欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 说课稿>《抛物线及其标准方程》说课稿

《抛物线及其标准方程》说课稿

2024-07-27 08:12:26 收藏本文 下载本文

“荟蓝碧”通过精心收集,向本站投稿了13篇《抛物线及其标准方程》说课稿,下面是小编为大家推荐的《抛物线及其标准方程》说课稿,欢迎大家分享。

《抛物线及其标准方程》说课稿

篇1:《抛物线及其标准方程》说课稿

《抛物线及其标准方程》说课稿

各位评委,各位老师:

大家好。我是来自xx省xx市xx中学的xx。xx市别名卧牛城,是著名天文学家郭守敬的故乡。我的家乡还有一个特点是特色小吃品种繁多,大家看看我的体型就知道了。欢迎各位老师到xxxx作客。

今天我说课的内容是《抛物线及其标准方程》,这是北师大版版数学选修2-1第三章第二节第一课时的知识内容。

我的教学过程分为四个阶段,其中第一阶段是引导探究,获得新知;

下面,请大家观看我这节课第一阶段的视频剪辑。

在第一阶段,我与学生共同探究了本节课第一部分的内容——抛物线的定义。根据学生已有的认知基础,我选择用二次函数的图象是抛物线,以及生活中的实际事例来引入新课,通过让学生感受抛物线在实际生活中的广泛应用,以此来激发学生的学习热情。在探索抛物线定义的教学中,我的设计是通过几何画板来展现抛物线的形成过程,让学生从动态的展示中,通过观察,发现和认识抛物线。这样做的设计意图是让学生直观感受抛物线,抓住轨迹问题的本质——变化过程中的不变量,这样就能非常容易的探索出抛物线的定义。

学生在第一阶段的学习中,学习过程是从看到画的一个过程。

在给出定义之后,我引导学生进入了第二阶段——深入探索,完善体系。请大家继续观看。

抛物线的标准方程是这节课的又一重点内容,而抛物线标准方程的推导是这节课的难点。在这部分的教学中,我的'设计是

第一步,回顾求曲线的一般步骤。由于“曲线与方程”“方程与曲线”的这种关系贯穿解析几何的始终,学生对它的体会,是一个长期反复的过程。我的设计意图是通过回顾知识,加深学生对解析几何的基本思想方法—解析法的理解。

第二步,推导抛物线的标准方程。我的设计意图是:让学生通过独立思考、合作交流、小组展示等手段了解知识的来龙去脉,通过严谨细致的分析,展现知识的发生、发展形成的过程,进一步加强过程性教学。

第三步,利用表格由学生总结出其他几种形式的抛物线标准方程,以及相应的焦点坐标与准线方程。这部分内容由学生独立完成。

学生在第二阶段的学习中,学习过程是一个从想到研的一个过程。

第三和第四阶段分别是指导应用,鼓励创新以及小结概括,深化认识。请大家继续观看。

在这两个阶段中,我引导学生总结出方程特点后,给出例题和当堂检测来加深学生对本节课知识的理解,并通过当堂检测检验本节课的学习效果,达到了堂堂清的目的。最后,由师生共同总结本节课的收获,深化学生对本节课的认识。在这两个阶段中,体现了学生运用知识解决问题的学习过程。

篇2:抛物线及其标准方程教案

设计说明:学生在初中学习二次函数时知道二次函数的图象是一个抛物线,在物理的学习中也接触过抛物线(物体的运动轨迹)。因而对抛物线的认识比对前面学习的两种圆锥曲线椭圆和双曲线更多。所以学生学起来会轻松。但是要注意的是,现在所学的抛物线是方程的曲线而不是函数的图象。本节内容是在学习了椭圆和双曲线的基础上,利用圆锥曲线的第二定义统一进行展开的,因而对于抛物线的系统学习具有双重的目标性。

抛物线作为点的轨迹,其标准方程的推导过程充满了辨证法,处处是数与形之间的对照和相互转化。而要得到抛物线的标准方程,必须建立适当的坐标系,还要依赖焦点和准线的相互位置关系,这是抛物线标准方程有四种而不象椭圆和双曲线只有两种形式。因而抛物线的标准方程的推导也是培养辨证唯物主义观点的好素材。

利用圆锥曲线第二定义通过类比方法,引导学生观察和对比,启发学生猜想与概括,利用建立坐标系求出抛物线的四种标准方程,让每一个学生都能动手,动口,动脑参与教学过程,真正贯彻“教师为主导,学生为主体”的教学思想。对于标准方程中的参数 及其几何意义,焦点坐标和准线方程与 的关系是本节课的重点内容,必须让学生掌握如何根据标准方程求 、焦点坐标、准线方程或根据后三者求抛物线的标准方程。特别对于一些有关距离的问题,要能灵活运用抛物线的定义给予解决。

当前素质教育的主流是培养学生的能力,让学生学会学习。本节课采用学生通过探索、观察、对比分析,自己发现结论的学习方法,培养了学生逻辑思维能力,动手实践能力以及探索的精神。

篇3:《抛物线及其标准方程》教学反思

《抛物线及其标准方程》是人教版高中数学(选修2—1)中的内容,适用对象是高二年级理科的学生。学生在初中阶段所学的二次函数中,已经初步接触过抛物线。通过本节课的学习,可以让学生进一步了解抛物线所形成的几何本质。在研究椭圆和双曲线的基础上,通过类比来研究抛物线的定义和标准方程,让学生进一步掌握研究曲的基本方法,并为他们今后学习解析几何奠定良好的基础。

