欢迎来到个人简历网!永久域名:gerenjianli.cn (个人简历全拼+cn)
当前位置:首页 > 教学文档 > 课件>初中数学课件《旋转-中心对称》

初中数学课件《旋转-中心对称》

2023-12-27 08:34:58 收藏本文 下载本文

“bus2009”通过精心收集,向本站投稿了13篇初中数学课件《旋转-中心对称》,这次小编在这里给大家整理后的初中数学课件《旋转-中心对称》,供大家阅读参考。

初中数学课件《旋转-中心对称》

篇1:初中数学课件《旋转-中心对称》

第一课时

师:请同学们利用2分钟时间完成“课前小测”。

生:(学生独立完成)。

师:时间到,***同学来说一说你的答案。

生:、、、、、、

师:我们前面已经学习过平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究。今天我们学习第九章《实际问题与一元一次不等式》(课件出示课题),请同学们看“自学指导”的要求,利用5分钟完成自学。

生:(学生边阅读课本边用笔在重点处作记号)。

师:(全班巡视)。

师:时间到,刚才同学们再一次自学了课本上内容,现在我们看下面的问题,谁有解题思路、?(课件出示“问题”,并给学生1分钟思考)

生:把一个图形绕着一个点O转动一个角度的图形变换叫做旋转。点O叫旋转中心,转动的角叫旋转角。

师:很好,请看幻灯片,议一议、、、,

(课件出示“议一议”,并给学生1分钟思考)

师:哪位学生能解决?

生:旋转中心是“O” ;A、B旋转到了D、E;旋转角是∠AOD;AO和DO相等,BO和EO相等;∠AOD=∠BOE

师:好,谁有疑问的举手问。请继续看探究,同桌之间合作完成。进行探究,观察每组图形中

①对应点与旋转中心所连线段有什么关系?

②对应点与旋转中心连线所成的角有什么关系?

生:(学生合作完成)。

师:哪位同学来讲一讲你的答案(稍等,让学生举手)。***同学请回答

生:对应点到旋转中心的距离相等;

对应点与旋转中心所连线段的夹角等于旋转角;

旋转前后的图形全等。

师:很好,这就是旋转的性质,请在书中找到并作上记号。接下来我们看看下面例题。

(课件展示例1)请同学们试完成

生:(学生完成,)

师:(全班巡视,从中发现问题所在)

师:本题关键是确定△ADE三个顶点的对应点,即它们旋转后的位置。,看老师示范。

(在黑板上示范)

师:会了吗?

生:会了。

师:那现在我们一起来完成下面的问题。

(课件显示巩固练习)

师:时间到,请某同学把练习展示。

(把学生的答案在投影上投出,与学生一起对照答案评讲)

师:请同学们思考下面图案可以看做是一个菱形通过几次旋转得到的?每次旋转了多少度?

(课件展示图形)

生1: 600

生2:1200

生3:2400

师:很好,也就是可只要是旋转600的倍数就可能,那么香港区徽可以看作是什么“基本图案”通过怎样的旋转而得到的?

生1:72 0

师:只能是720吗

生2:可以是720倍数。

师:非常好,现在请同学们完成P58练习。

(学生完成后,老师评讲)

师:这节课,主要学习了什么?

生:、、、、、、

师:请利用10分钟完成练习册达标体验1-5。

第二课时

师:请同学们利用2分钟时间完成“课前小测”。

生:(学生独立完成)。

师:时间到,***同学,拿你的试卷答案上来给老师投影给大家看看你的答案是否真确。他做对没有?

生:答案对了。

师:今天我们学习图形的旋转第2课时(课件出示课题),请同学们一起来欣赏下面几个图片。

生:(学生与老师一起看图片)。

师:生活中我们有很多美丽的图片,这上面的图片与我们学习的旋转有联系吗?

生:、、、

师:答案是有的,请同学们看看下面两个图画的形成。

(课件动画显示图形的形成)

师:请同学来讲讲这两个图片是经过什么过成形成的。

生:是由一个基本图形绕一个点转1800得到。

师:很好,那这样一个图形我们也给出了一个名称,(课件展示出概念)

师:现在我们来探索一下一个图形旋转后的性质。请每人准备一把三角尺自己旋转一下,并将旋转前的图形和旋转后的图形都画下来,然后进行比较。

生:(学生各自完成)。

师:请同学们说说,你们发现了什么?

生1:旋转前后两图形完全一样。

生2:旋转前后三角尺的位置变了,但是有一个点还是连着的。

师:是的.,很好,那是旋转中心

生3:三角尺的一条长直角边原来是竖着的,后来横着了。

师:很好,通过大家的探索我们可能发现

?旋转前、后的图形全等。

?对应点到旋转中心的距离相等。

?每一对对应点与旋转中心的连线所成的角彼此相等。

师:现在我们得用这以上的特征来试试画一画旋转后的图形请,画出AB绕点O逆时针旋转100°后的图形。

师:(利用课件演示如何画旋转后的图形)作图关健是作出对应点。

师:下面由同学们来试试画出△ABC绕点C按顺时针方向旋转120°后的对应的三角形。

生:(学生在下面动手)

师:。***同学来拿试卷来展示你的答案。对了没有?

生:对了。

师:很好,接着看我们的来那两个巩固题。10分钟后(实物投影一个学生的练习卷)看这位同学的答案,对吗?(学生给予判断,老师用红笔在练习卷上批改)。通过这一节课的学习,你有什么收获?还有哪些困惑?

生1:会作旋转后的图形。

生2:作图重点是找到对应点。

师:很好,今天的课至此,希望同学们能认真完成课后作业。

篇2:优秀初中数学《中心对称》课件

优秀初中数学《中心对称》课件推荐

一、教材分析

(一)、地位与作用

本节课主要学习中心对称的概念和性质。中心对称是旋转变换的特殊形式,所以已经学过的轴对称变换和旋转的概念及性质,为本节课的学习起了铺垫作用,扫清了学习障碍,本节课的知识也为即将研究的中心对称图形、关于原点对称的点的坐标以及利用平移、轴对称、旋转的组合进行图案设计奠定了坚实的基础。

(二)、教学目标分析

知识与技能:理解中心对称,对称中心,对称点等概念;掌握中心对称的性质;应用中心对称的概念及性质,解决实际问题。

过程与方法::经历探究发现中心对称性质的过程,提高观察、分析、抽象、概括等能力;体验猜想、类比等数学思想。感悟数学来源于生活,又服务于生活的真谛。

情感态度与价值观:欣赏数学的美学价值,树立学好数学的信心

(三)教学重、难点分析

重点:掌握中心对称的概念及性质

难点:准确理解概念及性质,利用其解决实际问题。

二、教法与学法分析:

