锥形瓶中,加入中性乙醚—乙醇混合溶液50mL,摇动使试样溶解,再加2~3滴酚酞指示剂,用0.1mol/L碱液滴定至出现微红色在30s不消失,记下消耗的碱液毫升数(V)。

五、计算

油脂酸价X(mg KOH/g油)按下式计算:

V×c ×56.11

X=m

式中V———滴定消耗的氢氧化钾溶液体积,mL;

c———氢氧化钾溶液的浓度,mol/L; 56.11———氢氧化钾的摩尔质量,g /mol;

m———试样质量,g。

两次试验结果允许差不超过0.2 mg KOH/g油,求其平均数,即为测定结果,测定结果取小数点后第一位。

注意:氢氧化钾遇水和水蒸气大量放热, 形成腐蚀性溶液,具有强腐蚀性。操作人员在称取药品时需佩戴防护口罩、手套,配制时需在通风橱内进行。

【燃烧热的测定实验报告】相关文章:

1.液体饱和蒸汽压的测定实验报告

2.植物生长区域测定的实验报告

3.实验报告

4.实验报告范文

5.科学实验报告

6.有机化学实验报告

7.实验报告格式

8.精馏实验报告

9.数据结构实验报告

10.实验报告总结

下载word文档
《燃烧热的测定实验报告.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部