本课在新课标思想的指导下,结合前后的知识内容及学生的`特点和认知规律,创设情境,激发学生学习兴趣,教师现场用几何画板进行演示,让学生对抛物线由感性认识开始,归纳出抛物线的定义,逐步上升到理性认识,并根据定义推导抛物线的标准方程。在课堂教学中,充分发挥多媒体的资源优势,利用计算机作为辅助手段,动态演示抛物线的图像,激发学生学习兴趣,有效地协助完成了师生探究活动。充分将信息技术和学科教学有机地整合起来,有利于突出重点、突破难点,有利于教学目标的实现,使学生对所学知识得以深化。充分体现学生的主体地位,让学生成为学习的主人。

在教学中结合新课标的思想,从三个维度出发,制定如下的教学目标:由实例感知,得出抛物线的定义,并推导出其标准方程,在实际应用中进一步体会数形结合的思想。 使学生了解抛物线的定义、几何图形和标准方程;知道它们的简单几何性质;使用抛物线的定义求抛物线的标准方程,焦点坐标,准线方程。

同时能使学生初步根据抛物线的特征选择不同的解决问题的方法。体会抛物线在生活中的应用,学会在生活中用数学的方法去解释生活中的问题。了解抛物线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。通过设置丰富的问题情境,鼓励从多角度思考、探索、交流,激发学生的好奇心和主动学习的欲望;通过抛物线的定义及其标准方程的学习,进一步体会数形结合的思想, 养成利用数形结合解决问题的习惯。

不足之处:课堂容量稍显大些,给学生自己思考的时间空间不够。

篇4:高二数学抛物线及其标准方程

一.课题:抛物线及其标准方程(1)

二.教学目标:

1.使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.

2.要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.

3.通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育.

三.教学重、难点:

1. 重点:抛物线的定义和标准方程.(解决办法:通过一个简单实验与椭圆、双曲线的定义相比较引入抛物线的定义;通过一些例题加深对标准方程的认识).

2. 难点:抛物线的标准方程的推导.(解决办法:由三种建立坐标系的方法中选出一种最佳方法,避免了硬性规定坐标系.)

四、教学过程

(一)导出课题:我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线--抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.

请大家思考两个问题:

问题1:同学们对抛物线已有了哪些认识?

在物理中,抛物线被认为是抛射物体的运行轨道;在数学中,抛物线是二次函数的图象?

问题2:在二次函数中研究的抛物线有什么特征?

在二次函数中研究的抛物线,它的对称轴是平行于y轴、开口向上或开口向下两种情形.

引导学生进一步思考:如果抛物线的对称轴不平行于y轴,那么就不能作为二次函数的图象来研究了.今天,我们突破函数研究中这个限制,从更一般意义上来研究抛物线.

(二)抛物线的定义

1.回顾:平面内与一个定点F的距离和一条定直线l的距离的比是常数e的轨迹,

当01时是双曲线,那么当e=1时,它又是什么曲线?

2.简单实验

如图2-29,把一根直尺固定在画图板内直线l的位置上,一块三角板的一条直角边紧靠直尺的边缘;把一条绳子的一端固定于三角板另一条直角边上的点A,截取绳子的长等于A到直线l的距离AC,并且把绳子另一端固定在图板上的一点F;用一支铅笔扣着绳子,紧靠着三角板的这条直角边把绳子绷紧,然后使三角板紧靠着直尺左右滑动,这样铅笔就描出一条曲线,这条曲线叫做抛物线.反复演示后,请同学们来归纳抛物线的定义,教师总结.

3.定义:

平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上).定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.

(三)抛物线的标准方程

设定点F到定直线l的距离为p(p为已知数且大于0).下面,我们来求抛物线的方程.怎样选择直角坐标系,才能使所得的方程取较简单的形式呢?

让学生议论一下,教师巡视,启发辅导,最后简单小结建立直角坐标系的几种方案:

方案1:(由第一组同学完成,请一优等生演板.)

以l为y轴,过点F与直线l垂直的直线为x轴建立直角坐标系(图2-30).设定点F(p,0),动点M的坐标为(x,y),过M作MD⊥y轴于D,抛物线的集合为:p={M||MF|=|MD|}.

化简后得:y=2pxp (p>0).

方案2:(由第二组同学完成,请一优等生演板)

以定点F为原点,平行l的直线为y轴建立直角坐标系(图2-31).设动点M的坐标为(x,y),且设直线l的方程为x=-p,定点F(0,0),过M作MD⊥l于D,抛物线的集合为:

p={M||MF|=|MD|}.

化简得:y=2px+p (p>0).

方案3:(由第三、四组同学完成,请一优等生演板.)

取过焦点F且垂直于准线l的直线为x轴,x轴与l交于K,以线段KF的垂直平分线为y轴,建立直角坐标系(图2-32).

抛物线上的点M(x,y)到l的距离为d,抛物线是集合p={M||MF|=d}.

化简后得:y=2px(p>0).

比较所得的各个方程,应该选择哪些方程作为抛物线的标准方程呢?

引导学生分析出:方案3中得出的方程作为抛物线的标准方程.这是因为这个方程不仅具有较简的形式,而方程中的系数有明确的几何意义:一次项系数是焦点到准线距离的2倍.由于焦点和准线在坐标系下的不同分布情况,抛物线的标准方程有四种情形(列表如下):

由学生讲清为什么会出现四种不同的情形,四种情形中P>0;并指出图形的位置特征和方程的形式应结合起来记忆.即:当对称轴为x轴时,方程等号右端为±2px,相应地左端为y;当对称轴为y轴时,方程等号的右端为±2py,相应地左端为x.同时注意:当焦点在正半轴上时,取正号;当焦点在负半轴上时,取负号.