(一)、学情分析:本节课是在学生学习了旋转的基础上,从旋转变换引入中心对称的,学生在学习旋转的过程中,已经充分体验了观察、测量、旋转画图等活动,经历了在操作活动中探索性质的过程,获得了初步的数学活动经验和体验,具备了一定的主动参与、合作交流的意识和初步的观察、分析、抽象概括能力。

(二)、教学方法:结合本节课的教学内容,以及学生的心理特点和认知水平,主要采用启发探究和直观演示的教学方法,创设情境启导学生观察、探索、抽象、分析中心对称的概念,揭示刻画中心对称的性质。

(三)学习方法:新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用动手实践、自主探索,合作交流的学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

(四)辅助手段:

利用多媒体教学平台来配合教学,就可以把抽象的内容变得更具体,为学生提供丰富的感知材料,培养学生数学直觉能力。

三、教学过程

(一)探究问题,形成概念

第一步:为了使学生关注到概念的实际背景,首先利用多媒体演示2组图片的运动过程,并提出如下问题,力图在课一开始就紧紧抓住学生。

问题1:观察下面的2组图形,看一看各组中2个图形的形状、大小是否相同?怎样将一个图形旋转得到另一个图形?

很自然的从旋转变换的角度引入本节课题:中心对称。让学生体会到知识间的内在联系,中心对称实际上是旋转变换的一种特殊形式,渗透了从一般到特殊的数学思想方法。

第二步:教师再次展示一组图片,演示旋转的过程,进一步提出问题,给学生一定的思考和讨论的空间。接下来从具体图案中抽象出两个三角形,提问:

问题2: (1)把其中一个图案绕点O旋转180°,你有什么发现?

(2)线段AC,BD相交于点O,OA=OC,OB=OD.把 △OCD绕点O旋转180°,你有什么发现?

引导学生分析问题,从而把以下三点逐一击破:1、两个图形;2、(选定)一个点;3、两个图形,一个图形绕着某个点旋转180°后能与另一个图形重合。

(二)探索研究,归纳性质

第一步:为了让学生在理解概念的同时,探索发现中心对称的性质。教师引导学生动手操作,完成63页探究:旋转三角板,画关于点O对称的两个三角形。然后利用画好的学具,分别连接对应点AA’、BB’、CC’。提问:

(1)点O在线段AA’上吗?如果在,在什么位置?

(2)△ABC与△A’B’C’有什么关系?

(3)你能从中得到什么结论?

第二步:为了更好的深化学生对知识的理解,接下来让学生对比中心对称与轴对称的联系与区别,提出问题:中心对称与轴对称有什么区别?又有什么联系?

问题提出后,让学生小组内进行充分的讨论交流,共同完成事先准备好的图表。老师利用投影仪进行展示,并让小组选代表进行说明。对于没有归纳完整的,其他组的同学进行补充,对于完成较好的小组,应给予及时的表扬和鼓励。

(三)问题探索,解释应用

为加深学生对概念和性质的理解,设计了如下例题:求作已知点A关于点O的对称点A′。学生大都能作出点A关于点O的.对称点A′,然后请一名学生在黑板上完成线段的中心对称线段的作图,并写出作法。教师利用多媒体进行演示,规范作图步骤。待学生完成作图后,进一步提问:

1、一个点绕对称中心旋转180?,得到的是一个平角,这表示什么?

2、你是如何理解“对称点所连线段都经过对称中心,而且被对称中心所平分”的?

3、怎样作出△ABC关于点O对称的△A′B′C′呢?

问题提出后,适当等待,学生纷纷发表自己的见解,畅谈如何作△ABC关于点O对称的△A′B′C′。

这道题是利用中心对称的性质进行作图,使学生能熟练画出两个关于某点成中心对称的图形,巩固学生的作图能力,向学生渗透应用数学的观念。

(四)巩固深化,形成技能

为确保学生对本节知识的掌握,设计了3道反馈练习。

1、如图,已知等边△ABC和点O,画△A′B′C′,使△A′B′C′和△ABC关于点O成中心对称。

2、画一个与已知四边形ABCD成中心对称的图形。

(1)以顶点A为对称中心;(2)以BC边的中点为对称中心。

3、如图,已知△ABC与△A′B′C′中心对称,求出它们的对称中心O。

本环节采用学生间互查的方式,增大反馈范围及信息量,以达到教师调控教学、优化教学过程的目的。思维的变式、发散、求异等优秀的思维品质,在这个开放式的训练中落到了实处。在学生练习的过程中,教师巡视指导并及时纠正学生存在的问题,示范性的演示作图步骤,规范学生的作图和表述能力。

(五)归纳整理,整体认识

让学生相互交流、畅所欲言谈本节课的得失,经历回顾和反思,培养学生良好的语言表达能力和归纳总结以及反思能力,同时加深学生对中心对称的理解和认识,从而使新知识融入学生已有的知识体系中。通过本环节,帮助学生理清知识脉络,对本节课所学的知识有一个完整、系统的认识.

(六)分层作业,巩固创新

1、基础性作业:教材第67页第1题,68页第6题。

2、小小设计师:自己动手设计图案

3、拓展:如图,是一个6×6的棋盘,两人各持若干张1×2的卡片轮流在棋盘上盖卡片,每人每次用一张卡片盖住相邻的两个空格谁找不出相邻的两个空格放卡片就算谁输,你用什么办法战胜对手呢?

布置适当的、具有代表性的课外作业,注重双基的同时补充适当的立意新颖、渗透发散思想的思考题进行分层次教学,让不同层次的学生有着不同程度的发展。力求体现新课程 “人人学有价值的数学、数学来源于生活并应用于生活”的教学理念。

四、对称文化

哲学家柏拉图曾说过:如果使青年们天天耳濡目染于优秀的作品,使他们不知不觉地从小就培养起对于美得爱好,并且培养其融美于心灵的习惯。

对称是一个十分宽广的概念,这在人类早期文明中就有体现。它出现在数学教材中,也存在于日常生活中:我们的广告设计、室内装潢、绘画艺术、日常生活用品等,都有对称的踪迹。文学中的对仗也是一种对称,王维的诗句:“明月松间照,清泉石上流”既有自然意境之美,也有文字对仗工整之美。

美是无处不在的,中心对称的美是公认的,从古到今以中心对称设计的图形不胜枚举,中国古代的太极图也是中心对称美的充分体现,六角形亮晶晶的雪花,不正是大自然对中心对称的美的概括吗?