(四)四种标准方程的应用

例题:(1)已知抛物线的标准方程是y=6x,求它的焦点坐标和准线方程;

(2)已知抛物线的焦点坐标是F(0,2),求它的标准方程.

方程是x=8y.

练习:根据下列所给条件,写出抛物线的标准方程:

(1)焦点是F(3,0); 答案是:(1)y=12x;(2)y=x;(3)焦点到准线的距离是2. (3)y=4x,y=4x,x=4y,x=4y.

由三名学生演板,教师予以订正.

这时,教师小结一下:由于抛物线的标准方程有四种形式,且每一种形式中都只含一个系数p,因此只要给出确定p的一个条件,就可以求出抛物线的标准方程.当抛物线的焦点坐标或准线方程给定以后,它的标准方程就唯一确定了;若抛物线的焦点坐标或准线方程没有给定,则所求的标准方程就会有多解.

(五)小结:

本次课主要介绍了抛物线的定义,推导出抛物线的四种标准方程形式,并加以运用.

五、作业:

到准线的距离是多少?点M的横坐标是多少?

2.求下列抛物线的焦点坐标和准线方程:(1)x=2y;(2)4x+3y=0;(3)2y+5x=0;(4)y6x=0.

3.根据下列条件,求抛物线的方程,并描点画出图形:

(1)顶点在原点,对称轴是x轴,并且顶点与焦点的距离等于6;

(2)顶点在原点,对称轴是y轴,并经过点p(6,3).

4.求焦点在直线3x4y12=0上的抛物线的标准方程.

作业答案:

3.(1)y=24x,y=2x,(2)x=12y(图略)

4.分别令x=0,y=0得两个焦点F1(0,3),F2(4,0),从而可得抛物线方程为x=12y或y=16x.

篇5: 《抛物线及其标准方程》教学反思

周四我讲了《抛物线及其标准方程》一课,讲完这节课后,积极主动地请教各听课老师,聆听他们的意见,还有第三节课后李校长、王校长、程主任、房主任的点评,虽然没有针对我的课进行点评,但我还是觉得受益颇深,我心想领导们指点的这些,好多也是我课堂上很应该注意和改进的,下面就将本节课的反思总结一下:

这节课的备课我感受最深的就是老师们对我的帮助,在备这节课前,我请教了臧老师、徐老师、韩老师,她们对我上好这节课提出好多实实在在的宝贵意见,让我从自己备课这个小圈子里扩展到我力所不能及的大圈子里面,因为年纪轻、教学经验不足,好多不到之处请老师一指点之后恍然大悟,上课自然顺彻很多,很感谢老师们的帮助和指点。

这节课我用课件讲的抛物线,其实比较重要的一点是能用几何画板来比较形象的演示抛物线的生成过程,学生好接受、我也好表达,然后学生们自己在下面建系、做题,我用投影仪展示,一可以让学生很好的参与课堂,再就是不用再在黑板上写一遍,能减少不必要的时间耗费,增加课堂容量,再一个就是小组讨论,先学生们一起学后教,一开始小组成员有一半会的,通过同学的讲解小组的每个同学就都会了,这样老师也安心,不用怕有学生不会,学生也开心,因为他学会了知识。最后老师和学生们一起进行总结,点出来重点、本质。在这里的不足就是在小组讨论之前,我没有给同学们充分的自己思考的时间而是很快的进入了小组讨论,应该让学生有自主学习的时间,然后小组讨论,先学后教。班级授课,共同成长。

对于小组,现在我完全是依靠组员的自觉和小组长的责任心,听了王校长的指点,我认识到我的不足,我应该经常性的评优秀小组,让小组代言人代表本组的水平,让他们有集体荣誉感,能很好的带动学生们的积极性。

在课堂上让学生们做的题要具有代表性,并且难度要考虑全体同学,全体都能做完,昨天领导们在这里指点了一个地方我理解为“小组内要有和老师‘一路’的人”,如果有同学没完成老师布置的任务,老师一定能够知道才好,不能学生的完成情况和老师的了解情况中间脱节。这一个我应该好好去想想,用用心,每一组培养1~2人,常和老师沟通,并且能带领大家按时按量的完成老师布置的任务,不让任何一个学生当课堂的旁观者,一节课下来,一定要学到知识,比上课之前要有进步,程度差的可以少进步些,程度好点的进步的大一些,但总是要有所收获的才行。什么是高效,昨天李校长的一语点醒了我,高效不是一节课讲的多,而是在等时间内学生所接受所学会的东西多,一节课讲一道题如果学生都会了也比一节课讲十道题学生迷迷糊糊要强的多。讲完之后要再落实一下,看看学生是不是真会了,他自己做能不能做出来,再做一遍,会了吗?

这节课,我采取会的学生主动去讲台讲题,有个别学生数学比较有优势,所以更积极一些,一些想去又不大有信心的同学这时候就没有机会上台展示,信心就更不好培养了,同一个人上讲台的次数太多,没有照顾到全体学生。以后,我认为这时候老师就要有意识的看看班里的情况,看看那些想上去又不大有信心的同学,点名让他们去讲台展示。

这节课的整体感觉就是节奏自己掌控的不够好,还有就是对教材还是不是特别熟悉,学生猛然的课堂提问,我一时答不上来,于是当时反应就是让同学们以课后讨论的形式解决这个问题,其实我应该再对教材多加研究,多加熟悉,这样也能让自己的自信心提升,也能更好的把握课堂节奏,知道哪里该放的时间长一些哪里放的短一些。还有就是备好教材,备好教师之后要用心思去备学生,站在学生的角度去想,这一部分题哪些需要多强调,需要怎么去讲才能明白,怎么样才能落实到学生的笔上,他们会运用知识,会做题。这些都是我应该去用心考虑,用心去想的'。

篇6: 《抛物线及其标准方程》教学反思

1、问题――创设质疑,引发兴趣

本节课为了引入抛物线的定义,创造学生主动探究抛物线定义的情境,课堂是从学生所熟悉的二次函数的图象开始的,还有投篮的FLASH展示,并欣赏了生活中的抛物线模型图片及著名的萨尔南拱门。特别是通过赵州桥的拱底不是抛物线,引起学生的好奇心,激发学生研究的热情。让学生回到自然与社会中来,亲自体验到真理的发现与实现过程,深深感觉到数学来源于生活。在这个引入的过程中互动方式有师生互动,人机互动。

2、发散――提供线索,引起讨论

在发现问题后,利用几何画板的演示,使学生发现形成轨迹动点的几何特征,进而得出定义。为了使课堂教学行为趋于多重整合,把学生分成活动小组,对探究过程中出现的问题进行讨论研究。这一过程培养学生勇于探究的精神和与人协作的能力,使学生真正做学习的主人。在课堂学习过程中,教师是学习活动的组织者,探究情境的创造者,探究活动的引导者,既要对学生的讨论给予引导,又要对出现的问题进行点拨。为了使实际操作和对问题的数学讨论卓有成效,课堂教学氛围民主、和谐和开放,学生的思维始终处于活跃状态,教学过程中我设置了很多引导性的问题,如“抛物线是满足什么几何条件的点的集合”,“怎么建立坐标系求抛物线的标准方程”,“大家讨论出的三种建系方案所对应的方程那种更加简单”,“四种标准方程内在联系是什么”等。在这样的教学模式下,学生各抒己见,合作学习,学会从数学的角度发现问题和提出问题,在与他人合作和交流的过程中,客观的理解他人的思考方法和结论,体验获得成功的乐趣,建立学好数学的自信心。这一过程中的互动方式是师生互动,生生互动,人机互动

3、收敛――规范要求,引控方向

收敛与发散是相辅相成,互为促进的。探究式学习并不是完全放手让学生去研究,为了能完成有效的教学目标,教师要在知识的形成阶段规范要求,引控方向。所以,探究的每一阶段均离不开教师的组织,教师为学生创设情境,调节控制学生的探究活动,教师的教学组织促进学生的探究深化;同时,学生的探究进程要求教师指导、提示、组织、引导。在引导学生归纳抛物线的定义和坐标法求抛物线的标准方程,及对四种标准方程进行规律分析的过程中,我一方面提示学生去思考、讨论和表达,一方面对学生的结论进行剖析、评价和指正。比如在比较四种标准方程的规律分析中,首先提供线索指导学生进行发散式讨论,如从图形、系数、坐标轴、正负值、对称性等入手思考,以明确问题的指向性,其次在学生讨论不完善的情况下,表明自己的看法与学生的思维发生碰撞,帮助学生修正自己的见解。互动方式是师生互动,生生活动。

4、综合――启发深入,引导探究

综合教学过程,要求学生对探究结论进行综合概括,形成知识之间的关系网络,使知识与知识之间,不同学科知识之间,数学知识与现实生活之间建立联系,将探究结论进行综合组织,并纳入自己的数学认知结构中。比如,在推导得到开口向右的抛物线标准方程后,由学生分组探究完成如下两个问题:一是写出另外三种抛物线的标准方程,焦点坐标和准线方程;二是寻求它们的内在联系,并总结记忆。这是数学探究课的中间层次,教师给出简要的过程提示和大致要求,对学生的结论可以不加限制,既做到理顺问题,尝试结论,又给学生留下一定的思维空间。互动方式是师生互动,人机互动,学生与教材互动。

5、创造――诱导点拨,引入验证

这是一个概念的深化过程,先通过一道例题应用所学知识点,再根据本节内容设置课堂练习,要求学生综合运用各知识点加以解决,提高学生综合能力。本节课设置了4道课堂练习,针对抛物线的标准方程,焦点坐标和准线方程,考察学生对解题方法的运用与数学思想的把握,对探究结论有一个质的飞跃。至此,圆满完成本节课先由形到数,再由数到形,最终达到数与形的完美结合这一指导实际生活的教学任务。互动方式是师生互动,生生互动,人机互动。