对称图形是美的,对称观念是美的,对称理论更是美的。大自然的结构是用对称语言写成的。数学和人类文明同步发展,密不可分。“对称”乃是纷繁世界文化中的一个部分。 通过让学生阅读对称文化,培养学生热爱生活的积极人生态度。

篇3:初中数学《中心对称图形》教案

初中数学《中心对称图形》教案

(一)教学内容分析

1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)

2.本课教学内容的地位、作用,知识的前后联系

《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。

3.本课教学内容的特点,重点分析体现新课程理念的特点

本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。我认为这环环相扣、层层深入、循序渐进的活动过程,符合新课程标准理念和学生建构知识的规律,有利于激发学生的学习情趣。

(二)教学对象分析

1.学生所在地区、学校及班级的特色

我授课的班级是西安市阎良区振兴中学九年级一班,作为九年级的学生,在图形的对称方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力;班级学生具有个性活泼,思维活跃,对各种事物充满好奇,学习情绪易于调动,学习积极性高的特点,但学生的抽象思维能力个体差异较大,并且班级中已出现分化现象。

2.学生的年龄特点和认知特点

班级学生的`年龄大多在15岁到17岁间。他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣。

篇4:数学课件平移与旋转

数学课件平移与旋转

教学目标:

1、通过观察生活图片,初步感知平移和旋转现象,并能在方格纸上按要求将简单图形平移。

2、在探索物体或图形的运动过程中发展空间观念。

3、学会用数学的眼光去观察、认识周围的世界,提高运用数学解决实际问题的能力。感受数学与生活的紧密联系,学会与他人合作交流,从而获得积极的学习情感。

教学重、难点:能将一个图形沿水平方向和垂直方向进行平移。

教学过程:

一、情境导入

播放课件,演示火车、电梯、缆车、风扇、旋转木马、钟摆摆动的动画。

师:这几种物体的运动方式相同吗?它们分别是怎样运动的?请大家用手势比划。你能根据它们的运动方式分类吗?先在小组里商量商量吧,你是怎么分的?为什么要这么分?

学生说分类的方法

师:像上面这三种(火车、电梯、缆车)都是沿着直线运动的,我们把这样的运动方式称为平移;而像(风扇、旋转木马、钟摆)都是绕着一个固定的点转动的,这样的运动方式我们就称为旋转。

平移和旋转是物体的两种不同运动方式,生活中的平移和旋转是很多的,你还见到过那些物体的平移和旋转?学生举例说明。

师:今天我们就一起来研究“平移”和“旋转”。

二、新知探索

1、观察讨论,感知平移的距离。

师:出示小兔搬家图,看这三只小兔正忙着搬家呢,出示简化的格子图,瞧,小房子的运动方式是什么?(平移)向哪个方向平移的?(右边)

小兔子们觉得累了就停下来休息。(出示3段录音)

第一只小兔说:“你们看,我们的房子向右平移了3格。”

第二只小兔说:“不对,向右平移了5格。”

第三只小兔说;“你们说的都不对,我们的房子向右平移了7格。”

师:你们同意哪种说法?在小组里说说。

学生汇报各自的想法。(结合画面指一指,动态演示平移的过程。)

2、动手实践,理解平移的距离。

师:请同学们拿出练习纸(例图),在左边的图上找到一个你最喜欢的点,再到右边的图上指出它平移后的位置,并数一数,说说它向右平移了几个。

师:你选的是哪个点?它平移后的位置在哪里?平移了几格?

指名学生回答

师:还有谁和他选的不一样?你们找的.点向右平移了几格?都是7格吗?

我们再来看看,小房子到底向右平移了几格?(小房子整体动态演示)

师:你们发现了什么?教师结合学生的回答总结并板书。

3、师:把书翻到第24页,看看金鱼图和火箭图分别向哪个方向平移了几格?请仔细观察后完成书上的填空然后相互交流。

4、师:观察三组图形,在平移前和平移后什么变了,什么没有变?学生发表意见。

根据学生的回答小结:物体或图形在平移前后只是位置发生了变化,大小和形状都是不变的。

5、看图填一填,完成“想想做做”第4题。

三、巩固练习

1、做书上25页的“试一试”。

你能画出三角形向右平移6格后的图形吗?

(1)先在小组里交流你打算怎样画,再画一画。

(2)相互交流方法。可能是:

a)先把三角形的一个顶点向右平移6格,再根据三角形中另外两点与这点的关系,画出三角形。

b)把三角形的三个顶点都向右平移6格,然后把三个点连起来。

(3)小结:同学们的方法都很好,实际他们的意思是一样的,都是先吧三角形的三个顶点向右平移6格,然后再把三个点连起来。

篇5:初中数学课件

1教学目标

1.理解二元一次方程及二元一次方程的解的概念;

2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;

3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;

4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。

2教学重点、难点

重点:二元一次方程的意义及二元一次方程的解的概念.

难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程.

3教学过程

1.情景导入:

新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902880.2.

2.新课教学:

引导学生观察方程80a+150b=902880与一元一次方程有异同?

得出二元一次方程的概念:含有两个未知数,并且所含未知数的`项的次数都是1次的方程叫做二元一次方程.

3.合作学习:

给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法.提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?

4.课堂练习:

1)已知:5xm-2yn=4是二元一次方程,则m+n=;

2)二元一次方程2x-y=3中,方程可变形为y=当x=2时,y=_

5.课堂总结:

(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);

(2)二元一次方程解的不定性和相关性;

(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.

篇6:初中数学课件

【学生分析】

大部分学生思维活跃,肯钻、肯想、敢说、敢问,对立体图形认识有一定知识积累,有探究、合作等学习方法积累,促进学生知识深化和延伸尤为重要。

【设计思路】

将电视娱乐节目的形式植入数学课堂,体现用活教材激活课堂的理念思想,方法教学成为主导,指导学习方向,复习活动贯穿课前、课中,采用分组竞赛、分组合作的形式,使学生在积极主动的状态下理解本课重点,疏通并构建知识网络,掌握复习方法。

【课前准备】

每组据分工专门研究一个立体图形的特征,整理出3个有关的涵盖面宽,较富挑战性的,主要针对基础知识的问题。同时,据猜测准备好别组涉及问题的答案。

【教学目标】

1、知识目标:使学生进一步识记各图形特征,掌握不同图

形之间的异同,学会观察体会几何图形间的联系和区别。

2、能力目标:通过小组竞赛合作整理知识框架,提高学习的系统性,培养学生回忆、质疑、梳理、归纳、总结等自主复习整理的意识和方法以及能力,同时也加强合作学习能力。

3、情感目标:利用几何图形的美,增进学生对数学的兴趣,复习方法自主构建的尝试,激发学生自信心,渗透事物普遍联系的辩证唯物主义观点。

【重难点】

教学重点

沟通各图形内在联系,培养学生主动整理知识的意识,使学生掌握一定的复习整理方法。

教学难点

描述几何图形特征的语言的准确性训练,以及知识延伸,进一步发展学生空间观念。

【教学过程】

一、构建几何图形的简单知识网络,感知平面图形和立体图形的密切联系。

1、完善几何图形知识图:

师:除了平面图形,你觉得还有哪类图形?(立体图形)

2、感知平面图形和立体图形的密切联系。

师:这是一个平面图形还是立体图形?

师:从它的表面上,你观察到哪些平面图形?

3、强调平面图形和立体图形的区别。

(1)试一试:把下列几何图形分类?

(2)你感觉二者的区别主要是什么?师举例说明。

强调:各部分是否在同一平面、、、、、

二、展开复习活动,自主系统整理,感知立体图形和立体图形的联系。

(1)梳理五种立体图形的基本构成,加强和生活联系。

1、出示五种立体图形。

(1)忆一忆:你认识这些几何体吗?说名称

(2)畅所欲言:举出日常生活中和它们类似的物体。

(小组比赛,看谁说得多,让学生感觉正是这些基本图形构成我们生活的空间)

(3)议一议,认真观察,识记图形。

出示情景图:图中你熟悉的物体类似于哪些图形?

2、说出各立体图形各部分名称,各字母表示什么?

3、立体图形分类

师:分两类,怎么分?为什么?

(二)主动回忆,梳理知识。

1、谈话引入:关于我们要复习的知识你想留下深刻清晰的印象吗?老师给大家介绍一个复习的好方法。

2、出示复习方法:

关于要复习的知识(1)我已知道什么?(2)你想怎样去整理它?(3)怎样得到更多、更好的整理方法?(4)动手检测自己,(5)你还有什么不明白的?

3、据复习方法依次展开活动

(1)关于立体图形,我已知道了什么?

以电视节目“开心辞典”和小组竞赛的形式进行。

每组提出关于本组研究内容的三个问题,其他组回答,教师宣布好比赛规则,充当裁判和记分员。

(2)你想怎样去整理?

①师引导给出学生整理的方法。

a:正方体、长方体在一块儿整理......

b:找相同点、不同点

c:据构成名称分层分类对比整理。

②小组合作:尝试整理正、长方体的特点

③实物展台展示学生成果

④师课件演示整理结果:正、长方体的特征

⑤按上述复习整理方法自主整理圆柱、圆锥、球的特征,先独立整理,再小组交流,展台展示学生不同方法的成果,教师课件演示。

三、知识检测,形成反馈

1、一组判断题

(1)长方体和正方体都有六个面,而且六个面都相等。

(2)长方体的三条棱就是它的长,宽,高。

(3)上下两个底面是圆形且相等的形体一定是圆柱。

(4)圆柱的侧面展开后是一个正方形,那么它的底面周长和高一定相等。

(5)圆锥的顶点到底面只有一条垂线段。

(6)从圆柱体的上底面到下底面的任何一条连线都是这个圆柱的高。

(7)正方体的棱长总和是48厘米,它的每条棱长是8厘米。

2、一组填空题

(1)把一个边长31.4厘米的正方形铁皮卷成一个圆筒,这个圆筒 的底面周长是( )厘米,高是( )厘米。

(2)把一个长94.2米,宽31.4米的长方形铁皮卷成一个圆筒,这个圆筒的底面周长是( )米,高是( )米。

3、抢答游戏:师说出一些特征,学生随时猜几何图形的名称

四、巩固延伸,再次加强平面图形和立体图形的联系。

1、点、线、面、体的形成联系。

师:观察三幅运动的图片,可看成什么几何图形在运动?

师:他们的运动又形成了什么几何图形?

2、这些立体图形是由哪个平面图形旋转而成?

五、总结:我们周围充满着数学,智慧的人塑造了各种几何美,数学几何美又经常装点我们的生活。

师:你有哪些收获?(知识方面、方法方面)

六、温馨提醒:作业

感受几何构图之美,学会运用复习方法。

1、①先欣赏平面图形组成的图案

②作业一:用平面图形设计一幅美丽的图案,配解说词。

2、①先欣赏各国建筑物

②作业二:用立体图形设计一个美丽的建筑物,配上解说词。(给小动物设计家也行,渗透关爱思想教育)

3、小猫小狗冬天为什么蜷着身子睡觉?......

作业三:自己用这堂课的复习方法整理有关立体图形的表面积、体积的知识。

篇7:初中数学课件

【 教学内容分析】

这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。

【学生学习情况分析】

(1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述;

(2)学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析;

(3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。

【设计思想】

从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的.点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。

【教学目标】

(一)知识与技能

1、掌握数轴的三要素,能正确画出数轴。

2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

(二)过程与方法

1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意

识。

2、对学生渗透数形结合的思想方法。

(三)情感、态度与价值观

1、使学生初步了解数学来源于实践,反过来又服务于实践 的辩证唯物主

义观点。

2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得

到和谐美的享受。

【教学重点及难点】

1、重点:正确掌握数轴画法和用数轴上的点表示有理数。

2、难点:有理数和数轴上的点的对应关系。

【教学建议】

1、重点、难点分析

本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。

2、知识结构

有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下:

定 义 规定了原点、正方向、单位长度的直线叫数轴

三要素 原 点 正方向 单位长度

应 用 数形结合

【学法引导】

1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。

2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。

【教具学具准备】

电脑、投影仪、三角板

【师生互动活动设计】

讲授新课

(出示投影1)

问题1:三个温度计.其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.

师:三个温度计所表示的温度是多少?

生:2℃,-5℃,0℃.

问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(小组讨论,交流合作,动手操作)

师:我们能否用类似的图形表示有理数呢?