篇7:抛物线及其标准方程的教学反思

抛物线及其标准方程的教学反思

我授课的内容是《抛物线及其标准方程》。抛物线是学生接触到第三种圆锥曲线,它相对于椭圆和双曲线而言要简单一些,只是出于其开口有四个方向,所以使得抛物线的标准方程、焦点坐标和准线方程个数较多,形式又很接近,学生便极容易记混。我在设计这节课时,主要有两种思路:一种是放手让学生去推导后三种开口情况下的标准方程、焦点坐标和准线方程,让他们自己来找到记忆它们的规律。不过这样势必会占用很多时间,习题就练得不充分:另一种想法是我带他们推出开口向右时抛物线的标准方程后,其余三种情况直接给出结论和记忆的方法,这样可充分的时间处理习题,通过做题来加强学生对知识点的.记忆和巩固。犹豫再三,考虑到分校学生在自己推导方面的能力参差不齐,而且这又是一节公开课万一出现意外也不好控制,我就选择了第二种方案实际进行我的教学。课上完了,忽视了一个教学中最应注意的问题也恰恰是新课改中提倡的一个理念“将课堂还给学生”。尽管我的课堂环节是适应新课改的教学环节,可我的观念却还是原来的。我把本应属于学生自己的任务给抢了来,把个人认为有用的东西强加给了学生。而实际上,这样做却并没有实现对学生能力的训练和培养,是违背了新课改的理念的。 作为新课程改革的践行者,我们真的必须从现在就开始做好思想上、理论上、知识上的储备了。意识决定行为,首当其冲的就是“转变观念”。我要从本质上理解新课改的精神,并积极的在自己的实际教学中去探索应用它。相信只要我们从心底里认可新课改,认真的研究新课改并指导我们的实际工作,就会早日实现新课改所制定的预期目标。

篇8:抛物线及其标准方程的教学反思

本学期,大学区的活动搞得轰轰烈烈,听课、学习的机会比较多。在这一大环境下,我校为了促进教师的教学水平,举办了本次青年教师赛教活动。我觉得这也是一次锻炼和展示自己的机会,所以花了一周时间做课件和准备工作。希望得到评委老师的点评,知道自己讲课不足的地方。

今天下午我讲的公开课是《抛物线及其标准方程》。抛物线是学生接触到的第三种圆锥曲线,它相对于椭圆和双曲线要简单一些。但是作为圆锥曲线它具有和其它圆锥曲线相似的学习过程和方法。本节的教学重点是抛物线的定义及其标准方程的推导。通过学生自主建立直角坐标系和对方程式的讨论选择突出重点。教学难点是抛物线概念的形成及其标准方程的指导。所以我在设置教案时将学生作为主体,引导学生完成抛物线定义及标准方程的推导,学生的配合也较理想。本节课在这点上是我比较满意的地方,只是在讲解第三种推导方法时我习惯了板书给学生示范,结果在练习这个环节的时间有些紧张。

本节是解析几何关于圆锥曲线的知识,如果学生能观察到这些动点的关系曲线方程就会迎刃而解,也是解析几何的基本功的一个培训,同时本节课希望促进学生的动手动脑能力,所以本节课在设置上更大程度上让学生观察得到结论。

篇9:抛物线及其标准方程的教学反思

新一轮课程改革的大潮已经滚滚而来,作为一名有幸能够参与其中的教师,我深深的感到了自己肩上的重任和自身急需改进的问题。新课改倡导“一切为了每一个学生的发展”,“课堂上学生是主体,教师是引导者”……这些理念都表明了一个共同的目标:充分调动学生的主观能动性,让他们身上的潜能热情的迸发出来,从而创造出过去的“填鸭式”、“一言堂式”教学所无法实现的结果,逐渐的将我们的学生真正培养成一个有创新精神和实践能力的新世纪人。

本次录像我授课的内容是《抛物线及其标准方程》。抛物线是学生接触到第三种圆锥曲线,它相对于椭圆和双曲线而言要简单一些,只是出于其开口有四个方向,所以使得抛物线的标准方程、焦点坐标和准线方程个数较多,形式又很接近,学生便极容易记混。我在设计这节课时,主要有两种思路:一种是放手让学生去推导后三种开口情况下的标准方程、焦点坐标和准线方程,让他们自己来找到记忆它们的规律。不过这样势必会占用很多时间,习题就练得不充分;另一种想法是我带他们推出开口向右时抛物线的标准方程后,其余三种情况直接给出结论和记忆的方法,这样可充分的时间处理习题,通过做题来加强学生对知识点的记忆和巩固。犹豫再三,我选择了第一种方案进行我的教学。

本节是抛物线及其标准方程的第一课时,我确定本节课的教学目标为:

知识目标:理解抛物线的定义及其标准方程的四种形式,会解决两类简单的问题。即给出抛物线求焦点坐标或准线方程,给出一些条件求抛物线方程。

能力目标:培养学生观察,类比联想,分析概括的思维能力和心算口算的运算能力。

情感目标:培养学生大胆猜想,敢于发表个人见解,学会合作、探究问题。通过问题的引入,培养学生学习数学的兴趣。

考虑到本节课的概念抽象及学生的现有认知水平,通过问题引入概念,鼓励学生大胆猜想,经历探究解决问题的过程,进一步体现“教为主导,学为主体”的教学思想。通过学生合作画图,培养他们合作学习的意识,充分发挥了学生的主观能动性,学习兴趣浓厚,精神抖擞,完成了本节课的教学目标,每一位学生都有所收获。

当然总体感觉本节课学生探究的还不够。学完椭圆双曲线以后,学生完全可以类比研究椭圆双曲线的方法,自己学习这一节。再一点就是:抛物线方程的建立可以从不同的角度来建立直角坐标系,引导学生推导出不同坐标系下的方程,进一步加深“标准”的含义。由于时间关系无法在课堂上让学生板书推导过程,没能展现学生的思维过程.另外,多媒体教学手段有利有弊,可以增加课容量,增强形象性、趣味性,却忽视学生学科思维训练的过程性。因为时间紧例题处理比较仓促,这样不利于培养学生解题的规范性。