师:这种表示数的图形就是今天我们要学的内容—数轴(板书课题).

师:与温度计类似,我们也可以在一条直线上画出刻度,标上读

数,用直线上的点表示正数、负数和零.具体方法如下

(边说边画):

1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…

师问:我们能不能用这条直线表示任何有理数?(可列举几个数)

让学生观察画好的直线,思考以下问题:

(出示投影2)

(1)原点表示什么数?

(2)原点右方表示什么数?原点左方表示什么数?

(3)表示+2的点在什么位置?表示-1的点在什么位置?

(4)原点向右0.5个单位长度的A点表示什么数?

原点向左1.5个单位长度的B点表示什么数?

根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.

师:在此基础上,给出数轴的定义,即规定了原点、正方向和单

位长度的直线叫做数轴.

进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.

师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习

尝试反馈,巩固练习

(出示投影3).画出数轴并表示下列有理数:

1、1.5,-2.2,-2.5, , ,0.

2.写出数轴上点A,B,C,D,E所表示的数:

请大家回答下列问题:

(出示投影4)

(1)有人说一条直线是一条数轴,对不对?为什么?

(2)下列所画数轴对不对?如果不对,指出错在哪里?

【小结】

本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.

【教学反思】

1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

篇8:初中数学课件

人教版初中数学课件

教学目标:

1、在熟悉平面内两条直线相交的各种情况的基础上,理解邻补角、对顶角的概念,并能在各种情形下识别之;

2、掌握对顶角的性质及其推导过程,并能运用之进行有关的简单计算和推理;

3、进一步提高识图能力,初步渗透推理论证的思想及书写格式,感受数学的严谨。

教学重点:

对顶角的性质及应用。

教学难点:

各组角的分类。

教具学具:每个学生课前做出由两个木条构成的相交线模型。

教学过程:

(一)创设情境,感知学习目标

我们走过的马路,有些是相交的、有些是平行的;黑板边缘所在的直线也有相交或平行(示意黑板)两种情况。列举你生活中见到的相交线和平行线的实例。

本章的主要内容就是要学习和研究两条直线相交和平行的规律。

先看相交的情况(教师演示教具,学生操作自己制作的相交线模型),这两条直线(指示教具)是相交的,通过绕交点转动教具可以发现它们所交角的大小可以不同。但不论相交的情况怎样,两条相交直线构成的交角的个数及它们之间的关系是一定的,这就是本章第一节的内容:

5.1.1相交线 (板出课题)

[说明:从学生日常生活经验中发现问题、提出问题,引导学生初步地、概括地了解新的学习任务,为整节课的学习活动提供动力和规划方向。但教材强调了两条直线相交的情况与交角的大小有关,却与本节对顶角、邻补角的内容难以有机地过渡,故通过“不论相交的情况怎样,两条相交线构成的交角的个数及它们之间的关系是一定的”一句,自然引出本节课题。]

(二)设问启发、逐步领会新知识

问题1、任意转动你手中的两条相交直线,观察它们构成了哪几个角?

问题2、如果任意变化两条相交线的位置,第二类中各组角之间的关系会改变吗?为什么?

根据上述规律,回答:

(1)怎样给像<1与<3、<2与<4这样的一对角命名并下定义?

(2)对顶角有什么性质?写出你的推理过程。

[说明:在几何推理的起步阶段,严格符号语言表达的推理过程是不要求学生掌握的,这里可由学生回答,教师板出推理过程。]

问题3:如果任意变化两条相交线的位置,第一类中各组角之间的关系会改变吗?为什么?利用以前所学过的知识,你可以给它们怎样命名?(邻补角)

(1)给邻补角下定义:

(2)怎样理解“互为”的意思?

(3)画图说明,还有没有其他情况的邻补角?

[说明:根据学生知识的发生、形成过程,层层设计富有启发性的数学问题,引导学生的思维步步深入,完成从已知状态到目标状态的转化。这里数学问题的设计与提出,为将静的数学知识转化为学生动的数学活动提供了有力的杠杆,切实解决了学生如何思维、如何活动的问题,保证了教学过程中学生主体性的贯彻落实。以下对顶角的教学设计也是这样。]

(三)回顾整理,明确数学结论

1、用自己的话概述刚才学习的过程和结论。

2、反思刚才的学习过程,你有什么问题可以提出?比如,邻补角和对顶角的构成有哪些共同的规律?

[说明:由于第二环节中学生的认识活动是在教师引导下相对独立的完成的,其间不会一帆风顺,有岔道,也会有停顿,本环节的目的是在教师引导下帮助学生理顺思路、明确结论。]

(四)练习反馈,强化应用新知识

1、例题

题目:见人教版教材《数学》七年级下册,第5页。

分析:(1)∠1与∠2、∠3、∠4分别是什么关系?

(2)已知∠1=400,分别根据上述关系能否求出它们的大小?

解:(略)

思考1:∠4是否还可以有另外的求法?

思考2: 本例中,若∠1=90°,求∠2、∠3、∠4的度数。 思考:两条直线相交得到四个角,其中一个角是90°,其余各角是多少度?为什么?

强调:解决这一类问题关键是正确判断各角之间的关系,然后反复利用对顶角、补角等性质进行计算。

[说明:通过两个问题引导学生分析题目特征、探索解题思路,这是例题教学的关键,以逐步培养学生形成良好的审题、解题习惯;在例题之后,紧接着给出两个与例题内容相关的练习,既深化了学生对例题的认识,又恰当地处理了本节课后的练习的`第4问;解题之后反思解题过程、概括思想方法,是培养学生解题能力的重要一环,这里强调的内容使本例题的教学得到升华,超出了讲一个题目本身的意义。]

2、练习

教材第5页练习。

具体过程(略)。

(说明:对练习的结果教师要引导学生尽量独立地予以评价,对从中暴露出的问题和错误要及时矫正,进行补偿性学习。)

(五)总结概括、深化提高学生的理解

1、通过本课的学习,你有哪些收获和认识?还有哪些困惑与不明白的问题?

2、教师总结:平面上两条直线的位置关系有相交、平行两种,本节重点学习了两条相交直线所成的角的情况。两条直线相交得到四个角,其中有一个公共顶点,没有公共边的两个角是互为对项角;有一个公共顶点,且有一条公共边的两个角是互为邻补角。对顶角相等是对顶角的一条重要性质,它是由“同角的补角相等”这一性质推出来的。利用它可以进行许多运算。(说明:这里可由教师讲解,也可引导学生复述)。

注意:邻补角是具有特殊位置关系的两个互补的角,它们具有补角的所有性质。对顶角也可看成是两边互为反向延长线的两个角。对顶角的性质及其运用是本节的重点,它同补角、余角的性质一样在今后的运算或推理中会经常用到,运用的关键是首先判断好两个角之间的关系。

[说明:这一环节类似于一般的课堂总结,但它不应是课堂内容的简单重复,应通过引导学生回顾、总结课堂教学过程,使数学知识系统化、数学思想方法明确化,达到深化、提高学生的认识水平、促进学生科学认知结构形成的目的。这一环节比第三环节有更高的抽象度和概括化水平。]

篇9:初中数学课件

有关初中数学课件

一、内容简介

本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:

1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

二、学习者分析:

1、在学习本课之前应具备的基本知识和技能:

①同类项的定义。

②合并同类项法则

③多项式乘以多项式法则。

2、学习者对即将学习的内容已经具备的水平:

在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

三、教学/学习目标及其对应的课程标准:

(一)教学目标:

1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理

数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同

角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难

和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

四、教育理念和教学方式:

1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。

教学是师生交往、积极互动、共同发展的过程。当学生迷路的时

候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

2、采用“问题情景—探究交流—得出结论—强化训练”的模式

展开教学。

3、教学评价方式:

(1) 通过课堂观察,关注学生在观察、总结、训练等活动中的主

动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

(2) 通过判断和举例,给学生更多机会,在自然放松的状态下,

揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

(3) 通过课后访谈和作业分析,及时查漏补缺,确保达到预期的

教学效果。

五、教学媒体:多媒体六、教学和活动过程:

教学过程设计如下:

〈一〉、提出问题

[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析问题

1、[学生回答] 分组交流、讨论

(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

(1)原式的.特点。

(2)结果的项数特点。

(3)三项系数的特点(特别是符号的特点)。

(4)三项与原多项式中两个单项式的关系。

2、[学生回答] 总结完全平方公式的语言描述:

两数和的平方,等于它们平方的和,加上它们乘积的两倍;

两数差的平方,等于它们平方的和,减去它们乘积的两倍。

3、[学生回答] 完全平方公式的数学表达式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

〈三〉、运用公式,解决问题

1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

(m+n)2=____________, (m-n)2=_______________,

(-m+n)2=____________, (-m-n)2=______________,

(a+3)2=______________, (-c+5)2=______________,

(-7-a)2=______________, (0.5-a)2=______________.

2、判断:

(    )① (a-2b)2= a2-2ab+b2

(    )② (2m+n)2= 2m2+4mn+n2

(    )③ (-n-3m)2= n2-6mn+9m2

(    )④ (5a+0.2b)2= 25a2+5ab+0.4b2

(    )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

(    )⑥ (-a-2b)2=(a+2b)2

(    )⑦ (2a-4b)2=(4a-2b)2

(    )⑧ (-5m+n)2=(-n+5m)2

3、小试牛刀

① (x+y)2=______________;② (-y-x)2=_______________;

③ (2x+3)2=_____________;④ (3a-2)2=_______________;

⑤ (2x+3y)2=____________;⑥ (4x-5y)2=______________;

⑦ (0.5m+n)2=___________;⑧ (a-0.6b)2=_____________.

〈四〉、[学生小结]

你认为完全平方公式在应用过程中,需要注意那些问题?

(1)  公式右边共有3项。

(2)  两个平方项符号永远为正。

(3)中间项的符号由等号左边的两项符号是否相同决定。

(4)中间项是等号左边两项乘积的2倍。

〈五〉、冒险岛:

(1)(-3a+2b)2=________________________________

(2)(-7-2m)2=__________________________________

(3)(-0.5m+2n)2=_______________________________

(4)(3/5a-1/2b)2=________________________________

(5)(mn+3)2=__________________________________

(6)(a2b-0.2)2=_________________________________

(7)(2xy2-3x2y)2=_______________________________

(8)(2n3-3m3)2=________________________________

〈六〉、学生自我评价

[小结]  通过本节课的学习,你有什么收获和感悟?

本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

〈七〉[作业]  P34  随堂练习   P36  习题

七、课后反思

本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用。为完全平方公式第二节课的实际应用和提高应用做好充分的准备。

篇10:初中数学旋转的知识点

初中数学旋转的知识点

旋转

1、定义

把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

2、性质

(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

二、中心对称

1、定义

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质

(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定

如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形

把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

考点五、坐标系中对称点的特征 (3分)

1、关于原点对称的点的特征

两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)

2、关于x轴对称的点的特征

两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)

3、关于y轴对称的点的特征

两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)

数学学习中常见问题分析

大部分学生在学习中或多或少的都会积累一些问题,这些问题平时我们可能不是很在意,那么到了初二后就会突显出来。首先新生在学习数学的时候常遇到的就是对于知识点的理解不到位,还停留在一知半解的层次上面。有的学生在解答数学题的时候始终不能把握解题技巧,也就是说学生缺乏对待数学的举一反三能力。

还有的学生在解答数学题时效率太低,无法再规定的时间内完成解题,对于初中的考试节奏还没办法适应。一些学生还没有养成一个总结归纳的习惯,不会归纳知识点,不会归纳错题。这些都是导致学生学不好数学的原因。

常见面积定理

1.一个图形的面积等于它的各部分面积的和;

2.两个全等图形的面积相等;

3.等底等高的三角形、平行四边形、梯形(梯形等底应理解为两底的和相等)的面积相等;

4.等底(或等高)的三角形、平行四边形、梯形的面积比等于其所对应的高(或底)的比;

5.相似三角形的面积比等于相似比的平方;

6.等角或补角的三角形面积的比,等于夹等角或补角的两边的乘积的比;等角的平行四边形面积比等于夹等角的两边乘积的比;

7.任何一条曲线都可以用一个函数y=f(x)来表示,那么,这条曲线所围成的面积就是对X求积分。

篇11:初中数学课件内容

一、内容特点

在知识与方法上类似于数系的第一次扩张。也是后继内容学习的基础。

内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。

二、设计思路

整体设计思路:无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。

学习对象----实数概念及其运算;学习过程----通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。

具体过程:首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。

第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。

第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。

第五节:用计算器开方:会用计算器求平方根和立方根。经历运用计算器探求数学规律的活动,发展合情推理的能力。

第六节:实数。总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

三、一些建议

1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。

2.鼓励学生进行探索和交流,重视学生的分析、概括、交流等能力的考察。

3.注意运用类比的方法,使学生清楚新旧知识的区别和联系。

4.淡化二次根式的概念。

篇12:初中数学课件内容

教学目标:

1、进一步理解函数的概念,能从简单的实际事例中,抽象出函数关系,列出函数解析式;

2、使学生分清常量与变量,并能确定自变量的取值范围.