篇10:抛物线及其标准方程的教学反思

首先感谢我的师傅对我过关课得指导和同备课组的教师的指点与帮助。同时也非常感谢听课的教师课后对我这次过关课的点评,指出我存在的缺点和不足。

从和师傅商量定题,定稿试讲,到站在教室讲授,我有种时间飞逝的感觉,就像“会诊课”、“汇报课”仿佛就在昨天。从“会诊”到“汇报”到这次的“过关”我们经历了“四课”中的三课每一次的感触都不近相同。

讲“会诊”课的时候,我提前很长时间就开始着手准备了,但自己弄的东西凌乱、没有任何头绪,是师傅及时的为我把住了方向,定下了要讲的内容,反复的推敲承上启下的过渡语言。在试讲中指点我应该注意的问题,但在最后正式讲课的时候,我还是很紧张。

到“汇报”课的时候,我知道应该先准备出要讲的课的雏形了,在设计每一个环节的时候,应重点考虑一下学生会出现的状况,师傅则帮助我如何将教材挖掘的更为透彻,如何排列习题的出场顺序能让学生更易于接受,如何处理课件能够使它更为美观、清晰,总之在“汇报”课后,我觉得自己比上一次多了一份沉稳与自信。

这一次的“过关”课,接到通知,我和师傅就早早达成了共识,定下了题目与方向。由于我担任的是文科班的教学任务,要求掌握的难度与理科数学相比要低一些,设计的内容应该跟接近于我的学生,综合各种因素,我和师傅都认为,抛物线及其标准方程是一节概念课,在引导学生剖析概念,要透彻、准确,全面,让学生亲身经历定义的形成过程。同时习题的配备应该比正常的简单一些,多让学生动手实践一些,应注重学生接受的实效。让学生真正成为课堂的主体。最后在师傅和同备课组老师的共同帮助下将“过关”课顺利的讲完。

三次大课讲下来,每经历一次就经历了一次教学上的蜕变,这种蜕变是需要平日里量的积累的。

同时,在课后自己也静静地进行了反思。第一:由于听课的人比较多,刚上课的时候感觉紧张,我的学生都明显感觉到了,虽然站在讲台上我是自信的,但是这种紧张会影响我的自信以及课的导入,这种心态上的调整应多注意,无论什么样的场面,我和我的学生永远是主角。第二:在引导学生剖析概念时,讲解抛物线焦点坐标与准线、方程之间的关系时,运用的语言不够专业与恰当,有些随意,我想通过我这次公开课也折射出平时上课的时候应用心推敲语言,使自己的专业语言成为自己的一种习惯,一种修养。第三:在讲解这道习题时,点评的不够透彻明朗,有个别学生还存在疑惑。无论在什么时候都应全面准备,不漏掉一丝丝细节的地方,细节决定成败。

在上课的时候,应该抓住绝大多数学生的眼神,与大家有心灵和精神上的交流,决不能以点带面,几个人会了并不代表全班人都得出了答案,所以课堂上且不能急于求成,要踏踏实实。我的课离优质课还差的很远,但是让“优质课常态化,常态化优质课”这种思想我由衷的欣赏和喜欢,这是一种高标准的自我要求,备课、讲课、课后自我反思要充分、认真、全面、及时。让自己的每一节课都高标准,高要求,这样自己才会成长的更快。

这次“过关”课结束后,也意味着到下一次的“达标”课即将来临,我想我们每一位新人都不会虚度时光,都会充分的利用这段时间为自己填充更多的能量与给养,为下一次美丽的蜕变作好充分的准备。

篇11:抛物线及其标准方程的教学案例2

本节课的教学设计

本节教材是在学生学习了椭圆、双曲线之后,因此在教学中,要时时注意与前两种曲线进行对比,求曲线方程的步骤、建系方法都是学生已经理解和掌握了的,我充分调动学生已有的知识,引导学生把新旧知识有机融合,掌握知识的系统结构。

一、教学理念

在“以学生发展为核心”的理念下,不仅要关注学生“学会”知识,而且还要特别关

注学生“会学”知识。本节课在实验的基础上,以问题为核心,创设情景,通过教师适时的引导,生生间、师生间的交流互动,启迪学生的思维,使学生通过自己的分析、反思、纠正,不断完善并形成抛物线的概念,推导抛物线的方程,建构自己的知识体系,提高获取知识的能力,尝试合作学习的快乐,体验成功的喜悦。在这一过程中,教师只是一名组织者,引导者,促进者。

二、教学方法

为了充分调动学生的积极性,使学生变被动学习为主动学习,我采用了“引导探究”

式的教学模式,在课堂教学过程中,我始终贯彻“教师为主导,学生为主体,探究为主线,思维为核心”的教学思想,通过引导学生实验、观察、比较、分析和概括,使学生充分地动手、动口、动脑,参与教学的全过程。

三、教学手段

直尺—三角板教具在本节课的概念形成过程中起到非常重要的作用,为学生的自主探

究活动提供了实物载体,相关的实验材料可向学生预先布置,做好准备,计算机为教师进行教学演示和学生的观察提供了平台,二者有机结合,协调发挥作用,使课堂更加紧凑有序。

四、教学设计

为了突破本节课的难点——抛物线概念的形成,我注重与同学们所熟知的二次函数对比,通过变换坐标系的建立,一方面强化学生求曲线方程的基本功,另一方面与二次函数联系起来,使学生有一种“顿悟”的感觉。在每个阶段的教学中精心设计问题情景,为学生自主探究和发现创造条件。

篇12:《双曲线及其标准方程》说课稿

一、教材分析

1、教材地位

本节课是新课程人教A版选修2-1 第2章 第三节第一课时。它是在学生学习了直线、圆和椭圆的基础上进一步研究学习的,也为后面的抛物线及其标准方程做铺垫。

2、教材作用(重要模型,数形结合)

圆锥曲线是一个重要的几何模型,有许多几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用。同时,圆锥曲线也是体现数形结合思想的重要素材。

3、设计理念:体现素质教育的要求和新课程理念,融合“知识与技能”、“过程与方法”、“情感态度与价值观”三维教学目标,利用学校博客平台进行网络教学,突出课堂教学的互动性、思考性、有效性和创新性。注重学生学习过程的体验,体现自主、合作、探究的学习方式;注重数学基本能力的培养和基础知识的掌握,又注重数学思想与方法的教育,同时反映数学学科前沿以及与科学、技术、社会的联系;教学过程中体现过程性评价对学生发展的作用,体现教师的有效指导作用。

二、目标分析

1.知识与技能目标

①理解双曲线的定义

②能根据已知条件求双曲线的标准方程。

③进一步感受曲线方程的概念,了解建立曲线方程的基本方法。

2.过程与方法目标

①提高运用坐标法解决几何问题的能力及运算能力。

②培养学生利用数形结合这一思想方法研究问题。

③培养学生的类比推理能力、观察能力、归纳能力、探索发现能力。

3.情感、态度与价值观目标

①亲身经历双曲线及其标准方程的获得过程,感受数学美的熏陶。

②通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。

③养成实事求是的科学态度和契而不舍的钻研精神,形成学习数学知识的积极态度。

4、重点难点

基于以上分析,我将本课的教学重点、难点确定为:

①重点:感受建立曲线方程的基本过程,掌握双曲线的标准方程及其推导方法。

②难点:双曲线的标准方程的推导。

三、学情分析:

1、知识方面:学生已经学习直线、圆和椭圆,基本掌握了求曲线方程的一般方法,能对含有两个根式的方程进行化简,对数形结合、类比推理的思想方法有一定的体会。

2、能力方面:学生对基本的计算机操作较为熟练、有一定的学习基础和分析问题、解决问题的能力,且有一定的群体性小组交流能力与协同讨论学习能力。

四、教法学法分析

在教法上,主要采用探究性教学法和启发式教学法。探究性学习就是充分利用了青少年学生富有创造性和好奇心,敢想敢为,对新事物具有浓厚的兴趣的特点。让学生根据教学目标的要求和题目中的已知条件,自觉主动地创造性地去分析问题、讨论问题、解决问题。

启发式教学法就是以启发、引导为主,采用设疑的形式,逐步让学生进行探究性的学习。通过创设情境,充分调动学生已有的学习经验,让学生经历“观察——猜想——证明——应用”的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。

新课程倡导“自主、合作、探究”学习,引导学生自主探索、发现知识;通过设计问题,以支撑学生积极的学习活动,帮助他们成为学习活动的主体;创设真实的问题情境,诱发他们进行探索与解决问题。并注意培养学生的动手实践能力。

五、说教学过程

教学环节

教学过程

设计意图

复习引入

心理学强调,学习是在已有认知结构基础上展开的.让学生利用自己的原有的认识结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构。这一环节既可以使学生温故而知新,也为后面的学习做好铺垫。

双曲线的定义

通过课本的实验探究(以动画形式展示),引入双曲线的定义:平面内与两定点的距离的差的绝对值等于常数(小于)的点的集合。

符号表示:

其中:焦点——;焦距——(设为);

设常数

思考:1、去掉“绝对值”后,点M的轨迹为什么?(用动画展示)

2、若常数,则点M的轨迹是什么?(用动画展示)

1、建构主义理论认为,学习是学生积极主动地建构知识的过程,因此,应该让学生在具体的问题情境中经历知识的形成和发展,将实际问题抽象为数学模型,并进行解释与运用的过程。课堂教学的关键是要激发学生的求知欲,让学生主动参与,发现学习。

2、通过设问,把学生逐步引入问题情景中,通过师生互动等形式,让学生在问题中学会思考,学会学习,最终使问题得以解决。同时,问题具有一定的梯度,对学生的思考有一定的引导和启发作用。

篇13:《椭圆及其标准方程》说课稿

《椭圆及其标准方程》说课稿

说教材:

1.地位及作用:

椭圆及其标准方程是高中《解析几何》第二章第七节内容,是本书的重点内容之一,也是历年高考、会考的必考内容,是在学完求曲线方程的基础上,进一步研究椭圆的特性,以完成对圆锥曲线的全面研究,为今后的学习打好基础,因此本节内容具有承前启后的作用。

2.教学目标:

根据《教学大纲》,《考试说明》的要求,并根据教材的具体内容和学生的实际情况,确定本节课的教学目标:

(1)知识目标:掌握椭圆的定义和标准方程,以及它们的应用。

(2)能力目标:

(a)培养学生灵活应用知识的能力。

(b)培养学生全面分析问题和解决问题的能力。

(c)培养学生快速准确的运算能力。

(3)德育目标:培养学生数形结合思想,类比、分类讨论的思想以及确立从感性到理性认识的辩证唯物主义观点。

3.重点、难点和关键点:

因为椭圆的定义和标准方程是解决与椭圆有关问题的重要依据,也是研究双曲线和抛物线的基础,因此,它是本节教材的重点;由于学生推理归纳能力较低,在推导椭圆的标准方程时涉及到根式的两次平方,并且运算也较繁,因此它是本节课的难点;坐标系建立的好坏直接影响标准方程的推导和化简,因此建立一个适当的直角坐标系是本节的关键。

说教材处理

为了完成本节课的教学目标,突出重点、分散难点、根据教材的内容和学生的实际情况,对教材做以下的处理:

1.学生状况分析及对策:

2.教材内容的组织和安排:

本节教材的处理上按照人们认识事物的规律,遵循由浅入深,循序渐进。

说教法和学法

1.为了充分调动学生学习的`积极性,是学生变被动学习为主动而愉快的学习,引导学生自己动手,让学生的思维活动在教师的引导下层层展开。请学生参与课堂。加强方程推导的指导,是传授知识与培养能力有机的溶为一体,为此,本节课采用引导教学法。

2.利用电脑所画图形的动态演示总结规律。同时利用电脑的动态演示激发学生的学习兴趣。

一、教材分析

1、教材的地位及作用

圆锥曲线是高考重点考查内容。“椭圆及其标准方程”是《圆锥曲线与方程》第一节内容,是继学习圆以后运用“曲线和方程”理论解决具体的二次曲线的又一实例。

从知识上说,它是运用坐标法研究曲线的几何性质的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;

从方法上说,它为后面研究双曲线、抛物线提供了基本模式;

所以,无论从教材内容,还是从教学方法上都起着承上启下的作用,它是学好本章内容的关键。因此搞好这一节的教学,具有非常重要的意义。

2、教学目标

根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

(1)、知识目标:掌握椭圆的定义及其标准方程,通过对椭圆标准方程的探求,熟悉求曲线方程的一般方法。

(2)、能力目标:让学生通过自我探究、合作学习等,提高学生实际动手、合作学习以及运用知识解决实际问题的能力。

(3)、情感目标:在教学中充分揭示“数”与“形”的内在联系,体会数与形的统一,激发学生学习数学的兴趣,培养学生勇于探索,勇于钻研的精神。

3、教学重点、难点

教学重点:椭圆的定义及椭圆的标准方程。

教学难点:椭圆标准方程的建立和推导。

在学习本课前,学生已学习了直线与圆的方程,对曲线和方程的概念有了一些了解与运用的经验,用坐标法研究几何问题也有了初步的认识。但由于学生学习解析几何时间还不长、学习程度也较浅,对坐标法解决几何问题掌握还不够。另外,学生对含有两个根式之和(差)等式化简的运算生疏,去根式的策略选择不当等是导致“标准方程的推导”成为学习难点的直接原因。

据以上对教材及学情的分析,确定椭圆的定义及其标准方程为本课的教学重点;椭圆标准方程的推导为本课的难点。

4、教材处理

根据新课程大纲要求,本节课的内容特点以及结合我班学生的实际情况,我把本节内容分2个课时进行教学。

第一课时,主要研究椭圆的定义、标准方程的推导。

第二课时,运用椭圆的定义求曲线的轨迹方程。

二、教学方法和教学手段

课堂教学中创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则。根据这样的原则及所要完成的教学目标,我采用如下的教学方法和手段:

教学方法:我采用的是引导发现法、探索讨论法等。

1、引导发现法:用动画演示动点的轨迹,启发学生归纳、概括椭圆定义。

2、探索讨论法:由学生通过联想、归纳把原有的求轨迹方法迁移到新情况中,有利于学生对知识进行主动建构。

有利于突出重点,突破难点,发挥其创造性。

引导发现法和探索讨论法是适应新课程体系的一种全新教学模式,它能更好地体现学生的主体性,实现师生、生生交流,体现课堂的开放性与公平性。

教学手段:利用多媒体课件教学,化抽象为具体,降底学生学习难度,增强动感及直观感,增大教学容量,提高教学质量。

三、学法指导

“授人以鱼,不如授人以渔。”

教会学生:

1、动手尝试。

2、仔细观察。

3、分析讨论。

4、抽象出概念,推出方程。

这样有利于学生发挥学习的主动性,使学生的学习过程成为在教师引导下的“再创造”过程。

四、教学过程

教学流程设计:认识椭圆→画椭圆→定义椭圆→推导椭圆方程→椭圆方程知识讲解→椭圆方程知识运用→本课小结→作业布置

五、教学评价

1、这节课围绕“认识椭圆→画椭圆→定义椭圆→推导椭圆方程→椭圆方程知识讲解→椭圆方程知识运用”这一主线展开。

2、教学中学生通过观看动画、动手实践,自己总结出椭圆定义,符合从感性上升为理性的认识规律。

3、在整个教学过程中,采用引导发现法、探索讨论法等教学方法,注重数形结合等数学思想的渗透。培养学生勇于探索、勇于创新的精神。

【《抛物线及其标准方程》说课稿】相关文章:

1.《椭圆的标准方程的求法》说课稿

2.双曲线的标准方程说话稿

3.说课稿标准格式

4.抛物线的基本知识点

5.《方程》知识点

6.语文教学:像画抛物线

7.椭圆双曲线抛物线知识点汇总

8.方程教学反思

9.简易方程教案

10.简易方程练习题

下载word文档
《《抛物线及其标准方程》说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部