3、会求函数值,并体会自变量与函数值间的对应关系.

4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法.

5、通过函数的教学使学生体会到事物是相互联系的.是有规律地运动变化着的.

教学重点:了解函数的`意义,会求自变量的取值范围及求函数值.

教学难点:函数概念的抽象性.

教学过程:

(一)引入新课:

上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.

生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗?

1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系.

2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系.

解:1、y=30n

y是函数,n是自变量

2、n是函数,a是自变量.

(二)讲授新课

刚才所举例子中的函数,都是利用数学式子即解析式表示的.这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义.如第一题中的学生数n必须是正整数.

例1、求下列函数中自变量x的取值范围.

(1)(2)

(3)(4)

(5)(6)

分析:在(1)、(2)中,x取任意实数,与都有意义.

(3)小题的是一个分式,分式成立的条件是分母不为0.这道题的分母是,因此要求.

同理(4)小题的也是分式,分式成立的条件是分母不为0,这道题的分母是,因此要求且.

第(5)小题,是二次根式,二次根式成立的条件是被开方数大于、等于零.的被开方数是.

同理,第(6)小题也是二次根式,是被开方数,

小结:从上面的例题中可以看出函数的解析式是整数时,自变量可取全体实数;函数的解析式是分式时,自变量的取值应使分母不为零;函数的解析式是二次根式时,自变量的取值应使被开方数大于、等于零.

注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要即可.教师可将解题步骤设计得细致一些.先提问本题的分母是什么?然后再要求分式的分母不为零.求出使函数成立的自变量的取值范围.二次根式的问题也与次类似.

但象第(4)小题,有些同学会犯这样的错误,将答案写成或.在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用.限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”.说明这里与是并且的关系.即2与-1这两个值x都不能取.

例2、自行车保管站在某个星期日保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每次一辆0.3元.

(1)若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;

(2)若估计前来停放的3500辆次自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围.

解:(1)

(x是正整数,

(2)若变速车的辆次不小于25%,但不大于40%,

收入在1225元至1330元之间

总结:对于反映实际问题的函数关系,应使得实际问题有意义.这样,就要求联系实际,具体问题具体分析.

对于函数,当自变量时,相应的函数y的值是.60叫做这个函数当时的函数值.

例3、求下列函数当时的函数值:

(1)(2)

(3)(4)

注:本例既锻炼了学生的计算能力,又创设了情境,让学生体会对于x的每一个值,y都有唯一确定的值与之对应.以此加深对函数的理解.

(二)小结:

这节课,我们进一步地研究了有关函数的概念.在研究函数关系时首先要考虑自变量的取值范围.因此,要求大家能掌握解析式含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并能求出其相应的函数值.另外,对于反映实际问题的函数关系,要具体问题具体分析.

篇13:浙教版初中数学课件

1、调查了解,交流感悟时间是最宝贵的,珍惜时间与否决定成效,使学生初步树立珍惜时间的意识。

2、结合学生的生活实际,互相启发、帮助,学习合理安排作息时间。

设计理念:

1、引导学生在生活中发展,在发展中生活。本次活动以“源于生活--交流互学—应用生活” 这个主线来贯穿教学内容,每一个环节的活动都来自学生的现实生活,都是在学生身边的事或者曾经经历过的事的基础上去深入理解“生活”,从学生的生活实际来顺势引导,得到体验、探究和领悟,并从中得到情感的交流、达到良好习惯的培养及能力发展的目的。整个活动凸现了学生的生活体验。

2、以活动为载体,构筑活力无穷的体验课堂。通过多种教学活动,帮助学生获得丰富的情感体验,去感悟时间的重要和珍贵,形成积极的生活态度,养成合理利用时间的良好的行为习惯。如本次活动中,在上课前,教师鼓励学生课外积极开展调查活动,精心制作了调查表,让学生通过采访周围的人,通过自己的一分钟实践活动,体验时间的重要,感悟时间的价值。课前调查活动,增强了教学的针对性和实效性。

3、课堂教学是师生共同参与的、多向互动的课堂生活。在本次活动中,教师是一个积极的参与者和指导者。教师和学生始终处于平等的状态下进行交流,学生也始终处于一种轻松、愉悦的状态中。在课前准备时,教师就与学生一起调查,向自己的长辈、亲朋好友、媒体了解珍惜时间的人们的工作情景和成效;师生共同调查、体验一分钟在生活中的价值。在课堂中,教师融入到学生中间,和他们一起活动,一起交流,一起发现、感悟。

课前准备:

1、师生共同向自己的长辈、亲朋好友、媒体了解珍惜时间的人们的工作情景和成效。

2、师生共同调查、体验一分钟在生活中的价值。

3、教师采集一组体现时间就是生命、财富、胜利的录象片段。

4、师生共同收集关于时间的格言和谚语。

活动流程:

一、游戏导入主题:

导入:小朋友,今天的活动课上,老师想和小朋友一起聊聊关于时间的话题。小朋友可能会想这个话题会不会太枯燥?不一定哦!让我们一起先来参与两个活动。

1、做一个动作。

师:小朋友,我们一起来做个动作,(边示范,边说)双手平举、半蹲。

准备好了吗?来,让我们随着小闹钟的滴答声,开始吧!

2、看一段有趣的动画片。

师:小朋友一定感到累了吧!下面我们来轻松一下。(点击课件)

3、交流:

师:动画片没了,小朋友一定还想看吧!我也是。但时间不允许啦!我们还有活动任务呢!小朋友,刚才我们两个活动下来,你对活动的时间有什么不同的感受吗?(生谈感受)

(设计意图:打破教材中平铺直叙的手法,以两次活动对比的形式让学生自由说说对两种活动过程的不同的时间感受,在不知不觉中体会时间对每一个人、每一件事都是一样公平的,不偏不向的。游戏也是学生非常喜欢的一种活动,由游戏导入,能激发学生聊时间这个话题的兴趣。学生的积极参与、激情投入是这节课活动成功的基础。)

二、交流感悟时间的价值,时间的宝贵:

师过渡:

其实啊,做动作和看动画片的时间是一样长的,都是一分钟。这组活动说明了,时间对每个人、每件事都是不偏不向的,是公平的,同时也是宝贵的。课前小朋友都去作了关于时间的调查,小朋友去调查了一分钟在各行各业中产生的成果,还去实践体验了一分钟自己能做哪些事。下面我们就一起来交流一下。

(一)一分钟的调查、实践交流:

1、交流“一分钟”资料。

2、教师补充资料:

师:老师课前也进行了调查,想和小朋友一起交流一下。 (点击课件)

师小结:是啊,短短的一分钟可以做那么多的事情!真是宝贵的一分钟。如果我们把10个一分钟,把100个一分钟,把许许多多的一分钟都利用起来的话,那会发挥多么大的作用啊!

(设计意图:通过课前一分钟调查的.交流,把时间这个很抽象的概念具体化。学生由生活中一分钟的价值交流,产生一分钟的时间都是那样宝贵的认识,从而对时间以及时间的价值有很形象化的、很具体的感悟。)

(二)看录象感悟:

导入:老师这儿有一组关于时间的录象,你看了一定会有更多的启发:(播放课件)

1、连续观看几组录象。(定格几个画面)

2、交流感悟:

师:小朋友,看了这一组惊心动魄的画面,你对时间一定有许多感想。想告诉大家吗?

比如:哪组录象给你的印象最深,你想到了什么?

看了几组录象,你有什么感想或启发?

你明白了什么道理?

3、师过渡小结:

小朋友刚才讲到的感受,有的老师也有同感。我们是不是可以这样归纳:时间就是财富(金钱);时间就是胜利,时间就是生命。但是,如果,这些叔叔、阿姨平时没有时间观念,没有珍惜时间、争分夺秒的时间意识,那么,他们在碰到人命关天的抢救、碰到这些突发事件或重大事情的时候,能取得时间就是生命,时间就是财富(金钱);时间就是胜利的成效吗?——当然不可能!

(设计意图:通过一组惊心动魄的画面集中展示,在课堂上产生一种震撼的效果。学生通过直观的影象和激烈的讨论,情感的体验再一次得到深华。同时,学生从多元化的角度体验,达成了唯一的目标,那就是对时间有了更深的体会,感悟到时间的价值:时间就是财富(金钱);时间就是胜利,时间就是生命······)

(三)交流课前调查,强化时间观念

师过渡:小朋友,我们在课前还向爸爸妈妈了解了他们在工作中珍惜时间,抓紧时间提高工作效率的故事。我们一起来交流一下,好吗?

1、全班交流。教师随机评价。(时间就是财富(金钱);时间就是胜利,时间就是生命)

2、随机小组交流。

(设计意图:通过学生对自己身边的珍惜时间事例的调查交流,这样由远及近,打破常规,冲破机械问答,目的在于强化时间观念,树立珍惜时间的意识。在交流中加深了学生对时间就是财富(金钱);时间就是胜利,时间就是生命······的认识,对时间的整体感悟在自然而然中不断得以深华。)

(四)联系学生实际讲自己的故事——实话实说

1、师过渡:看得出,小朋友的课前调查很认真,交流得也很认真,体会也都有了提高。下面,老师想请小朋友实话实说,讲讲自己平时和时间打交道的故事好吗?比如:(点击课件播放录音)

1)你有没有把今天该做的事拖到明天去做的经历?是什么原因?结果怎么样?

2)回忆一下,自己平时在什么情况下最会浪费时间,或者浪费时间最多的是什么时候?

3)你平时不会浪费时间,是什么原因?介绍介绍自己的经验。

4)在我们班里,你有没有发现比较珍惜时间的同学,请你说说他们珍惜时间的事!

2、组织交流。(教师随机引例,因势利导)

3、同桌交流。(机动)

4、师过渡小结:

是啊,我们对时间的态度不同,它就会给我们带来不同的结果。听了小朋友的实话实说,坦诚交流,我很感动。小朋友对珍惜时间有了新的认识,也给了我很多启发。我想作为我们这个年龄的小学生,要珍惜时间,不浪费时间。还应该有一个适合自己的劳逸结合的作息时间表来时刻提醒自己。今天啊,老师带来了我们海盐城郊小学的几位小朋友的作息时间表(课件打出)。有双休日的,有放学回家后的,也有即将到来的寒假生活安排的。请小朋友看一看,也许会对你有很多启发。

(设计意图:通过老师的提问,一石激起千层浪,指导学生联系实际,对照自己,讲讲与时间打交道的故事。期间,引导学生互相学习、提问、建议……总之,在充分的、深入的、热闹的课堂讨论中,启发学生充分认识到自己是时间的主人,应该做时间的主人。)

三、模拟作息时间表,学做时间小主人

过渡:小朋友,让我们也一起行动起来吧!把我们的课余时间、假日时间好好安排一下!

1、学生制订时间表。(课件播放音乐,学生任选1-2种)

2、交流。

方法:教师在巡视中随机将已完成的较典型的放在投影上。学生也可自我推荐贴在黑板上。看同学的作息时间表,小朋友之间互相交流。

小结:小朋友,聪明的学生今天就把明天的事安排好。就让我们从学订这张时间表开始,一起来学做时间的小主人吧!

(设计意图:针对学生生活实际、生活经历简单,相当一部分学生的作息时间是受父母控制的。指导学生根据自己不同的经历、不同的家庭,各自制定不同的时间表。以此作为学生学做时间主人的最根本的起点,作为学生学做时间主人的一个载体。通过这个活动,让他们有一个合理安排时间的概念,为今后的正确、合理的作息时间安排,打下一个实践的基础。同时达到这样一个目的,这堂课的教育并没有结束,她在无形中还在延伸。这时间表在学生的书里,在学生书房的墙上,……将继续发挥她的教育作用。)

【初中数学课件《旋转-中心对称》】相关文章:

1.初中数学课件

2.图形的旋转课件

3.平移和旋转课件

4.初中数学说课稿课件

5.小学图形的旋转课件

6.数学课件

7.《平移与旋转》数学教案设计

8.旋转沉落初中作文500字

9.数学《平移和旋转》教学方案设计

10.平移与旋转数学教学反思

下载word文档
《初中数学课件《旋转-中心对称》.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度: 评级1星 评级2星 评级3星 评级4星 评级5星
点击下载文档

文档为doc格式

  • 返回顶部